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Recently it has been shown in [S.M. Carroll, et al., arXiv:0901.0931 [hep-th]] that the approach to
extremality for the non-extremal Reissner–Nordstrom black hole is not continuous. The non-extremal
RN black hole splits into two spacetimes at the extremality: an extremal black hole and a disconnected
AdS2 × S2 space which has been called the “compactification solution”. As a possible resolution for
understanding the entropy of extremal RN black hole, it has been speculated that the entropy of
the non-extremal black hole may be carried by the latter solution. By uplifting the four-dimensional
“compactification solution” with electric charge Q e to a five-dimensional solution, we show that this
solution is dual to a CFT with central charge c = 6Q 3

e . The Cardy formula then shows that the microscopic
entropy of the CFT is the same as the macroscopic entropy of the “compactification solution”.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

One of the most exciting observation in the modern theoretical
physics is the holographic dualities that relates a quantum grav-
ity to a quantum field theory without gravity in fewer dimensions
[1,2]. The best understood holographic duality is the duality be-
tween the ten-dimensional type IIB string theory on background
AdS5 × S5 with flux and the four-dimensional N = 4 super Yang–
Mills theory at the boundary of AdS5 [3–5]. Recently the idea
of the holographic duality has been examined for the more in-
teresting backgrounds using the Brown and Henneaux technique
[6]. It has been shown in [7] that there is a two-dimensional
CFT dual of quantum gravity on extreme Kerr background. Even
though the structure of the CFT is not known, the central charge
of the CFT can be found by studying the non-trivial asymptotic
symmetry of the extreme Kerr solution. The Cardy formula then
gives the microscopic entropy of the CFT to be exactly the same
as the macroscopic entropy of the extreme Kerr background [7].
This duality has been extended to other backgrounds in [8–10] (see
also [11]).

In this Letter we would like to study the holographic duality
for the extreme limit of the Reissner–Nordstrom solution. It has
been argued in [12] that the semiclassical method gives zero re-
sult for the entropy of any extremal black hole even if its horizon
area is non-zero. The reason is that the space outside the horizon
of a non-extremal black hole is a manifold with topology R2 × S2,
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whereas, the space outside the horizon of an extremal black hole
is a manifold with topology R × S1 × S2, i.e., the horizon is ex-
cluded because the physical distance between an arbitrary point
and the horizon is infinite. It has been shown in [13] that the ap-
proach to extremality for RN black holes is not continuous. The
non-extremal RN black hole splits into two spacetimes at the ex-
tremality: an extremal black hole and a disconnected AdS space
which has been called the “compactification solution”. It has been
speculated in [13] that the entropy of the non-extremal RN black
hole may be carried by the “compactification solution” when one
takes the extremal limit.

In this Letter we would like to find the CFT dual of the “com-
pactification solution” by applying the Brown–Henneaux technique.
It has been argued in [8] that the gauge symmetry of the extreme
Kerr–Newman–AdS black hole may be combined with the geome-
try of the four-dimensional extreme Kerr–Newman–AdS black hole
to write a five-dimensional metric from which the central charge
of the extreme RN black hole can be found in the limit J → 0.
Using this idea we find a five-dimensional solution which reduces
to the four-dimensional “compactification solution” upon compact-
ifying the 5th dimension. The CFT dual of this five-dimensional
solution should be also dual to the four-dimensional solution.

The Letter is organized as follows. In the next section we re-
view the non-extremal RN solution of Einstein–Maxwell theory in
four dimensions and its extremal limits. In Section 3 we uplift the
compactification solution to a five-dimensional Einstein–Maxwell
theory. In Section 4, we study the CFT dual of the five-dimensional
solution and show that a part of the U (1) isometry of the com-
pactification solution appears at the boundary as Virasoro algebra
with a central charge which gives exactly the microscopic entropy
after using the Cardy formula.

0370-2693/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
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2. Review of non-extremal RN solution

In this section we review the non-extremal Reissner–Nordstrom
solution of the Einstein–Maxwell theory in four dimensions. The
action is given by

S = 1

16πG

∫
d4x

√−g

{
R − 1

4
F2

(2)

}
, (1)

where G is the four-dimensional Newton’s constant.
The non-extremal Reissner–Nordstrom solution with mass M

and electric charge Q e is given by

ds2 = −
(

1 − r+
r

)(
1 − r−

r

)
dt2

+ 1

(1 − r+
r )(1 − r−

r )
dr2 + r2 dΩ2

2 ,

F(2) = 2
√

G Q e

r2
dt ∧ dr.

There are two event horizons located at the coordinate singulari-
ties

r± = GM ±
√

G2M2 − G Q 2
e . (2)

There are different types of patches

Region I: r+ < r < ∞, −∞ < t < ∞,

Region II: r− < r < r+, −∞ < t < ∞,

Region III: 0 < r < r−, −∞ < t < ∞. (3)

The distance between an arbitrary point and the outer horizon is
finite, hence, the entropy of this solution can be found from the
semi-classical method, i.e.,

S = πr2+
G

. (4)

The Hawking temperature of the black hole which is given by
2π T = √

grr∂r
√

gtt at the outer horizon is

T = 1

2πr2+
(r+ − r−). (5)

The Hawking temperature is zero when r+ = r− , however, the en-
tropy remains non-zero.

2.1. Extremal limits

It has been shown in [13] that the approach to extremality for
RN black holes is not continuous. The non-extremal RN black hole
splits into two spacetimes at the extremality: an extremal black
hole and a disconnected “compactification solution”. The extremal
black hole with event horizon at r = Q e is

ds2 = −
(

1 − Q e

r

)2

dt2 + 1

(1 − Q e
r )2

dr2 + r2 dΩ2
2 ,

F(2) = 2Q e

r2
dt ∧ dr, (6)

where we have set G = 1. There are two regions I, III for this
solution. The region II disappears in this limit. The physical dis-
tance between an arbitrary point and the horizon is infinite1 so the

1 If one consider the Reissner–Nordstrom solution as a solution of the effective
theory of the string theory, the situation will change. In that case, it has been

semiclassical method gives no entropy for this solution [12]. To go
to the near horizon in the region I, one introduces the new space-
like coordinate 0 < λ < ∞ and timelike coordinate −∞ < σ < ∞
as

λ = r − Q e

ε
, σ = − tε

Q 2
e
, (7)

and takes the limit ε → 0 keeping (λ,σ ) fixed. The solution for
arbitrary λ becomes

ds2 = Q 2
e

(
−λ2 dσ 2 + 1

λ2
dλ2 + dΩ2

2

)
,

F(2) = −2Q e dσ ∧ dλ, (8)

which is AdS2 × S2. Similar geometry for extreme Kerr solution has
been found in [16].

The “compactification solution” on the other hand has the three
regions I, II, and III. In fact the physical distance between the inner
and outer horizons of the non-extremal solution remains non-zero
in this case [13]. By appropriate coordinate transformation, the
metric of the three regions can be mapped to a global AdS2 × S2

solution [13]. For instance, in region II using the new timelike co-
ordinate 0 < χ < π and spacelike coordinate −∞ < ψ < ∞ via
the following coordinate transformation:

r = Q e − ε cosχ, ψ = ε

Q 2
e

t, (9)

where ε =
√

M2 − Q 2
e , one finds the metric and the field strength

map to

ds2 = Q 2
e

(−dχ2 + sin2 χ dψ2 + dΩ2
2

)
,

F(2) = 2Q e sinχ dψ ∧ dχ, (10)

where we have sent ε → 0. Note that in this limit r+ = r− = Q e

and at the same time r → Q e . Moreover, the physical distance be-
tween the outer and the inner horizons remains non-zero at this
limit. Using the coordinate transformation

cosχ = cosτ

cosϑ
, tanhψ = sinϑ

sinτ
, (11)

the metric (10) transforms to [13]

ds2 = Q 2
e

cos2 ϑ

(−dτ 2 + dϑ2) + Q 2
e dΩ2

2 , (12)

which is AdS2 × S2. The flux is mapped to

F(2) = − 2Q e

cos2 ϑ
dτ ∧ dϑ. (13)

The metric (12) covers a portion of the global AdS2. The other por-
tions of the entire manifold are covered by the metric in regions I
and III [13]. The boundaries of the global AdS2 are at ϑ = ±π/2.
In terms of new coordinate u = 1/ cos ϑ , the boundaries are at
u → ∞. The solution in terms of the u-coordinate is

ds2 = Q 2
e

(
−u2 dτ 2 + du2

u2 − 1
+ dΩ2

2

)
,

F(2) = − 2Q eu√
u2 − 1

dτ ∧ du. (14)

argued in [14] that near the horizon, the length of periodic time coordinate ap-
proaches to zero and hence the string winding modes become massless or even
tachyonic. So one must include these modes to the effective action. It has been
speculated in [14] that in the presence of these modes the physical distance be-
tween an arbitrary point and the horizon remains finite, hence, the macroscopic
entropy of extremal solution of the string theory effective action is non-zero which
should be the same as the microscopic entropy of string microstate counting [15].
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Near the boundary, u → ∞, it behaves as

ds2 = Q 2
e

(
−u2 dτ 2 + du2

u2
+ dΩ2

2

)
,

F(2) = −2Q e dτ ∧ du, (15)

which is similar to the near horizon geometry of extremal black
hole (8).

It has been shown in [13] that in the extremal limit, region II
and the near horizon in regions I and III of the non-extremal RN
black hole become the compactification solution (14), while the
portions of regions I and III with any finite distance away from the
horizon form the extremal RN black hole (6).

In the extremal limit the entropy (4) remains non-zero, i.e.,

Smacro = π Q 2
e , (16)

and the Hawking temperature (5) is zero, however, there is an-
other temperature which is conjugate to the electric charge and is
defined by Te dS = dQ e . This temperature is

Te = 1

2π Q e
. (17)

The macroscopic entropy (16) should be extracted also from mi-
crostates counting. If the extremal RN black hole carries the macro-
scopic entropy, then the microstates counting of the CFT dual at
the boundary of (8) should give the macroscopic entropy. On the
other hand, if the compactification solution (14) carries the en-
tropy, then the microstates counting of the CFT dual at the bound-
ary of (14) should give the macroscopic entropy. It has been sug-
gested in [13] that a possible resolution, for having no entropy for
the extremal RN black hole in the semiclassical method [12], is
that the macroscopic entropy (16) is carried by the compactifica-
tion solution. In this Letter we would like to study the CFT dual of
this solution.

3. Uplifting to five dimensions

To study the two-dimensional CFT dual of the compactification
solution using the Brown–Henneaux technique [6] that has been
used for the extreme Kerr solution in [7], one should write the
metric in a canonical form which has isometry SL(2, R) × U (1)

with off-diagonal metric in the U (1) part. Using this idea, the U (1)

gauge symmetry of the extreme Kerr–Newman–AdS black hole has
been combined in [8] with the geometry of the four-dimensional
extreme Kerr–Newman–AdS black hole to write a canonical five-
dimensional metric which has off-diagonal component in the 5th-
direction. We note that the new metric must satisfy the equations
of motion in order to use the formula for the five-dimensional on-
shell generators [17]. We will show that in the present case only a
part of the U (1) gauge field (13) can be combined with the metric
(12) to write a canonical five-dimensional metric which satisfies
the equations of motion. In this section, we uplift the compactifi-
cation solution to the five dimensions, and then in Section 4 find
the CFT dual of the five-dimensional solution.

Consider the following five-dimensional theory:

S = 1

16πG(5)

∫
d5x

√−g

{
R − 1

12
F 2

(3)

}
. (18)

The equations of motion are

Rμν = 1

12

(
3Fμ

αβ Fναβ − 2

3
gμν F 2

(3)

)
,

∂μ

(√−g F μαβ
) = 0. (19)

The above equations are satisfied by the following solution:

ds2
5 = Q 2

e

cos2 ϑ

(−dτ 2 + dϑ2) + Q 2
e dΩ2

2 + (dy + Q e tanϑ dτ )2,

F(3) =
√

3Q e

cos2 ϑ
dτ ∧ dϑ ∧ dy, (20)

where y is a fibered coordinate with period 2π . In the above
solution, Q e is a constant which we will take to be the four-
dimensional electric charge.

Upon dimensionally reducing the y coordinate as [18]

ds2
d+1 = e2αφ ds2

d + e2βφ(dy + A)2, (21)

where β = (2 − d)α and α2 = 1/[2(d − 1)(d − 2)], the action (18)
reduces to

S = 1

16π

∫
d4x

√−g

(
R − 1

2
(∂φ)2 − 1

4
e−2(d−1)αφF2

(2)

− 1

4
e2(d−3)αφ F 2

(2)

)
, (22)

where F(2) = dA, and we have used the fact that the field strength
F(3) has component along the y-direction, i.e., F(2) = dA is the
reduction of F(3) . The equation of motion of the dilaton is

D2φ = −2(d − 1)α

4
e−2(d−1)αφF2

(2)

+ 2(d − 3)α

4
e2(d−3)αφ F 2

(2). (23)

For the present case that d = 4, one finds φ = 0 is a solution of the
above equation.

Using the φ = 0, the action (22) reduces to

S = 1

16π

∫
d4x

√−g

(
R − 1

4
F2

(2) − 1

4
F 2

(2)

)
, (24)

and the five-dimensional solution (20) reduces to the following so-
lution:

ds2
4 = Q 2

e

cos2 ϑ

(−dτ 2 + dϑ2) + Q 2
e dΩ2

2 ,

A = Q e tanϑ dτ , A = √
3Q e tanϑ dτ . (25)

The action (24) is invariant under global SO(2) transformation un-
der which (A, A) is a doublet. Using this symmetry, one can write
(24) as (1) and consequently the above solution can be written as
the four-dimensional compactification solution, i.e.,

ds2
4 = Q 2

e

cos2 ϑ

(−dτ 2 + dϑ2) + Q 2
e dΩ2

2 ,

A = 2Q e tanϑ dτ , A = 0. (26)

It is important to note that, one cannot combine the whole
U (1) gauge field 2Q e tan ϑ dτ with the metric to write a five-
dimensional metric. That would not satisfy the five-dimensional
equations of motion.

Using the coordinate transformation cosϑ = 1/u where 1 �
u � ∞, the five-dimensional metric (20) becomes

ds2
5 = ρ2

{
−u2 dτ 2 + du2

u2 − 1
+ dΩ2

2

}

+ (
dy + Q e

√
u2 − 1 dτ

)2
, (27)

where ρ = Q e . This metric has the isometry group of SL(2, R) ×
SO(3) × U (1). The Killing vector that generates the rotational U (1)

isometry group is
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ζ (y) = −∂y, (28)

the Killing vectors that generate the SO(3) isometry group are the
following:

ζ̂1 = sinφ∂θ + cot θ cosφ∂φ,

ζ̂2 = − cosφ∂θ + cot θ sinφ∂φ,

ζ̂3 = −∂φ, (29)

and the Killing vectors that generate the SL(2, R) isometry group
are the following:

ζ1 = 2 sinτ
√

u2 − 1

u
∂τ − 2 cosτ

√
u2 − 1∂u + 2Q e sinτ

u
∂y,

ζ2 = 2 cosτ
√

u2 − 1

u
∂τ + 2 sinτ

√
u2 − 1∂u + 2Q e cosτ

u
∂y,

ζ3 = 2Q e∂τ . (30)

At the boundary, u → ∞, the above Killing vectors become

ζη = η(τ )∂τ − ∂τ

(
η(τ )

)
u∂u, (31)

for η(τ ) = 2 sinτ ,2 cosτ ,2Q e . If one perturbs the background
(27), then the Killing vectors will change and hence their values
at the boundary will be modified.

4. The CFT dual

We now study the two-dimensional CFT dual of the above
five-dimensional solution (27) using the Brown–Henneaux tech-
nique [6] which makes use of the asymptotic symmetry group.
The asymptotic symmetry group of a spacetime is the group of
non-trivial allowed symmetries. A non-trivial allowed symmetry is
the one which generates a transformation that obeys the boundary
conditions and its associated charge is non-vanishing [7].

Since ∂τ is the generator whose conjugate conserved charge
measures the deviation of the solution from extremality [7], we
consider the perturbations that their associated conserved charges
commute with ∂τ . For the fluctuations of the metric (27) we
choose the following boundary condition:

hμν ∼ O

⎛
⎜⎜⎜⎝

u2 u u 1/u2 1

1 1 1/u 1

1 1/u 1

1/u3 1/u

⎞
⎟⎟⎟⎠ , (32)

in the basis (τ ,φ, θ, u, y). At the leading order, the diffeomor-
phisms which preserve the above boundary condition are

ζε = ε(y)∂y − uε′(y)∂u,

ζ (τ ) = ∂τ ,

ζ̂1 = sinφ∂θ + cot θ cosφ∂φ,

ζ̂2 = − cosφ∂θ + cot θ sinφ∂φ,

ζ̂3 = −∂φ, (33)

where ε(y) is an arbitrary smooth function. The Lie derivative of
metric (27) with respect to ζ (τ ) and ζ̂ ’s are zero, and with respect
to ζε is

δε ds2 = 2

((
ρ2 − Q 2

e

)
u2ε′(y)dτ 2 + ρ2

(u2 − 1)2
ε′(y)du2

+ ε′(y)dy2 − Q e√
u2 − 1

ε′(y)dτ dy

− ρ2u

u2 − 1
ε′′(y)du dy

)
, (34)

which is consistent with the boundary condition (32).
Using the periodicity of the y coordinate, one can expand ε(y)

in terms of the basis εn(y) = −e−iny . Defining the generators ζn ≡
ζεn one finds they satisfy the following Virasoro algebra:

i[ζm, ζn]L.B. = (m − n)ζm+n. (35)

They have zero central charge. To evaluate the central term of the
above algebra, one needs to construct the surface charges which
generate the asymptotic symmetry (33). For asymptotically AdS
spacetimes, the charge differences between (gμν) and (gμν + hμν)

are given by [17] (see [10] for a review)2

Q ζ [g] = 1

8πG

∫
∂Σ

kgrav
ζ [h; g], (36)

where the integral is over the boundary and

kgrav
ζ [h, g] = −1

2

1

3!εαβγμν

[
ζ ν Dμhσ

σ − ζ ν Dσ hμσ + ζσ Dνhμσ

+ 1

2
hσ
σ Dνζμ − hνσ Dσ ζμ

+ 1

2
hσν

(
Dμζσ + Dσ ζμ

)]
dxα ∧ dxβ ∧ dxγ , (37)

The covariant derivatives and raised indices are computed using
the metric gμν . For the diffeomorphism (33), one finds3

kgrav
ζε

= − Q e sin θ

4u2

[
2ε(y)u3∂yhuy + ρ2 + Q 2

e

ρ2
u2ε(y)hyy

− 2ε′(y)u3huy + 1

ρ2
ε(y)hττ

]
dθ ∧ dφ ∧ dy,

where we have discarded total φ derivative terms and keep only
terms that are non-zero at the boundary u → ∞. We have also
included only the terms that are tangent to ∂Σ .

The algebra of the non-trivial asymptotic symmetries is the
Poisson bracket algebra of the charges [17]

{Q ζm , Q ζn }P .B. = Q [ζm,ζn] + 1

8πG

∫
∂Σ

kgrav
ζm

[Lζn g, g]. (38)

The last term has the structure

1

8πG

∫
∂Σ

kgrav
ζm

[Lζn , g] = −i A
(
m3 + Bm

)
δm+n,0. (39)

If one defines the quantum version of the Q ’s by

Ln ≡ Q ζn + 1

2
(AB + A)δn,0, (40)

plus the usual rule of {.,.}P .B. → −i[.,.], then the algebra becomes
the standard Virasoro algebra

[Lm, Ln] = (m − n)Lm+n + Am
(
m2 − 1

)
δm+n,0, (41)

with central charge c = 12A.
The Lie derivatives of metric (27) at the boundary are

2 It has been argued in [10] that when metric is in the canonical form the scalars
and gauge fields have no contribution to the central charge in four and five dimen-
sions. We have explicitly calculated these contribution and find zero result in the
present case.

3 Note that the Lie derivative of metric with respect to the diffeomorphisms

ζ (τ ) = ∂τ and ζ̂1, ζ̂2, ζ̂3 are zero, hence, their corresponding charges are zero too.
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Lζn gττ = 2i
(
ρ2 − Q 2

e

)
u2ne−iny,

Lζn gτ y = − i Q e

u
ne−iny,

Lζn guy = −ρ2

u
n2e−iny,

Lζn g yy = 2ine−iny,

Lζn guu = 2iρ2

u4
ne−iny . (42)

Inserting the above perturbation into the central term of (38), one
finds

1

8πG(5)

∫
∂Σ

kgrav
ζm

[Lζn g, g] = − i

2
Q e

(
m3ρ2 + m

)
δm+n,0, (43)

where we have used the fact that in five dimension G(5) = 2π .
Therefore, the central charge is

c = 6Q eρ
2 = 6Q 3

e . (44)

This is the central charge of the CFT dual of the background (27)
in which the parameter Q e is the four-dimensional electric charge.
This central charge has been also found in [8] by combining the
gauge field of extremal Kerr–Newman–AdS black hole with the
four-dimensional metric and taking J → 0.

The Cardy formula gives the microscopic entropy of a unitary
CFT at large Te to be

Smicro = π2

3
cTe. (45)

Using (17) and (44), one finds

Smicro = π Q 2
e . (46)

This exactly reproduces the macroscopic entropy (16).

5. Discussion

In this Letter we have studied the CFT dual of the extremal
RN black hole. It has been speculated that there are two extremal
limits for the RN black hole [13]: The extremal RN black hole and
the compactification solution. The entropy of the RN black hole is
speculated in [13] to be carried by the compactification solution at
the extremal limit. By uplifting the compactification solution to a
five-dimensional solution of the Einstein–Maxwell theory, we have
found the central charge of the CFT dual of the compactification
solution using the Brown–Henneaux technique, and its microscopic
entropy using the Cardy formula. The result is exactly the same as
the macroscopic entropy of the RN black hole at the extremal limit.

It has been shown in [8] that the gauge fields have no direct
contribution to the central charge when the metric is in the canon-
ical form. We have seen that only a part of the gauge field of the
compactification solution (see Eq. (25)) should be combined with
the four-dimensional metric to write the five-dimensional metric
in the canonical form (20). This indicates that only this part of the
gauge field has direct contribution to the central charge. The other
part has indirect contribution as it is needed in order the metric
satisfies the equations of motion.

We have found the central charge of the CFT dual of the grav-
ity on the background (27) to be given by (44). In [8], the same
central charge has been found for the CFT dual of the gravity on

four-dimensional background of the extremal Kerr–Newman–AdS
black hole fibered with a U (1) gauge field at the limit of J → 0.
Moreover, using the Brown–Henneaux technique one can find the
central charge for the CFT dual of the gravity on the following four-
dimensional metric:

ds2
4 = −Q 2

e u2 dτ 2 +
(

Q 2
e

u2 − 1

)
du2 + Q 2

e dθ2

+ Q 2
e sin2 θ

(
dφ − Q e

√
u2 − 1 dτ

)2
. (47)

The result is exactly the same as (44). This may indicate that the
CFT dual to the gravity on these different backgrounds have the
same central charge, however, other properties of the CFT theories
may not be the same. It would be interesting to further study these
backgrounds to reveal which one is corresponding to the RN black
hole. The first criteria is that they must satisfy the equations of
motion. Our five-dimensional solution has been found by requiring
it to satisfy the equations of motion.
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