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Abstract: In this paper, a practical method to design a robust controller for a SCARA robot
using quantitative feedback theory (QFT) is proposed. The models used to describe robots
contain uncertainties that are the result of insufficient knowledge on the dynamics of the robot,
external disturbances, pay load changes, and friction, etc. Thus, the application of robust
control methods to create the precise control of robots is of considerable interest. This paper
considers a robot arm manipulator, a system whose models contain non-linear coupled
transfer functions. In the first step of applying the QFT technique the non-linear plant is
converted into a family of linear uncertain plants. This is achieved using a fixed-point theorem
and then suitable disturbance rejection bounds are found. A robust controller is designed for
the tracking problem. Non-linear simulations on the tracking problem for a three-dimension
elliptical path are performed and the results highlight the success of the designed controllers
and pre-filters. The presented results indicate that applying the proposed technique
successfully overcomes the obstacles to robust control of non-linear SCARA robots.
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1 INTRODUCTION

SCARA robots are widely used in assembly manu-

facturing processes. The robot is a horizontally

articulated manipulator with a vertical joint at the

wrist end. The link is very stiff in the vertical

direction but is relatively compliant laterally. This

feature is convenient for a variety of assembly tasks.

Potential problems arise mainly due to the position-

ing errors in assembly. Adaptive and model-based

controls are two of the most popular control

strategies used to control robotic systems. These

control schemes cannot overcome the structure

uncertainties of a robotic system [1]. Dynamic

models of robot manipulators consist of highly

non-linear coupled second-order differential equa-

tions. Linear time-invariant control laws which

utilize linear models of robot manipulator dynamics

are often used for industrial robot manipulators

because of the simplicity of the control algorithms.

However, non-linearity and parameter variations in

real systems prevents, ordinary linear time-invariant

control schemes achieving a satisfactory control

performance. Linearization techniques for the ro-

bust control of robot manipulators with uncertainty

have been the subject of many research studies. For

example as referenced in [2], Kawabata et al. (1993)

and Takayanagi et al. (1993) studied robust position

controllers for a two-link manipulator. Tern et al. [3]

presented a dynamic modelling and linearization

technique for a SCARA robot.

There are many practical systems that have high

uncertainty levels in their open-loop transfer func-

tions which makes it very difficult to create suitable

stability margins and good performance in com-

mand following problems for a closed-loop system.

Therefore, a single fixed controller in such systems is

found among the ‘robust control’ family.

Quantitative feedback theory (QFT) is a robust

feedback control-system design technique which

allows the direct design to closed-loop robust

performance and stability specifications [4–8].
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Many of the techniques applied to the ‘robust

control’ family such as H‘ design are based on the

magnitude of a transfer function in the frequency

domain, QFT not only uses this transfer function

approach but also takes into account phase informa-

tion in the design process. The unique feature of

QFT is that the performance specifications are

expressed as bounds on the frequency-domain

response. Meeting these bounds implies a corre-

sponding approximate closed-loop realization of the

time-domain response bounds for a given class of

inputs and for all uncertainty levels in a given

compact set.

Consider the feedback system shown in Fig. 1.

This system has a two-degree-of-freedom structure

(consider controller G(s) and prefilter F(s)). In this

diagram P(s) is uncertain plant belongs to a set

P(s) [ {P(s, Q); Q [W} where here Q is the vector of

uncertain parameters, which takes the values in W.

G(s) is the fixed structure feedback controller and

F(s) is the prefilter, and D(s) is the disturbance at the

plant output.

For parametric uncertain systems plant templates

must be generated prior to the QFT design (at a fixed

frequency, the plant’s frequency response set is

called a template). Given the plant templates, QFT

converts the closed-loop magnitude specifications

into magnitude constraints on a nominal open-loop

function (these are called QFT bounds). A nominal

open-loop function is then designed to simulta-

neously satisfy its constraints as well as to achieve

nominal closed-loop stability. In a two-degree-of-

freedom design, a pre-filter is designed after the loop

is closed (i.e. after the controller has been designed)

[8].

2 SCARA ROBOT

2.1 Link matrix

The link matrix shows the position and direction of

the robot, with respect to a base coordinate system.

Ttool
base~

R P

0 0 0 1

� �
ð1Þ

where P is a vector of position and R is a vector of

direction for the robot.

The shaping space of the robot has six dimensions

because every robot position can be found in terms

of the coordinates (Px, Py, Pz) and the direction

characteristics of yaw, pitch, and roll. The reversed

kinematics problem can be considered as: for each P

and R for the robot, find the space variation value to

satisfy equation (1).

If qn is the roll angle of the robot, then the tool

forming vector, W in R6 can be written as

W:
W 1

W 2

 !
�~~

P

exp(qn=p)r3
� �� �

ð2Þ

For a SCARA robot, the tool forming vector can be

written as

W ~½Px, Py, Pz, 0, 0, {exp(q4=p)�T ð3Þ

2.2 Inverse kinematics for a SCARA robot

Figure 2 shows a model of a SCARA robot created

using SolidWorks, and Fig. 3 illustrates the inverse

kinematics chart for a SCARA robot [9].

Fig. 1 Two-degree-of-freedom feedback system Fig. 2 The SCARA robot
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2.3 Continuous motion

If the speed of each joint can be controlled

individually, the robot can possess continuous

motion in all directions. For problems where the

inverse kinematics can be obtained analytically, the

speed of each joint can be calculated and its

derivative with respect to time can be obtained.

Using the coordinate system shown in Fig. 4 the

following equations can be written

_qq2~+
2(w1 _ww1zw2 _ww2)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2a1a2
2{ w1ð Þ2z(w2)2{(a1)2{(a2)2
h i2

r

ð4Þ

_bb1~(a1za2C2) _ww1{a2S2 _ww2{a2(S2w1zC2w2) _qq2

_bb2~(a1za2C2) _ww2za2S2 _ww1za2(C2w1{S2w2) _qq2

ð5Þ

_qq1~
b1

_bb2{b2
_bb1

(b1)2z(b2)2
ð6Þ

_qq3~{ _ww3 ð7Þ

_qq4~
p _ww6

w6
ð8Þ

2.4 Dynamics of the SCARA robot

When the Newton–Euler equations are evaluated

symbolically for any manipulator, they yield a

dynamic equation which can be written in the form

[10, 11]

D(q)€qqzC(q, _qq)zG(q)~t ð9Þ

where D(q) is the n6n mass matrix of the mani-

pulator C(q, q̇) is an n61 vector of centrifugal and

coriolis terms, and G(q) is an n61 vector of gravity

terms.

2.5 System linearization

In the QFT method, the non-linear plant is con-

verted into a family of linear and uncertain pro-

cesses. Two techniques have been reported in the

literature for this conversion: the linear time-invar-

iant equivalence (LTIE) of non-linear plants, and the

non-linear equivalence disturbance attenuation

technique [12]. In this paper the LTIE method is

used. Taghirad and Afshar [13] and Gharib et al. [14]

have proposed a linearization technique, which can

predict the behaviour of a real non-linear system in a

working space. Each link is considered as a load

system which is connected to the motor. Then,

ignoring all non-linear terms in equation (9) it

becomes possible to write a simple governing

equation for each link

J eff
€hhzCeff

_hh~t ð10Þ

where _hh is the angular velocity, ḧ is the acceleration,

Fig. 3 Inverse kinematic chart for a SCARA robot (si

and ci are sinqi and cosqi respectively

Fig. 4 Link coordinate diagram of the SCARA robot
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and t is the required torque. The non-linear model

can be solved using the ‘MATLAB Robotic Toolbox’

and an equivalent linear plant can be derived for

each link as follows

€hh _hh
h i

|
J eff

Ceff

� �
~t ð11Þ

In equation (10), the matrix [ḧ _hh] and vector t can be

obtained carrying out identifying tests or simulating

robot in a defined trajectory. Jeff and Ceff are

identifiable terms with respect to defined points in

every trajectory. Therefore, for the n points in a

trajectory it is possible to write

€hh0
_hh0

€hh1
_hh1

: :

: :
€hhn

_hhn

2
6666664

3
7777775
|

J eff

Ceff

� �
~

t0

t1

:

:

tn

2
6666664

3
7777775

ð12Þ

Suppose,

A~

€hh0
_hh0

€hh1
_hh1

: :

: :
€hhn

_hhn

2
6666664

3
7777775

, B~

t0

t1

:

:

tn

2
6666664

3
7777775

ð13Þ

Then,

J eff

Ceff

� �
~A{|B ð14Þ

where,

A{~(ATA){1AT ð15Þ

For example, equation (9) for the SCARA robot used

in [13], has the following given numerical values.

C~

{ sin h2 0:237 _hh1
_hh2{0:118 _hh2

2

� 	� 	
0:118 _hh2

1 sin h2

0

0

2
6666664

3
7777775

G~

0

0

{9:87

0

2
666664

3
777775

ð16Þ

By running the simulation for multiple trajectories

for selected known operating points which accu-

rately represent the range of variation in joint

dynamics it is found that

Link 1 Ceff~ 0:75 5:2½ �, J eff~ 0:2 0:5½ � ð17Þ

Link 2 Ceff~ 0:22 2:12½ �, J eff~ 0:14 0:26½ � ð18Þ

Link 3 Ceff~ 0:01 0:4½ �, J eff~ 0:003 0:006½ � ð19Þ

Link 4 Ceff~ 0:52 0:84½ �, J eff~ 0:15 0:25½ � ð20Þ

As a result, the linearized transfer function for each

link is

Pi~
1

s(J eff szCeff )
i~1, . . . ,4 ð21Þ

3 APPLICATION OF THE QFT TECHNIQUE TO
MULTIPLE-INPUT MULTIPLE-OUTPUT
SYSTEMS

Application of the QFT to multiple-input multiple-

output (MIMO) uncertain systems is one of the most

difficult control problems for engineers. The initial

D~

0:538z0:237 cos h2 {0:192{0:118 cos h2 0:000 0:000

{0:192{0:118 cos h2 0:195 0:000 0:085

0:000 0:000 1:003 0:000

{0:085 0:085 0:000 0:088

2
6664

3
7775
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applications of QFT to MIMO systems have been

reviewed by Horowitz [15] and later developments

are discussed in Houpis et al. [16], D’Azzo and

Houpis [17], and Horowitz [18]. One of the simplest

MIMO techniques that can be applied to robot arm

manipulators is the one which was introduced by

Cheng [19]. In this method the basic idea is to

convert the closed-loop transfer function to an

off-diagonal matrix which can be described as

below.

tij jvð Þ
tjj jvð Þ










¡lij vð Þv1, for j=i ð22Þ

where tij(jv) denotes the relation between jth input

to the ith output. Using the fixed point theorem it

has been shown that the MIMO system can be

represented in terms of equivalent single-input

single-output (SISO) systems provided that suitable

disturbance rejection bounds are designed. A suita-

ble disturbance rejection model would be the

disturbance at the plant output

TD~
1

1zL
TD(jv)j j~ Y (jv)

D(jv)










¡a ð23Þ

It was shown in [19] that in order to achieve an off-

diagonal closed-loop transfer function the following

inequality must hold

1

1zli(jv)










¡min

sij(v)

qii jvð Þ
�

qij jvð Þ


 



max

 

for i=j, j~1, 2, . . . , n , v¡vh ð24Þ

where li is the open-loop transfer function, [1/

qij] 5 P21, and sij is a small positive function which

bounds the closed-loop transfer function. Therefore,

based on this inequality and the iteration algorithm

described in [19] it is possible to design suitable

disturbance rejection bounds.

4 QFT CONTROLLER DESIGN

This section uses the QFT method [14, 20] to design

a controller for a SCARA robot. The non-linear plant

needs to be converted to family of linear and

uncertain processes and the techniques introduced

in section 2 need to be implemented. The objectives

of this section are to synthesize suitable controllers

and prefilters such that:

(a) the closed-loop system is stable;

(b) it can track desired inputs;

(c) cross-coupling effects can be studied by using

suitable robust disturbance rejection bounds.

The stability margin can be defined by

P(jv)G(jv)

1zP(jv)G(jv)










v1:2

The tracking specification is an overshoot of 20 per

cent and a settling time of 0.08 s for all plant

uncertainties which can be described with the

second-order system

a(jvi)j j¡ T (jvi)j j¡ b(jvi)j j

where a(jvi) and b(jvi) are lower bound and upper

bound respectively. T(jvi) is the input–output rela-

tion from the input R(s) to the output Y(s).

Suitable robust disturbance rejection bounds to

reduce the cross-coupling effects between joints are

1

1zli(jv)










¡l(v)

For a dynamic model of the SCARA the main cross-

coupling effects are between the first and second

links, thus a MIMO control approach is used for the

first and second joints and a SISO control approach

for the third and fourth joints. Table 1 shows l(v) for

first and second links over the design frequencies.

As a first step the plant uncertainty (template)

must be defined and the computed boundary of

plant templates for link 1 are shown in Fig. 5. The

robust margin bounds are depicted in Fig. 6 and the

robust disturbance rejection and robust tracking

bounds are shown in Figs 7 and 8 respectively.

Finally, the intersection of bounds or the robust

performance bound is shown in Fig. 9.

The loop shaping and pre-filter functions were

calculated the QFT toolbox in MATLAB. The results

 

Table 1 Robust disturbance rejection bounds

10

vi

30 50 80 100 140 500

Link 1 0.1002 0.171 0.298 0.387 0.5890 0.88 0.92
Link 2 0.113 0.143 0.218 0.3613 0.5036 0.77 0.82
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are presented in Figs 10 and 11 respectively [14]. In

order to save the space, only the controller design

process is shown for the first link in this paper.

The related controllers for each link are found to

be

G1(s)~4337
(1zs=5:213)(1zs=52:98)

(1zs=12:26)(1zs=432)
ð25Þ

G2(s)~330:5
(1zs=12:61)(1zs=132:4)

(1zs=77:88)(1zs=326:9)
ð26Þ

G3(s)~770:1
(1zs=4:04)(1zs=75:93)

s(1zs=1089)
ð27Þ

Fig. 5 The boundary of the plant template for link 1

Fig. 6 Robust margin for link 1

Fig. 7 Robust disturbance rejection bounds for link 1

Fig. 8 Robust tracking bounds for link 1

Fig. 9 Intersection of bounds for link 1
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G4(s)~6480
(1zs=2:351)(1zs=48:37)

s(1zs=1302)
ð28Þ

The related pre-filters for the robot links are

F1(s)~
1

(1zs=70)
ð29Þ

F2(s)~
1

(1zs=62)
ð30Þ

F3(s)~
(1zs=130)

(1zs=73:4)(1zs=126:1)
ð31Þ

F4(s)~
1

(1zs=60)
ð32Þ

The robust stability is shown in Fig. 12 and

Fig. 13 shows the time-domain closed-loop response

of the associated linear system for the robots’

dynamics.

According to the linear simulation the robot has

robust stability and can also satisfy tracking speci-

fications. However, the main objective in applying

QFT to non-linear systems is to get satisfactory

results through non-linear simulations. Thus, in the

next section non-linear simulation will be per-

formed.

5 SIMULATION RESULTS AND DISCUSSION

In this section non-linear simulations will be

performed using the control strategy shown in

Fig. 10 Loop-shaping in Nichols’ chart for link 1

Fig. 11 Pre-filter shaping for link 1

Fig. 12 Robust stability in the frequency domain for
link 1

Fig. 13 Time-domain simulation for link 1, consider-
ing all of the system uncertainty
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Fig. 14. The robustness of the proposed design in

tracking problems is tested by moving the robot in a

three-dimensional (3D) elliptical path. The results

obtained for the tracking problem are shown in

Fig. 15 and the associated tracking error is shown in

Fig. 16. The tracking error for the same path, but

using a SISO control approach is shown in Fig. 17. It

can be seen that the robust QFT controller demon-

strates excellent robustness properties and tracking

ability, and the comparison of the MIMO and SISO

approaches indicates the effectiveness of the MIMO

approach.

6 CONCLUSIONS

The presence of uncertainty in the dynamics of robot

arm manipulators means that the application of

robust control methods to achieve a high accuracy in

tracking is inevitable. QFT has been used to design a

robust controller for a SCARA robot. The basic

design steps can be summarized as the linearization

of the robot dynamics, the design of suitable robust

disturbance rejection bounds by minimization of a

sensitivity function, linear simulation, and non-

linear simulation. The presented results show that

the increase in the accuracy achieved for the

tracking problem is a direct result of the reduction

of the cross-coupling effect between joints created

by designing suitable disturbance rejection bounds,

the reduction of settling time in tracking bounds for

associated linear system, and improvement of

associated linear uncertain system modelling. Non-

linear simulation of the tracking of a 3D elliptical

path indicates that the QFT controller has a

consistent tracking ability, and also application of

the MIMO control approach will greatly improve the

Fig. 14 Block diagram of the control strategy

Fig. 15 Tracking problem for a 3D elliptical path
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performance of the system compared to the SISO

control approach.
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