
Optimal Stabilizable Switching Law for Switched Linear Systems 
Using GA

Abstract: This paper investigates the optimal switching 
stabilizability problem for a class of continuous time switched 
linear systems. The proposed method is  based on a theorem 
with necessary and sufficient condition for stability of switched 
linear systems.  An optimization problem is produced and 
solved using Genetic algorithm to find the optimal switching 
rule. Although many cost functions can be used as the 
optimality's target,   here the smallest convergence time which 
is noticeable in most of optimal switching problems is used as 
optimal target.  

Keywords: Genetic algorithm, Optimal switching rule, 
Switched linear system.

1. Introduction

Many systems have dynamics that are described by a 
set of continuous time differential equations in 
conjunction with a discrete event process. Such systems 
are usually referred to as switched or hybrid systems. 

   If the individual subsystems are given, then the 
behaviour of a switched system depends on the switching 
signal. Usually, different switching strategies produce 
different system behaviours and hence lead to different 
system performances. A well-known example is the 
switched server system which is able, not only to produce 
regular stable behaviour, but also to produce highly 
unstable behaviour such as chaos and multiple limit 
circles.  In this situation, the choice of a suitable 
switching law to optimize certain performance index 
becomes an important and well-motivated problem [4].

   Optimization over switching signals is indeed a 
challenging problem [5-6]. As a switching signal is a 
discontinuous function of time and possibly highly 
nonlinear, the optimization is extremely intricate and 
non-convex in nature. 

   In this paper we investigated a problem of finding 
the optimal stabilizable switching law for switched linear 
system with no control input. The subsystems are 
continuous time linear time invariant (LTI) systems,

IRttxAtx    ,)()(.

   Most of switching rules that stabilize the switched 
linear systems are based on the existence of a stable 
convex combination of the subsystems [1-5,7]. The 
existence of such stable convex combination is just a 
sufficient condition, so although checking of that 
existence is not simple and straightforward, if there is not 
any stable convex combination of the subsystems the 
instability of switched systems can not be concluded. 

Example 1: Consider the following continuous time 
switched linear system:    
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   This switching system was used in [3] to show that 
switching between two unstable systems may exhibit 
stable behavior and it was also used in [2] as an example 
of satisfying the following theorem.
   The eigenvalues of 1A are two zeroes and the 
eigenvalues of 2A are i35.0  , which means that 
both systems are unstable. 
   It can be seen that there is not any stable convex 
combination of these two subsystems, because these two 
systems convex combination is as follows:
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And this combination eigenvalues are
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  The square part ( 217143   ) is negative for 
any 10  , which means the eigenvalues are 
complex for all acceptable  and their real part is 

5.05.0  , which is positive for .10  Figure 1 
shows the eigenvalues loci  for  10  , it shows that 
the convex combination of  two systems is always 
unstable, so the sufficient condition _for stability_ is not 
satisfied, but it will be shown that the switched system is 
stable by introducing the appropriate switching rule.                                                
□

2. Description

   Recently, Lin and Antsaklis [2] proposed a necessary 
and sufficient condition for the existence of a switching 
control law for asymptotic stabilization of continuous-
time switched linear systems as a theorem. 

2.1 Antsaklis theorem

Theorem: [2] assume that there is no sliding motion in 
the closed loop switched system. The continuous-time 
switched linear system can be globally asymptotically 
stabilized, if and only if 
1) There exist a full row rank nm

i
iRL  , 

where nmi  , such that the auxiliary system for i-th 
subsystem, i.e.
   RttRALt iii ,)()(.                      (1)      is 
asymptotically stable. Here imn

i RR  is a right inverse 
of iL , it means       
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has n linear independent row vectors.
2) Let i stands for conic cones induced through the 
intersection of these polyhedral lyaponov-like functions' 
level sets, and i be required to be contained in the 
range space of iR . These induced conic cones cover the 
whole state space, i.e.

  ni R

2.2 Explanation of the theorem

  The first condition is straightforward, because there 
always exist L and R satisfying the above assumption (1), 
except when  nIA  for some positive real .0
Here nI is the identity matrix of dimension n.  

   The first condition can be interpreted as considering 
a linear combination of the states of the original 
subsystems as auxiliary systems, which is asymptotically 
stable. The auxiliary systems evolve in the lower 
dimensional state-space to which the original systems can 
be projected for stability. Note that even when all parts of 
the states of the original system are unstable, there may 
exist L satisfying the assumption (1), as below example.

Example 2: Consider a continuous time system,

)(
00

100
)(. txtx 










The above continuous time system is obviously 

unstable, but the auxiliary system )()(. tLARt  

with  10L and 









1

1
R is asymptotically 

stable, because 

  010
1

1

00

100
01 

















LAR

and

  1
1

1
01 










LR

      Note that R can be any matrix of the form 







 r

1

with 0r for the selected L.    □
   In the second condition, according to the converse 

lyapunov theorem for linear time variant systems, the 
asymptotic stability of the auxiliary system implies the 
existence of a polytopic lyapunov function, which can be 
represented as
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where im
i Rf  1 is a nonzero row vector and is is an 

integer greater than im . ii ms
i RF  is taken to be the 

matrix with im
i Rf  1 as its rows. )(i must satisfy 

the conditions represented in [2]. 
The basic idea is that a polyhedral lyapunov-like 

function )(x can be constructed for each subsystem by 
transforming the corresponding polyhedral lyapunov 
function of its auxiliary system as follows. Denote 

ns
ii

iRLF  as iH , and ih as its row vector of iH . 
Then the polyhedral lyapunov-like function )(xi can 
be defined as 
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Fig. 1: Eigenvalues loci for convex combination of two systems 
of example 1.
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   Considering the intersection of their level sets, i.e.
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where iS is the level set of ith subsystem's polyhedral 
lyapunov-like function.

  Let i stands for conic cones induced through the 
intersection of these polyhedral lyaponov-like functions' 
level sets, and i be required to be contained in the 

iM , which is the range space of iR , i.e.

)( i
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These induced conic cones must cover the whole state 
space, i.e.    

ni R

   i is the state space partition where i-th subsystem 
is active. The partitioning of two dimensional state space 
based on the above theorem is illustrated in figure 2.

2.2 Optimal stabilizable switching law

   The necessary and sufficient conditions of discussed 
theorem were proved in [2], but checking of those 
conditions are not easy because it requires to 
parameterized all matrix iL and iR which satisfy (1). 
The calculation of such iL and iR for each subsystem 
could be tedious. Fortunately, it is always possible to 
restrict the search to the vector case, i.e., 1im , 

n
i RL  1 , and 1 n

i RR . This makes it is possible to 
formulate the determination of iL and iR into an 
optimization problem. There maybe a lot of iL and 

iR which satisfy the theorem's conditions, but just one of 
them tends to optimal results of the switching system 
with respect to the aim or cost function. Here the goal is 
minimization of the convergence time which corresponds 
to norm of states will be less than a specified error. 
   In this paper genetic algorithm is used to solve this 
problem, because the GA tends to find the global solution 
of the problem. 
   The GA is a stochastic optimization algorithm that was 
originally motivated by the mechanisms of natural 

selection and evolution of genetics. The underlying 
principles of the GA were first proposed by Holland in 
1962 [9], whereas the mathematical framework was 
developed in the late 1960s and was presented in 
Holland's pioneering book [8].
   The search space is a vector space with length Nn , 
where N is the number of subsystems and n is subsystems 
dimension, so each chromosome has the following 
formatting:

   
 NLLLL 21

.

   Another important part in the GA is fitness function, 
which is declared as convergence time that tends to norm 
of states will be less than a specified error.  Many of 
vectors L may not satisfy the theorem condition and so 
not feasible. Fitness value of these infeasible population 
members sets to a large number.

3. Simulation Results

   The algorithm is set to find the best switching rule for 
switched linear systems which is used in example 1 to 
show that there was not any stable convex combination. 
i.e.,
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   The phase plane portraits of these two systems are 
illustrated in figure 3. The instability of both systems is 
indicated in  figure 3.
   Using genetic algorithm with population size of 100 
and 50 iterations, following vector L is found.
   L= [-11.4423   98.4065   -27.9669  -65.6957]
This vector L results two following switching lines, 
which is illustrated in figure 4.

12 1007.0 xx 
and

12 2048.1 xx    
Figure 5 shows the phase plane portrait of switched 

system with respect to above switching lines. Also the 
switching signal is shown in figure 6. Finally, switched 
system response is illustrated in figure 7 for initial 
condition equal to [-5 -5]. Here, the norm of states will be 
less than 0.1 after 3.95 seconds and less than 0.001 after 
8.12 seconds. 

Fig. 3: The phase plane portrait of systems.Fig. 2: Illustration of patitioning of two dimentional state 
space.
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Fig. 4: Partiotioning of state space and switching line.

Fig. 5: phase plane portrait of switched system.

Fig. 6: The resulted switching signal.

3. Conclusion

   Finding an optimal switching law for continuous time 
switched linear systems is considered in this paper. An 
optimization problem is produced based on Lin and 
Antsaklis [2] theorem. The optimal solution is found 
using GA. The explained theorem is very powerful, 

because of necessary and sufficient conditions for 
stability of switched linear system. This theorem is also 
applicable for a class of continuous time switched linear 
systems with uncertain parameters. So, further studies is 
needed to contain this kind of systems as an optimization 
problem. 
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Fig. 7: Switched system response.
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