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This study established input-output relationships for metal active gas (MAG) welding for gas pipelines. Regression

analysis (RA) was performed on data collected as per Taguchi design of experiments. Adequacy of RA model was verified using

ANOVA method. RA model was then embedded into a simulated annealing (SA) algorithm to determine optimal process param-

eters for weld bead geometry specification. Proposed method is found quite effective in predicting process parameters for weld

bead geometry.
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Introduction

Quality of a weld joint is directly influenced by

welding input parameters during welding. A common

problem faced by manufacturer is control of process

input parameters to obtain a good welded joint with

required bead geometry and weld quality with minimal

detrimental residual stresses and distortion. Roberts &

Wells1 estimated weld bead width by considering

conduction heat transfer. Christensen et al2 derived non

dimensional factors to relate bead dimensions with

operating parameters. Chandel et al3 presented

predictions of effect of current, electrode polarity,

electrode diameter, and electrode extension on melting

rate, bead height, bead width and weld penetration in

submerged arc welding. Markelj & Tusek4

mathematically modeled current and voltage in TIG

welding. Kim et al5 conducted a sensitivity analysis of a

robotic GMAW (gas metal arc welding) process

employing non-linear multiple regression analysis (RA)

for modeling process and quantified respective effects

of process parameters on weld bead geometry (WBG)

parameters. Kim et al6 compared experimental GMAW

weld bead geometry results with those obtained from

heat-transfer and regression models. Kim et al7 applied

modified Taguchi method to determine process

parameters for optimum weld pool geometry in TIG

welding of stainless steel. Tarng et al8,9 determined

optimum process parameters for submerged arc welding

(SAW) in hard facing using grey-based Taguchi method.

New trend in manufacturing processes parameters

optimization is to use evolutionary algorithms such as

genetic algorithm (GA)10 and simulated annealing(SA)11.

Other search methods have also been used for this

purpose12. Along this line, SA Algorithm is a well known

evolutionary method successfully adopted in different

areas13.

This study proposed a SA approach to establish

relationships between process parameters (inputs) and

responses (outputs) in metal active gas (MAG) welding

using RA carried out on data collected as per Taguchi

design of experiments (DOE).

Experimental

For modeling and optimization of MAG welding

process (Fig. 1), a consumable electrode is used as filler

with an active gas shielding to protect molten metal from

oxidation. Important input parameters in MAG are

welding speed (S), welding voltage (V), wire feed rate

(F), nozzle-to-plate distance (D) and torch angle (A),

whereas output parameters (responses) are bead height

(BH), bead width (BW) and bead penetration (BP). Three

levels were considered for input process parameters

(Table 1) and 54 combinations of input process

parameters were considered for Taguchi DOE
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(Table 2). In combinatorial optimization, evolutionary

algorithms (GA and SA) were used. Three sets of

mathematical equations (linear, curvilinear and

logarithmic) were developed to model relationships

between process variables and WBG in gas metal arc

welding. SA approach is proposed to determine optimal

values for process parameters with respect to any given

bead geometry. Proposed solution procedure is

developed in such way that it can accurately determine

best process variables through minimization of an error

function with respect to any desired weld bead

specifications.

Model Development

According to Taguchi L
54 

DOE matrix, out of a total

of 54 combinations of input parameters (Table 2), last

three columns were measured outputs for each test

setting. These data can be used to develop mathematical

models. Any of the above WBG is a function of process

parameters, which are expressed by linear [Eq. (2)],

curvilinear [Eq. (3)] or logarithmic functions [Eq. (4)]

as
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Choice of model depends on nature of initial data

and required accuracy. Using RA in Minitab Software,

linear, curvilinear and logarithmic functions were fitted

to experimental data. Models representing relationship

between process parameters and WBG can be stated as

Linear Model

BH = 5.12 +0.707D - 0.00528 A +0.270 F- 0.0754S -

0.0925 V

                                                                                    ...(5)

BW = - 6.20 -1.48 D +0.0316 A +0.565F -0.282S

+0.480V

                                                                                    ...(6)

BP = -1.53 -0.726D - 0.00222A +0.109 F +0.0313S

+0.0803 V    ...(7)

Curvilinear Model

BH = 4.08-0.00184SV -0.000707AV+0.00271AF

+0.646 DD-0.0535 DS+0.00144 SS                       ...(8)

BW = 2.07 + 0.0169 VV - 0.0211 SV - 0.183 DV +

0.0172 SS + 0.710 DF - 0.0309 FS                         ...(9)

BP = - 1.55 + 0.0834 V + 0.00596 FS - 0.257 DD

 ...(10)

Logarithmic Model

BH = e 2.39D 0.238A -0.114F 0.528S -0.434V -1.08                       ...(11)

BW= e -1.55D -0.197A 0.0894F 0.304S -0.524V 1.80                  ...(12)

BP= e -4.08D -0.721A 0.048F 0.372S 0.453V 2.20               ...(13)

Above models were modified using stepwise

elimination process. For instance, independent variable

W eld ing  

A rc  vo ltage  

W ire  feed  

rate  
N ozz le  to  p late  

T orch  ang le  

B ead  

B ead  

B ead  

Table 1— Input variables and their levels of GMAW welding

process

Factor Level - Level 0 Level +

Welding speed (S), 10 17 24

cm/m

Arc voltage (V), V 27 32 37

Wire feed rate (F), 4 5.5 7

m/min

Torch angle (A), ° 70 85 100

Nozzle-plate distance

(D), cm 1 - 1.5
Fig. 1—Important input and output parameters for MAG

welding process

MAG
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Table 2—Design of experiments matrix for bead geometry parameters with respect to process parameters

No. D A° F S V BH BW BP

cm m/min cm/min  v mm mm mm

1 1 70 4 10 27 3.3 7.06 0.85

2 1 70 5.5 17 32 2.75 6.32 1.45

3 1 70 7 24 37 2.2 8.95 2.6

4 1 85 4 10 32 2.35 9.85 1.1

5 1 85 5.5 17 37 2.25 11.35 1.95

6 1 85 7 24 27 3.15 5.48 1.6

7 1 100 4 17 27 2.6 5.48 1.05

8 1 100 5.5 24 32 1.8 7.52 1.8

9 1 100 7 10 37 2.65 15.08 1.55

10 1.5 70 4 24 37 1.6 7.37 1.5

11 1.5 70 5.5 10 27 4.25 7.57 0.45

12 1.5 70 7 17 32 3.2 8.42 1.35

13 1.5 85 4 17 37 2.1 9.03 1.5

14 1.5 85 5.5 24 27 2.8 4.92 0.95

15 1.5 85 7 10 32 4.1 10.38 0.9

16 1.5 100 4 24 32 1.95 5.57 1.1

17 1.5 100 5.5 10 37 2.65 12.9 1.3

18 1.5 100 7 17 27 3.9 5.97 0.5

19 1 70 4 10 27 3.4 7.07 0.75

20 1 70 5.5 17 32 2.65 8.2 1.3

21 1 70 7 24 37 2.4 9.25 2.4

22 1 85 4 10 32 2.55 10.25 0.8

23 1 85 5.5 17 37 2.15 11.47 1.55

24 1 85 7 24 27 2.95 5.55 1.3

25 1 100 4 17 27 2.55 5.3 0.9

26 1 100 5.5 24 32 2.2 6.3 1.6

27 1 100 7 10 37 3.2 15.2 1.7

28 1.5 70 4 24 37 1.7 6.92 1.1

29 1.5 70 5.5 10 27 4 7.63 0.5

30 1.5 70 7 17 32 3.3 7.38 1.35

31 1.5 85 4 17 37 2.05 8.4 1.65

32 1.5 85 5.5 24 27 2.8 4.85 1.1

33 1.5 85 7 10 32 4.15 11.12 1

34 1.5 100 4 24 32 2 5.77 1.3

35 1.5 100 5.5 10 37 3.1 12.8 1.2

36 1.5 100 7 17 27 3.8 5.47 0.6

37 1 70 4 10 27 3.5 7.13 0.6

38 1 70 5.5 17 32 2.3 8.48 1.35

39 1 70 7 24 37 2 9.87 2.2

40 1 85 4 10 32 3 9.34 1.05

41 1 85 5.5 17 37 2.2 11.36 1.85

42 1 85 7 24 27 3.1 5.36 1.25

43 1 100 4 17 27 2.65 5.4 0.8

44 1 100 5.5 24 32 2.05 7.2 1.5

45 1 100 7 10 37 3.05 15.05 2

46 1.5 70 4 24 37 1.9 7.25 1.15

47 1.5 70 5.5 10 27 4.1 7.41 0.45

48 1.5 70 7 17 32 3.4 7.77 1.35

49 1.5 85 4 17 37 2.05 8.94 1.8

50 1.5 85 5.5 24 27 2.85 4.57 1

51 1.5 85 7 10 32 3.8 10.36 1.35

52 1.5 100 4 24 32 2.05 6.23 0.9

53 1.5 100 5.5 10 37 3.35 13.7 0.9

54 1.5 100 7 17 27 3.55 6.2 0.8
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D [Eq. (8)] was eliminated because of its improper effect

on penetration in curvilinear model. Adequacies of

models were checked by analysis of variance (ANOVA)

within confidence limit of 95% (Table 3). Given required

confidence limit (Pr) and correlation factor (R2) for these

models, curvilinear model is found superior to other two,

in terms of fitness to real data (Fig. 2). Therefore,

curvilinear model is considered as best representative

of actual MAG process in this paper14.

Simulated Annealing (SA) Algorithm

Mathematical models furnished above provide one

to one relationships between process variables and

WBG, and can be used in following two ways: 1)

Predicting WBG based on given welding variables

values; and 2) Determining process parameters for a

desired weld bead specification. Later seems more

practical, since welding variables are usually set in order

to achieve desired WBG. In order to determine proper

values of welding parameters, a set of non-linear

equations are to be solved simultaneously.

SA algorithm15 is a powerful optimization method

inspired by metallurgical annealing process, where a

solid is melted at high temperature until all molecules

can move freely, and then is cooled gradually until

thermal mobility is lost. In perfect crystal, all atoms are

arranged in a low level lattice, so crystal reaches the

minimum energy level. If metal is cooled too fast, it

won’t reach minimum energy state. At temperature T,

solid is allowed to reach a certain thermal equilibrium

status. Probability of being at energy level of E is

determined by Boltzmann distribution as
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            …(14)

where Z(T) is a normalization factor depending on T,

K
B
 is Boltzmann constant and exponential term is

Boltzmann coefficient. With decrease in T, Boltzmann

distribution focuses on a state with lowest energy and

finally as T comes close to zero, this becomes the only

possible state.

SA code employed in this paper operates based on a

neighborhood structure, where at each step a small

random change is made to current solution. Then, e

objective function value of new solution is compared

with that of current solution. A move is then made to

new solution if it has a better value. A non-improving

solution is also accepted with probability (P
r
=e-∆c/ck).

Acceptance probability of non-improving solutions

decreases as difference in costs (∆c) increases and as T

decreases. Temperature (T
k
), a positive number, is

gradually decreased from a relatively high value to near

zero as search progresses. Thus, at the start of SA, most

worsening moves are accepted, but at the end, only

improving moves are likely to be accepted. This helps

to jump out of local optima. Cooling schedule is an

important feature of this algorithm. Among different

methods proposed, cooling with constant factor is a

simple robust strategy as
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1
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In Eq. (15), α may vary with respect to size and

complexity of problem and initial T. In most cases, it is

taken 0.9-0.99. Details of SA technique and its various

applications are reported16,17.

A Numerical Example and Results

In order to adopt SA technique for predicting process

parameters values, based on a given WBG, a suitable

objective function should be defined. This function, in

the form of error function, would determine “goodness”

of any set of process variables with respect to resultant

bead geometry. Objective function is defined as a

squared error function given as

d
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In Eq. (16), BH, BW and BP are WBGs obtained

from curvilinear models [Eqs (8-10)]. Desired WBG

Table 3— ANOVA results for weld bead geometry models

Model Variable R-square F value Pr>F

Linear BH 94.1% 154.13 <0.0001

BW 94.7% 171.87 <0.0001

BP 83.9% 50.21 <0.0001

Curvilinear BH 95.6% 45.67 <0.0001

BW 98.3% 125.28 <0.0001

BP 91.9% 24.04 <0.0001

Logarithmic BH 94.0% 150.36 <0.0001

BW 97.0% 310.96 <0.0001

BP 81.5% 42.30 <0.0001
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Fig. 2—Curvilinear model: actual values vs predicted values of: a) weld bead height; b) weld bead width; and c) weld bead penetration
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values (BH
d
, BW

d
 and BP

d
) are target values. During

search, process parameters are determined in such a way

that error function is minimized. This would result in

WBG parameters approaching to their desired values.

Proposed SA code was written in Matlab 7.0® and

executed on a Pentium IV processor. Test runs were

performed to find the best set of search parameters as

follows: initial temperature (c
0
), 20; cooling schedule

function c
k+1

=αc
k
 (α=0.95); neighborhood generation

pair wise interchange; and termination criterion, 500

iterations or 20s. Longer execution of algorithm, with

more iterations and higher initial temperatures, showed

no more improvement. Code was run for 5 example

problems, with desired WBGs taken from some

experiments performed. From final optimization results

(Table 4), maximum error was about 2% while most

WBGs specifications deviate < 1% from their desired

values, indicating that proposed models are good

estimations of MAG welding process. Convergence curve

for one of the test runs (Fig. 3) illustrated that algorithm

converges very quickly and most of the improvements

were obtained within first 300 iterations (12 s of search

time), indicating that the proposed SA procedure is quite

efficient.

Table 4 —Optimization results of proposed SA algorithm

No.               Process parameters by SA     Predicted value by SA     Target value        Average error

   mm           mm                 %

S V F D A BH BW BP BH
d

BW
d

BP
d

1 10.0 37 7 1.0 70 3.15 15.15 15.15 3.20 15.20 1.70 0.67

2 18.5 32 7 1.5 70 3.19 7.44 7.44 3.30 7.38 1.35 2.20

3 16.5 37 6 1.0 97 2.20 11.33 11.33 2.20 11.36 1.85 0.12

4 17.0 29 4 1.3 92 2.65 5.42 5.42 2.65 5.40 0.80 0.35

5 10.0 27 6 1.5 83 4.09 7.38 7.38 4.10 7.40 0.45 1.55

Fig. 3—Convergence rates for SA algorithm
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Conclusions

WBG is the most important quality measure in all

types of welding techniques. Using DOE approach and

RA, different mathematical models were developed to

establish relationships between welding input parameters

and WBG. ANOVA results denote that curvilinear

models are best representative for actual MAG process,

to calculate WBG for any given set of process

parameters. Computational results indicated that

proposed SA method can efficiently and accurately

determine welding parameters for a desired bead

geometry specification. One of extensions of this study

may include use of heuristic techniques to predict

optimal parameters for other kinds of welding processes

or materials.
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