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Abstract. In this paper, some concepts of negative dependence for bivariate distribu-
tions, especially hazard and local negative dependence (HND,LND) are studied. The
Clayton-Oakes, ϕ and γ measures of association and relationship of HND with this mea-
sures is studied. In addition, various examples illustrate the usefulness of these notions
in some family of distributions.

1. Introduction

Let X and Y be absolutely continuous random variables having joint density f(x, y)

and survival function F̄ (x, y). Basu [2] introduced bivariate hazard function, r(x, y) =

f(x, y)/F̄ (x, y). In the independent case the bivariate hazard function is equal to product

of conditional hazard functions, ∂
∂x

[− log F̄ (x, y)] and ∂
∂y

[− log F̄ (x, y)]. If equality failed

we deal with dependent (positive or negative) random variables. In this paper we used no-

tions of negatively hazard and local dependence, say HND, LND, and have investigated

relationship between this concepts with some other concepts of dependence. More de-

tails about notions of dependence are in Lehmann[13] ,Karlin[12], Esary and Proschan[4],

Joe[9] and Shaked and Shanthikumar[17]. Oluyede[14], [15] has obtained some properties

and inequalities for positively hazard and local dependence. We have obtained some mea-

sures of association, like θ-measure (known as Clayton-Oakes measure), ϕ-measure and

γ-measure, and have connected these measures with HND and LND.

Let (X, Y ) be an absolutely continuous random vector having distribution (survival)

function F (F̄ ). In the next sections we need the following definitions.

Definition 1.1. Absolutely continuous random variables X and Y having a joint

density function f(x, y) are hazard negative (positive)dependence, HND(HPD), if and

only if

f(x, y)

F̄ (x, y)
≤ (≥)

∫ ∞

x

f(u, y)du

F̄ (x, y)

∫ ∞

y

f(x, v)dv

F̄ (x, y)
(1)
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where f(x,y)

F̄ (x,y)
is the bivariate hazard rate function, F̄ (x, y) is bivariate reliability function

and ∫ ∞

x

f(u, y)du

F̄ (x, y)
=

∂

∂y
[− log F̄ (x, y)], and

∫ ∞

y

f(x, v)dv

F̄ (x, y)
=

∂

∂x
[− log F̄ (x, y)]

are conditional hazard functions.

Definition 1.2. Absolutely continuous random variables X and Y having a joint

density function f(x, y) are locally negative (positive) dependence, LND(LPD), if and

only if

F (x, y)f(x, y) ≤ (≥)

∫ x

−∞
f(u, y)du

∫ y

−∞
f(x, v)dv, (2)

where F (x, y) is joint cumulative distribution of X and Y .

Definition 1.3. A non-negative function h on A2 , where A ⊆ IR , is reverse rule of

order 2 ( RR2 ) if for all x1 < x2 and y1 < y2 , with xi, yj ∈ A i = 1, 2 j = 1, 2

h(x1, y1)h(x2, y2) ≤ h(x1, y2)h(x2, y1). (3)

Definition 1.4. Let X and Y be continuous random variables.Then X and Y are right

corner set decreasing, RCSD , if

P (X > x, Y > y|X > x′, Y > y′) (4)

is decreasing (non-increasing) in x′ and in y′ , for all x and y .

Definition 1.5. Let X and Y be continuous random variables.Then X and Y are left

corner set increasing, LCSI , if

P (X ≤ x, Y ≤ y|X ≤ x′, Y ≤ y′) (5)

is increasing (non-decreasing) in x′ and in y′ , for all x and y .

Definition 1.6. Let Fθ(x) be a family of distribution functions. This family is

called monotone decreasing likelihood ratio, (MDLR)(monotone increasing likelihood ra-

tio, (MILR)) if for all η > θ , Fη(x)

Fθ(x)
is decreasing (increasing) in x.

Definition 1.7. (Holland and Wang[8]) Suppose that the mixed partial derivative of

h(x, y) exists and h is defined on a Cartesian product set. Then local dependence function,

γ
h
(x, y), define as follows

γ
h
(x, y) =

∂2Logh(x, y)

∂x∂y
=

1

h(x, y)
{h11(x, y)− h10(x, y)h01(x, y)

h(x, y)
}, (6)

where hij = ∂i+jh(x,y)
∂xi∂yj , i, j = 0, 1.

Remark 1.8. Let X and Y be continuous random variables with joint distribution

(survival) function F (F̄ ). Then
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a: HND(X, Y )(HPD(X, Y )) ⇔ γ
F̄
(x, y) ≤ (≥)0.

b: LND(X, Y )(LPD(X, Y )) ⇔ γ
F
(x, y) ≤ (≥)0.

c: X and Y are independent if and only if equality occur in (1) or (2) or equivalently

γ
F
(x, y) = 0 or γ

F̄
(x, y) = 0.

2. MAIN RESULTS

In this section we obtain some useful results about HND and LND which show relation

of these concepts with some notions of dependence.

Proposition 2.1. Let (X,Y) be absolutely continuous random vector with distribution

F (x, y) and reliability function F̄ (x, y) .Then

a: F̄ (x, y) is RR2 if and only if for all x1 < x2 and y1 < y2 ,

P (X > x2, Y > y2) P (x1 < X ≤ x2, y1 < Y ≤ y2)

≤ P (x1 < X ≤ x2, Y > y2)P (X > x2, y1 < Y ≤ y2). (7)

b: F (x, y) is RR2 if and only if for all x1 < x2 and y1 < y2,

P (X ≤ x1, Y ≤ y1) P (x1 < X ≤ x2, y1 < Y ≤ y2)

≤ P (X ≤ x1, y1 < Y ≤ y2)P (x1 < X ≤ x2, Y ≤ y1). (8)

Proof. We proof part a. The part of b is similar. We note that F̄ (x, y) is RR2 , i.e.

for x1 < x2 and y1 < y2∣∣∣∣∣ P (X > x1, Y > y1) P (X > x1, Y > y2)

P (X > x2, Y > y1) P (X > x2, Y > y2)

∣∣∣∣∣ ≤ 0. (9)

It is easy to show that (9) is equivalent to∣∣∣∣∣ P (x1 < X ≤ x2, y1 < Y ≤ y2) P (x1 < X ≤ x2, Y > y2)

P (X > x2, y1 < Y ≤ y2) P (X > x2, Y > y2)

∣∣∣∣∣ ≤ 0. (10)

and this is equivalent to (7), so that proof is complete. �

The following Proposition give a relationship between RR2 and HND(LND).

Proposition 2.2. Let (X,Y) be absolutely continuous.

a: If F̄ (x, y) is RR2 , then (X,Y) is HND.

b: If F (x, y) is RR2 , then (X,Y) is LND.

Proof.

a: Let x1 = x , x2 = x+ ∆x , y1 = y , y2 = y + ∆y where ∆x,∆y > 0. By using (7)

and dividing the result by ∆x∆y and letting ∆x→ 0,∆y → 0 , the result follows.

b: Proof is similar.

�

pre
sen

tat
ion
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Theorem 2.3. Let X , Y be continuous random variables having distribution function

F (x, y) and reliability function F̄ (x, y).

a: X , Y are RCSD(X, Y ) if and only if F̄ (x, y) is RR2.

b: X , Y LCSI(X,Y ) if and only if F (x, y) is RR2.

Proof. The first part is proved, the second is similar.

RCSD ⇒ RR2 : Let (X, Y ) be RCSD then by definition (1.4), for all (x, y) ∈ IR2,

P (X > x, Y > y|X > x′, Y > y′) is decreasing in x′ and in y′ . So that for y = −∞ ,

P (X > x|X > x′, Y > y′) decreasing in x′ and in y′, for all x . Therefore if x > x′, then

P (X > x|X > x′, Y > y′) = P (X>x,Y >y′)
P (X>x′,Y >y′) is decreasing in y′ and hence for y′ < y,

P (X > x, Y > y)

P (X > x′, Y > y)
≤ P (X > x, Y > y′)

P (X > x′, Y > y′)
(11)

which is equivalent to (3) with h = F̄ .

RR2 ⇒ RCSD : Since F̄ (x, y) is RR2 hence for x > x′ and y > y′ , (11) valid and so for

x > x′ P (X > x|X > x′, Y > y′) = P (X>x,Y >y′)
P (X>x′,Y >y′) is decreasing in y′ . Similarly for y > y′

by RR2-property of F̄ (x, y)

P (Y > y|X > x′, Y > y′) ≥ P (Y > y|X > x, Y > y′)

i.e. P (Y > y|X > x′, Y > y′) is decreasing in x′ . Now, if x > x′, y < y′

P (X > x, Y > y|X > x′, Y > y′) =
P (X > x, Y > y′)

P (X > x′, Y > y′)

≤ P (X > x, Y > y)

P (X > x′, Y > y)

= P (X > x, Y > y|X > x′, Y > y),

thus P (X > x, Y > y|X > x′, Y > y′) is decreasing in y′. Similarly for x ≤ x′, y > y′,

P (X > x, Y > y|X > x′, Y > y′) is decreasing in x′ . Also for x < x′, y < y′, P (X >

x, Y > y|X > x′, Y > y′) = 1, therefore (X, Y ) is RCSD . �

Corollary 2.4. Under the assumptions of Theorem 2.3 and Proposition 2.2

a: RCSD(X, Y ) ⇒ HND(X,Y ).

b: LCSI(X,Y ) ⇒ LND(X, Y ).

Theorem 2.5. Let Fθ(x) and Gθ(y) be two families of distribution functions. For any

mixing distribution K , consider the distribution

H(x, y) =

∫
Ω

Fθ(x)Gθ(y)dK(θ),

where Ω is a Borel set in IRn and K is a probability measure on Ω .

(i): If one of the family is MILR and the other is MDLR , then H(x, y) is LND.

(ii): If Fθ(x) and Gθ(y) are both MDLR or MILR, then H(x, y) is LPD.
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SOME CONCEPTS OF NEGATIVE DEPENDENCE 5

Proof. We prove part (i) . The proof of part (ii) is similar . Let Fθ(x) be MDLR

and Gθ(y) be MILR , so that for x < x′ , y < y′ and η > θ (η, θ ∈ Ω) , we have

[Fη(x)Fθ(x
′)− Fη(x

′)Fθ(x)][Gη(y)Gθ(y
′)−Gη(y

′)Gθ(y)] ≤ 0.

After some simple calculation we obtain H(x, y)H(x′, y′) ≤ H(x, y′)H(x′, y). Therefore

the distribution function H is RR2, and hence H is LND. �

3. examples and measures of dependence

In this section we first introduce the Clayton-Oakes association measure(θ-measure)

and ψ- measure and drive the relationship of these measures with hazard negative de-

pendence,then we give some examples. Clayton[3] and Oakes[16] defined the following

associated measure:

θ(x, y) =
F̄ (x, y)D12F̄ (x, y)

D1F̄ (x, y)D2F̄ (x, y)
, (12)

where D12F̄ (x, y) = ∂2

∂x∂y
F̄ (x, y), D1F̄ (x, y) = ∂

∂x
F̄ (x, y) and D2F̄ (x, y) = ∂

∂y
F̄ (x, y). The

function θ(x, y) measures the degree of association between X and Y , and has direct

relation to local dependence function, γ
F̄
(x, y). θ(x, y) = 1 if and only if γ

F̄
(x, y) = 0

i.e X and Y are independent, θ(x, y) > 1 if and only if γ
F̄
(x, y) > 0 i.e X and Y have

positively dependent and θ(x, y) < 1 if and only if γ
F̄
(x, y) < 0 or equivalently X and Y

are negatively dependent.

Let us define some quantities to formulate θ(x, y).

r1(x, y) := − ∂

∂x
[log F̄ (x, y)] = −D1F̄ (x, y)

F̄ (x, y)
, r2(x, y) := − ∂

∂y
[log F̄ (x, y)] = −D2F̄ (x, y)

F̄ (x, y)

By using (6)we can write:

∂2

∂x∂y
log F̄ (x, y) = r1(x, y)r2(x, y)(θ(x, y)− 1). (13)

So, from (12) we drive;

r(x, y) = r1(x, y)r2(x, y)θ(x, y), (14)

where r(x, y) = f(x,y)

F̄ (x,y)
is Basu’s failure rate. More detail about formulate of θ is found in

Gupta [6], [7].

Another measure for appearance of dependence is ψ- measure which is defined as follows:

ψ(x, y) =
P (X > x|Y > y)

P (X > x)
=

F̄ (x, y)

F̄1(x)F̄2(y)
(15)

Under the some regular conditions, the following statements are valid for ψ- measure in

(14);

• ψ(x, y) = 1 ⇔ X and Y are independent.

• ∂2

∂x∂y
ψ(x, y) = γ

F̄
(x, y).

• If ψ(x, y) > 1 then (X, Y ) is PQD.
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6 ASADIAN, AMINI, AND BOZORGNIA

• If ψ(x, y) < 1 then (X, Y ) is NQD.

• If θ(x, y) < (>)1 then ψ(x, y) < (>)1 (the converse is not true).

The following proposition gives relationship between dependence measures.

Proposition 3.1. Let (X, Y ) be an absolutely continuous random vector having relia-

bility function F̄ (x, y) . One can verify that the following are equivalent

(i): θ(x, y) < 1,

(ii): γ
F̄
(x, y) < 0,

(iii): ∂2

∂x∂y
ψ(x, y) < 0,

(iv): r(x, y) < r1(x, y)r2(x, y),

(v): (X, Y ) is HND.

Proof. By (6), (11), (12), (13) and (14) the proposition proved immediately. �

Example 3.2. (Farli-Gumble-Morganstern [4] distribution (FGM)) Consider the family

bivariate distributions

F (x, y) = F1(x)F2(y)[1 + α(1− F1(x))(1− F2(y))]

where |α| ≤ 1 and F1(x) and F2(y) are continuous distributions.

γ
F
(x, y) ≤ 0 ⇔ α f1(x)f2(y) ≤ 0 ⇔ − 1 ≤ α ≤ 0.

Therefor the above bivariate family of distributions is LND if and only if −1 ≤ α ≤ 0.

Example 3.3. In the previous example the reliability function for FGM distribution

is

F̄ (x, y) = F̄1(x)F̄2(y)[1 + αF1(x)F2(y)], |α| ≤ 1

.

γ
F̄
(x, y) =

α f1(x)f2(y)

[1 + αF1(x)F2(y)]2
≤ 0 ⇔ − 1 ≤ α ≤ 0,

therefore (X, Y ) is HND if and only if −1 ≤ α ≤ 0.

Example 3.4. (Gumbel’s bivariate exponential distribution) The reliability function

of Gumbel’s bivariate distribution is

F̄ (x, y) = exp{−α1x− α2y − βxy}, α1, α2 > 0 and 0 ≤ β ≤ α1α2.

For x < x′ and y < y′;

F̄ (x, y)F̄ (x′, y′) −F̄ (x, y′)F̄ (x′, y)

= exp{−α1(x+ x′)− α2(y + y′)}

×
[
exp{−β(xy + x′y′)} − exp{−β(xy′ + x′y)}

]
≤ 0.

Since xy + x′y′ ≥ xy′ + x′y , hence F̄ is RR2, and this implies that (X, Y ) is HND.
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SOME CONCEPTS OF NEGATIVE DEPENDENCE 7

Example 3.5. (Ali-Mikhail-Haq distribution) Consider Ali-Mikhail-Haq[1] family of

distribution

F (x, y) =
F1(x)F2(y)

1− β F̄1(x)F̄2(y)
, |β| ≤ 1

where F1 and F2 are continuous distribution functions and F̄i = 1 − Fi i = 1, 2. The

above family of distribution is LND if and only if −1 ≤ β ≤ 0, since

γ
F
(x, y) =

β f1(x)f2(y)

[1− β F̄1(x)F̄2(y)]2
≤ 0 ⇔ − 1 ≤ β ≤ 0.

Remark 3.6. In the example 3.4 we can use the proposition 3.1 and obtain

r1(x, y) = − ∂

∂x
[log F̄ (x, y)] = α1 + βy

r2(x, y) = − ∂

∂y
[log F̄ (x, y)] = α2 + βx

r(x, y) =
f(x, y)

F̄ (x, y)
= (α1 + βy)(α2 + βx)− β

θ(x, y) =
r(x, y)

r1(x, y)r2(x, y)
=

(α1 + βy)(α2 + βx)− β

(α1 + βy)(α2 + βx)

since αi > 0, i = 1, 2 and β ≥ 0 , therefore Proposition (3.1) implies that (X,Y ) is

HND.
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