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Abstract
Conjugated polymer actuators can be employed to 
achieve micro and nano scale precision, and have wide 
range of application including biomimetic robots, and 
biomedical devices. In comparison to robotic joints, 
they do not have friction or backlash, but on the other 
hand, they have complicated electro-chemo-mechanical 
dynamics which makes accurate and robust control of 
the actuator really difficult. This paper consists of two 
major parts. In the first part the infinite-dimensional 
physical model of actuator will be replaced with a
family of linear uncertain transfer functions based on 
Golubev Method. Further model development will take
into account the influence of reduction/oxidation level 
on the variation of the actuator resistance and the 
evaporation of the solvent. In the second part the robust 
control QFT will be applied to control the highly 
uncertain dynamics of the conjugated polymer 
actuators. The main steps involved in the design of a 
QFT controller are template generation, loop shaping,
and pre-filter design.   Finally the analysis of design 
shows that QFT controller has consistent and robust 
tracking performance.

Keywords: Conjugated polymer actuators, Polypyrrole, 
Uncertainty, QFT.

Introduction
There is an increasing request for new generation of 
actuators which can be used in devices such as artificial 
organs, micro robots, human-like robots, and medical 
applications. Up to now lots of research has been done 
on developing new actuators such as shape memory 
alloys, piezoelectric actuators, magnetostrictive 
actuators, contractile polymer actuators, and 
electrostatic actuators [1], [2]. The main disadvantages 
of these actuators are low efficiency, high electrical 
power, and low strain generation [2]. Conjugated 
polymers actuators seams to be the best solution since 
they produce reasonable strain under low input voltage.
The main process which is responsible for volumetric 
change and the resulted actuation ability of the 
conjugated polymer actuators is Reduction/Oxidation 
(RedOx).Thus based on different fabrication form, 
different configuration of the actuators can be obtained 
namely: linear extenders, bilayer benders, and trilayer 
benders [3-5]. By applying a voltage to the actuator, the 
polypyrrole (PPy) layer on the anode side is oxidized 
while that on the cathode side is reduced. Ions can 
transfer inside the Conjugated Polymer Actuators based 
on two main mechanisms namely diffusion and drift 
[6]. The main objective of this paper is to synthesize 
suitable controller and pre-filter such that, first the 

closed loop system is stable, second it can track desired 
inputs. As mentioned before the uncertainty in the 
dynamics of actuators is inevitable, therefore 
application of robust control techniques is essential for 
achieving high precision. There are two basic 
methodologies for dealing with the effect of uncertainty 
in a system namely adaptive control and robust control. 
In adaptive control design approach, the controller will 
estimate the system’s parameter online and then will 
tune itself based on these estimates. In the robust 
control design approach, the controller has a fixed 
structure which will satisfy the system specifications 
over whole range of plant uncertainty. Although 
adaptive control can be applied to a wider class of 
problems, the application of robust control will lead to a 
simpler controller as the structure of controller is fixed 
requiring no time for tuning [7].
I. Trilayer PPy actuator
In this paper as an example of the Conjugated polymer 
actuators the trilayer PPy actuator will be considered. 
Figure 1 depicts the trilayer PPy actuator. As the name 
indicates the trilayer PPy actuator consists of three 
layers. The middle layer is Porous Polyvinylidene 
Fluoride (PVDF) which is used as a storage tank for the 
electrolyte. And on the both sides of it there are 
polymer layers (PPy) [8], [9].

Figure 1: Three-layer PPy actuator 

As it has mentioned before the main process which is 
responsible for volumetric change of the conjugated 
polymer actuators is RedOx. Thus in the trilayer bender 
while the PPy layer on the anode side is oxidized and 
expands as a result, the PPy layer on the cathode side is 
reduced and contracts as a result. Therefore this 
difference in the volume will leads to the bending of the 
actuator.

II. Electro-chemo-mechanical modeling
The electro-chemo-mechanical model is comprised of 
two parts, namely electrochemical model and 
electromechanical model.

A. Electrochemical Modeling 
The electrochemical model relates the input voltage and 
chemical RedOx reaction inside the PPy actuators. In 
this part firstly the admittance model for a bilayer 
actuator will be achieved, and next this model will be 
extended to the trilayer PPy actuator. Figure 2 depicts 
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the electrical admittance model. Based on the 
Diffusive-Elastic-Metal model, transportation of ions
within the polymer is only caused by diffusion [6].

Figure 2: Description of diffusion and double layer charging 
and its equivalent electrical circuit

According to Figure 2 and the Kirchhoff’s voltage law 
one has:
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Where DZ  is the diffusion impedance, C denotes the 
double-layer capacitance, and R is the electrolyte and 
contact resistance. Next based on Figure 3 and the 
Fick’s law of diffusion, diffusion current is:
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Where A is the surface area of the polymer, F is the 
Faraday constant, D is the diffusion coefficient, h is the 
thickness of the PPy layer, and c is the concentration
ions.
The current of double-layer capacitance is
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Where δ is the double-layer capacitance thickness. And 
the diffusion equation is
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Finally the boundary condition is 
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Now based on Equations 1, 2, 3, 4, 5, and 6, it can be 

shown that the admittance model (
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Figure 3: Description of frame assignment for diffusion 

According to Figure 1 in the case of a trilayer bender 
the input voltage is applied across two double-layers, 
thus the admittance is half of Equation 7. 
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B. Electromechanical Modeling 
The electromechanical model relates the input voltage 
and bending displacement of the PPy actuators. It was 
shown that the relation between the induced in-plane 
strain ( ε ) and the density of the transferred charges
( ρ ) is as below [10]:

ραε .= (9)
Where α is the strain-to-charge ratio. Thus, the induced
stress is

ρασ .. PPyE= (10)

Where PPyE is the Young’s modulus of PPy, and ρ can 
be achieved In the Laplace domain as below [11]:
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Where W is the width of the PPy, and L is the length of 
the PPy.
According to Figure 4 the curvature λ  under the
induced stress and in the absence of external force is
[11].
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Figure 4: Trilayer PPy actuator

Where pvdfE and pvdfh are the Young’s modulus and 
the thickness of the PVDF layer respectively.
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According to Figure 5 one can obtain the relation 
between the bending displacement and the curvature as 
below:
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By assuming that the bending displacement is small we 
have 
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Where y is the bending displacement.

Figure 5: Relation between the bending displacement and the 
curvature

Finally by combining Equations 8, 10, 11, 12, and 13 
one can obtain the full model between input voltage (V) 
and output displacement (y) as below [6],[11]:
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C. System identification based on Golubev Method 
Because the term tanh in Equation 14 is not suitable for 
real time control of the actuator and this equation can 
not take into account the system uncertainties. In this 
part the Golubev Method [12] will be used to build a 
suitable model for control of the actuator. By replacing 
the term tanh with its equivalent series in Equation 14
the actuator model is [6]: 
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In the first step one can study Equation 16 based on its 
summation term. For this purpose we use the typical 
values for physical parameters in Table 1[9].

Table 1: Values of physical parameters

Thus based on Table 1and using different values for n 
(Number of terms in Equation 16) one can achieve 
Table 2.

Table 2: The actuator’ system poles and zeros based on 
number of terms used.

Based on Table 2 it can be seen that using two terms of 
Equation 16, will lead to a third order system. One zero 
and one pole of this system are located far to the left of 
the imaginary axis comparing to the other poles and 
zeros, thus the system can be reduced to a second order 
system. Similarly using three and four terms will lead to 
third and fourth order systems respectively.  Therefore 
order of system depends on number of terms which is 
used. In order to solve this problem one can replace the 
infinite-dimensional system (using tanh) with a family 
of uncertain linear systems. Figure 6 compares the 
admittance of infinite-dimensional model with its 
estimation based on two, three, and four terms.
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Figure 6: Comparisons between using different number of 
terms and the infinite-dimensional model

For example the parametric model for using three terms 
is as below:

Parameter Value
D sm /102 210−×
h mµ30

R Ω15

δ nm25

C F51033.5 −×
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Two -0.3793,- 3.848
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-2.736,-1069
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First step in using the Golubev method is to simulate
the actuator’ model Figure 7, 8. Next by using Golubev 
method for different input signals (sin wave, step …),
the uncertain transfer function is:
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Figure 7: Simulation of the actuator model in Matlab
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Figure 8: Voltage-current-displacement response of the 
actuator

Application of Golubev method for pulse signal is 
shown in Figure 9. Figure 10 depicts the admittance 
Bode plot of Equation 18. 
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(Error=2.6973e-005)
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Figure 10: Admittance Bode plot based on Golubev 
method

In the next step the model will be developed further by 
considering the effect of actuator resistance and 
evaporation of the solvent. The actuator resistance is
highly depends to the RedOx level [9, 13]. Figure 11 
shows the Bode plot of actuator admittance for 
variation of resistance from 15Ω  to 100Ω . Variation 
of the diffusion coefficient is shown in Figure 12. 
Therefore by considering the above mentioned 
uncertainties the full uncertain model of the actuator is:
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Figure 11: Bode plot of actuator admittance for variation 
of resistance
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III. Application of QFT 
There are many practical systems that have high 
uncertainty in open-loop transfer functions which 
makes it very difficult to have suitable stability margins 
and good performance in command following problems 
for the closed-loop system. Therefore a single fixed 
controller in such systems is found among "robust 
controllers" family.
Quantitative Feedback Theory (QFT) is a robust 
feedback control-system design technique initially 
introduced by Horowitz (1963, 1979), which allows 
direct design to closed-loop robust performance and 
stability specifications. Since then this technique has 
been developed by him and others [14], [15], [16], [17], 
and [18].
In many techniques from "robust control" family such 
as H∞  design is based on magnitude of transfer function 
in frequency domain, but QFT is not only concerned 
with aforementioned subject, but also able to take into 
account phase information in the design process. The 
unique feature of QFT is that the performance 
specifications are expressed as bounds on frequency-
response loop shapes in such a way that satisfaction of 
these bounds imply a corresponding approximate 
closed-loop satisfaction of some time-domain response 

bounds for given classes of inputs and for all 
uncertainty in a given compact set.
In parametric uncertain systems, we must first generate 
plant templates prior to the QFT design (at a fixed 
frequency, the plant’s frequency response set is called a 
template). Given the plant templates, QFT converts 
closed loop magnitude specifications into magnitude 
constraints on a nominal open- loop function (these are 
called QFT bounds). A nominal open loop function is 
then designed to simultaneously satisfy its constraints 
as well as to achieve nominal closed loop stability. In a 
two degree-of-freedom design, a pre-filter will be 
designed after the loop is closed (i.e., after the 
controller has been designed) [19]. Figure 13 shows a 
two degree of freedom feedback system.

Figure 13: Two degree of freedom feedback system

The objectives of this part are to synthesize suitable 
controller and pre-filter such that, first the closed loop 
system is stable, second it can track desired inputs. The 
robust margin is that the magnitude of closed loop 
system for all considered uncertainty must be less than 
1.1. Robust tracking specification based on suitable 
performance of actuator is overshoot (=5%) and the 
settling time (=0.4s) for all plant uncertainty. At the 
first step we must define the plant uncertainty 
(template), which is shown in Figure 14. Then by having 
robust performance bounds in the loop-shaping phase of 
design suitable controller and Prefilter can be achieve 
as follows:
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Robust margin bounds are shown in Figure 15.Robust 
tracking bounds are shown in Figure 16.Figure 17 
depicts the loop-shaping of open loop system. It can be 
observed that the nominal plant exactly lies on its 
performance bounds which confirm the optimality of 
design. Figure 18 shows time domain simulation for 
unit step responses.
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Figure 15: Robust margin
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Figure 17: Loop shaping of open-loop system
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Figure 19 shows the tracking problem for the reference 
input mtR )2sin(105.0 3 π−×= , while Figure 20
depicts the tracking error. 

0 2 4 6 8 10 12 14 16 18 20
-5

-4

-3

-2

-1

0

1

2

3

4

5
x 10

-4

Time (sec)

B
en

di
ng

 d
is

pl
ac

em
en

t (
m

)

Desired path
Tracked path

Figure 19: Tracking problem for a sin wave
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Figure 20: Tracking error for all considered uncertainty

Results and Discussion
In this paper for the first time robust control QFT is 
applied to control the PPy actuators. In order to obtain a 
suitable model for controlling purposes, Golubev 
Method is used to convert the uncertain dynamics of 
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PPy actuators to a family of Linear Time Invariant 
systems.

Conclusions
By taking into the account the effects on uncertainties 
such as variation of the resistance and diffusion 
coefficient in the modeling part the J. Madden’s model 
[6] improved greatly. In the controlling part it has been 
shown that the robust control QFT can successfully be 
applied to control the highly uncertain dynamics of PPy 
actuator. And also it has been shown that the actuator 
has robust tracking ability and robust stability under 
QFT controlling method.
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