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1 Introduction and results

The dynamics of the D-branes of type II superstring theories is well-approximated by the

effective world-volume field theories which consist of the sum of Dirac-Born-Infeld (DBI)

and Chern-Simons (CS) actions. The DBI action describes the dynamics of the brane in

the presence of the NSNS background fields. For constant background fields it can be found

by requiring the consistency with nonlinear T-duality [1, 2]

SDBI = −Tp

∫

dp+1x e−φ
√

− det (Gab + Bab + 2πα′Fab) (1.1)

where Gab and Bab are the pulled back of the bulk fields Gµν and Bµν onto the world-volume

of D-brane.1 The curvature corrections to this action has been found in [3] by requiring

consistency of the effective action with the O(α′2) terms of the corresponding disk-level

scattering amplitude [4, 5]. The on-shell ambiguity of these couplings has been removed

in [6] by requiring the consistency of the couplings with linear T-duality. Moreover, this

consistency fixes the couplings of non-constant dilaton and B-field at the order O(α′2) in

the action which are reproduced by the corresponding disk level scattering amplitude. In

particular, it has been found in [6] that the consistency with T-duality/S-matrix requires

the non-constant dilaton appears in the string frame action only as the overall factor of e−φ.

The CS part on the other hand describes the coupling of D-branes to the RR fields.

For constant background fields it is given by [7, 8]

SCS = Tp

∫

Mp+1

eBC (1.2)

1Our index conversion is that the Greek letters (µ, ν, · · · ) are the indices of the space-time coordinates,

the Latin letters (a, d, c, · · · ) are the world-volume indices and the letters (i, j, k, · · · ) are the normal bundle

indices.
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where Mp+1 represents the world volume of the Dp-brane, C is meant to represent a sum

over all appropriate RR potential forms and the multiplication rule is the wedge product.

The abelian gauge field can be added to the action as B → B + 2πα′F . The curvature

corrections to this action has been found by requiring that the chiral anomaly on the world

volume of intersecting D-branes (I-brane) cancels with the anomalous variation of the CS

action [9–11]. This correction is

SCS = Tp

∫

Mp+1

eBC

(A(4π2α′RT )

A(4π2α′RN )

)1/2

(1.3)

where A(RT,N ) is the Dirac roof genus of the tangent and normal bundle curvatures re-

spectively,
√

A(4π2α′RT )

A(4π2α′RN )
= 1 +

(4π2α′)2

384π2
(trR2

T − trR2
N ) + · · · (1.4)

For totally-geodesic embeddings of world-volume in the ambient spacetime, RT,N are the

pulled back curvature 2-forms of the tangent and normal bundles respectively (see the

appendix in ref. [3] for more details).

It has been pointed out in [12] that the anomalous CS couplings (1.3) must be in-

complete for non-constant B-field as they are not compatible with T-duality. T-duality

exchanges the components of the metric and the B-field whereas the couplings (1.3) in-

cludes only the curvature terms. Compatibility of this action with T-duality should give a

bunch of new couplings [13, 14].

In this paper we would like to show that for non-constant RR and NSNS fields there are

other contribution to the action (1.3) at order O(α′2) which may not arise from requiring

the consistency of the action (1.3) with T-duality. These terms which involve linear NSNS

field can be found by studying the S-matrix element of one RR and one NSNS vertex

operators [4] and by requiring them to be consistent with linear T-duality. We will find

the following string frame couplings at order O(α′2):

S ∼ Tp

∫

dp+1x ǫa0···ap

(

1

2!(p − 1)!

[

F
(p)
ia2···ap,aHa0a1

a,i − 1

p
F

(p)
a1a2···ap,i(Ha0a

i,a − Ha0j
i,j)

]

+
2

p!

[

1

2!
F

(p+2)
ia1···apj,aRa

a0

ij − 1

p + 1
F

(p+2)
a0···apj,iR̂ij

]

− 1

3!(p + 1)!
F

(p+4)
ia0···apjk,aH

ijk,a

)

(1.5)

where as usual commas denote partial differentiation.

It has been shown in [6] that the compatibility of the curvature corrections to the DBI

action with linear T-duality transformations requires the non-constant dilaton appears in

the string frame action only through the overall factor of e−φ. This factor has been absorbed

in the RR field so one expects that the dilaton appears in the above action only through

the string frame metric. We will show that the coupling of one F (p+2) and one dilaton in

the Einstein frame which can be calculated by the S-matrix element, is reproduced exactly

by transforming the couplings in the second line above to the Einstein frame.
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The couplings in (1.5) have been found by the S-matrix element of one RR and one

NSNS vertex operators and by T-duality. The S-matrix method produces the on-shell

couplings and consistency of the couplings with linear T-duality then fixes the on-shell

ambiguity of the couplings. Correction to this action can also be found by requiring it to

be consistent with nonlinear T-duality transformations. We will consider one particular

nonlinear term in the T-duality transformation of the RR field and then examine the

consistency of (1.5) with it to find new couplings. The new couplings are given by the

above action in which F (n) is replaced by F (n) where

F (n) = F (n) + B ∧ F (n−2) + H ∧ C(n−3) (1.6)

+
1

2!
B ∧ B ∧ F (n−4) +

1

2!
B ∧ H ∧ C(n−5) +

1

2!
H ∧ B ∧ C(n−5) + · · ·

= dC(n)

where C = eBC, is the RR potential in the CS action (1.2).

An outline of the paper is as follows: We begin the section 2 by writing the S-matrix

element of one RR and one NSNS vertex operators. From the contact terms of this ampli-

tude at order (α′)2, we will find the on-shell couplings of one massless RR and two NSNS

fields. In section 3, we review the T-duality transformations and the strategy for checking

the consistency of a D-brane action with T-duality. In section 3.1, we check the consistency

of the couplings found in section 2 with linear T-duality which fixes the on-shell ambiguity

of the couplings. After fixing the on-shell ambiguity of the gravity couplings, we show that

the dilaton appears in the action only through the string frame metric. In section 3.2, we

check the consistency of the couplings (1.5) with nonlinear T-duality and show that the

field strength in the action (1.5) should be given by (1.6).

2 Scattering amplitudes

A method for finding the couplings in effective field theory is the S-matrix method. The

standard CS coupling (1.2) has been confirmed by the S-matrix method in e.g., [15,

16]. The couplings of NSNS and RR fluxes to various types of D-branes have been found

in [17] by evaluating disk amplitudes among two open string and one closed string vertex

operators. To find the couplings of one RR and one NSNS states to Dp-brane, one needs

the scattering amplitude of their corresponding vertex operators which is given by [4]

A(ε1, p1; ε2, p2) = −1

8
Tpα

′2K(1, 2)
Γ(−α′t/4)Γ(α′q2)

Γ(1 − α′t/4 + α′q2)

=
1

2
TpK(1, 2)

(

1

q2t
+

π2α′2

24
+ O(α′4)

)

(2.1)

where q2 = pa
1p

b
1ηab is the momentum flowing along the world-volume of D-brane, and

t = −(p1 + p2)
2 is the momentum transfer in the transverse direction. The kinematic
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factor is

K(1, 2) = i
q2

√
2
Tr(P−Γ1(n)Mpγ

νγ ·(p1 + p2)γ
µ)(ε2 ·D)µν (2.2)

−i
t

2
√

2
[Tr(P−Γ1(n)Mpγ ·D ·εT

2 ·D ·p2) − Tr(P−Γ1(n)Mpγ ·ε2 ·D ·p2)

−Tr(P−Γ1(n)Mpγ ·D ·p2)Tr(ε2 ·D)]

where the matrix Dµ
ν is diagonal with +1 in the world volume directions and -1 in the

transverse directions, and

Γ1(n) =
1

n!
F1ν1···νn

γν1 · · · γνn

Mp =
±1

(p + 1)!
ǫa0···ap

γa0 · · · γap (2.3)

where F1 is the linearized RR field strength n-form and ǫ is the volume p + 1-form of the

Dp-brane. In equation (2.2), P− = 1
2(1 − γ11) is the chiral projection operator and ε2 is

the NS-NS polarization. The γ11 in the chiral projection gives the magnetic couplings and

1 gives the electric couplings. The first term in (2.1) produces the massless poles resulting

from the (α′)0 order of the DBI and CS couplings on the D-brane, and the supergravity

couplings in the bulk. The second term in (2.1) should produce (α′)2 couplings of one RR

and one NSNS on the D-brane in which we are interested.

Using the identity Mpγ
µ = Dµ

νγ
νMp [4] and the algebra {γµ, γν} = −2ηµν , one can

write the above kinematic factor for the electric couplings as

K(1, 2) = i
q2

2
√

2
Tr(Γ1(n)γ

νMpγ ·(p1 + p2)γ
µ)(ε2)µν (2.4)

−i
t

4
√

2

[

− Tr(Γ1(n)γ ·D ·ε2 ·D ·p2Mp)

−1

2
Tr(Γ1(n)γ

µMpγ ·D ·p2γ
ν)(D ·ε2 ·D + εT

2 )µν

]

One can easily check that the kinematic factor is zero for n ≤ p − 2 and for n > p + 4.

This factor is non-zero for n = p, n = p + 2 and for n = p + 4. Let us consider each case

separately.

2.1 n = p case

For n = p case, one needs to perform the following traces:

Tr(γµ1 · · · γµpγµγa0 · · · γapγαγν) and Tr(γµ1 · · · γµpγαγa0 · · · γap) (2.5)

They make various contraction of the indices. The first one simplifies to

(−1)p[ηµνηαa0ηµ1a1 + ηανηa0µηa1µ1 − ηαµηa0νηa1µ1 − pηαµ1ηa0µηa1ν

−pηαa0ηµµ1ηa1ν − pηαa0ηa1µηνµ1 ]p(p + 1)Tr(γµ2 · · · γµpγa2 · · · γap) (2.6)
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The second trace simplifies to

Tr(γµ1 · · · γµpγαγa0 · · · γap) = (−1)pηαa0ηµ1a1p(p + 1)Tr(γµ2 · · · γµpγa2 · · · γap) (2.7)

and the trace Tr(γµ2 · · · γµpγa2 · · · γap) causes the RR field strength to contract with the

volume form ǫ, i.e., F1µ1a2···ap
ǫa0···ap .

Using the above traces, one finds that the kinematic factor (2.4) for the graviton is

K(1, 2) ∼ −i
t

2
√

2
[F1a1···ap

(ε2)a0

ap2a + pF1aa2···ap
(ε2)a1

ap2a0
]ǫa0···ap (2.8)

Using the fact that the indices a0, · · · , ap contracted with the totally antisymmetric ǫa0···ap

tenser and the conservation of the momentum p1a + p2a = 0, one can write

pF1aa2···ap
p2a0

= p p1aC1a2···ap
p2a0

= F1a0a2···ap
p2a (2.9)

which makes the kinematic factor (2.8) to be zero. For B-field, one finds the following

non-zero result for the kinematic factor (2.4):

K(1, 2) ∼ −
(

i
q2

2
√

2
[2F1a1a2···ap

(ε2)a0i(p1 + p2)
i − pF1ia2···ap

(ε2)a0a1
(p1 + p2)

i]

−i
t√
2
F1a1a2···ap

(ε2)a0ip
i
2

)

ǫa0a1···ap (2.10)

As a check of the calculation, if one replaces the B-field polarization with (ε2)µν → ζµ(p2)ν−
ζν(p2)µ the kinematic factor vanishes, as expected from the Ward identity.

To find the field theory couplings corresponding to the above momentum space contact

terms, we use the following identities:

F1a1···ap
(ε2)a0a =

p

2
F1aa2···ap

(ε2)a0a1

F1a1···ap
(p1)i = pF1ia2···ap

(p1)a1
(2.11)

where we have used the fact that the indices a0, · · · , ap contracted with the totally anti-

symmetric ǫa0···ap tenser. Using these identities one can write the kinematic factor as

K(1, 2) ∼ − ip√
2

(

(ε2)a0a1

[

− 1

2
p1 ·V ·p1F1ia2···ap

(p2)
i − p1 ·N ·p2F1aa2···ap

(p2)
a

]

+p1 ·V ·p1F1ia2···ap
(p1)a1

(ε2)a0

i

)

ǫa0a1···ap (2.12)

which satisfies the Ward identity. The couplings corresponding to the above terms are:

Tp

2!(p − 1)!

∫

dp+1x ǫa0a1···ap

(

F
(p)
ia2···ap,aHa0a1

a,i − F
(p)
aa2···ap,iHa0a1

i,a
)

(2.13)

where

Hµνα = Bµν,α + Bαµ,ν + Bνα,µ (2.14)
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The other terms in (2.1) correspond to the higher derivative of the couplings (2.13) in

which we are not interested in this paper.

The last coupling in (2.13) has on-shell ambiguity. To see this we note that the index

a in this term can be either a0 or a1. If a = a0, it can be written as −2Fa0a2···ap,iHaa1

i,a/p,

and if a = a1, it can be written as −2Fa1a2···ap,iHa0a
i,a/p. Interchanging a1 ↔ a0 in the

latter expression and using the fact that it has the overall factor of the volume form, one

can write it as the former expression. Hence, the last term in (2.13) can be written as

−2Fa1a2···ap,iHa0a
i,a/p. Moreover, using the on-shell condition Hνρα,µ

µ = 0, one can write

it as 2Fa1a2···ap,iHa0j
i,j/p or as

− 1

p
Fa1···ap,i(Ha0a

i,a − Ha0j
i,j) (2.15)

We will fix the above on-shell ambiguity in section 3 by requiring the consistency of the

coupling with the T-duality transformations.

2.2 n = p + 2 case

For n = p + 2 case, the traces in (2.4) simplify to

Tr(γµ1 · · · γµp+2γµγa0 · · · γapγαγν) = (p + 1)(p + 2)Tr(γµ3 · · · γµp+2γa1 · · · γap) ×
[−ηµνηαµ1ηa0µ2 + ηανηa0µ2ηµµ1 + ηαµηµ1νηa0µ2 +

(p + 1)(ηαµ1ηµ2µηa0ν + ηαµ1ηµa0ηµ2ν + ηαa0ηµ1µηνµ2)]

Tr(γµ1 · · · γµp+2γαγa0 · · · γap) = −ηαµ1ηµ2a0(p + 1)(p + 2)Tr(γµ3 · · · γµp+2γa1 · · · γap)

The trace Tr(γµ3 · · · γµp+2γa1 · · · γap) causes the RR field strength to contract with the

volume form as Fiµ1µ2a1···ap
ǫa0···ap . Inserting these traces in (2.4), one finds the kinematic

factor for B-field becomes

K(1, 2) ∼ −i
t

2
√

2
[−F1ia0···ap

(ε2)
i
ap2a + (p + 1)F1iaa1 ···ap

(ε2)
i
ap2a0

]ǫa0···ap (2.16)

Using the fact that the indices a0, · · · , ap contract with the totally antisymmetric tensor

ǫa0···ap and the conservation of the momentum p1a + p2a = 0, one can write

(p + 1)F1iaa1 ···ap
p2a0

ℓa = F1ia0a1···ap
p2aℓ

a (2.17)

for any vector ℓa. This makes the kinematic factor (2.16) to be zero. For the symmetric

polarization, graviton or dilaton, one finds the kinematic factor (2.4) to be

K(1, 2) ∼
(

i
q2

√
2
[F1ja0···ap

(ε2)
j
i(p1 + p2)

i + (p + 1)F1iµa1 ···ap
(ε2)

µ
a0

(p1 + p2)
i]

+i
t

2
√

2
[2F1ia0 ···ap

(ε2)
iap2a − (p + 1)F1aa1 ···ap

(ε2)
a
a0

pi
2]

− i

2
√

2
F1ia0···ap

pi
2(q

2 − t

2
)Tr(ε2)

)

ǫa0a1···ap (2.18)
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The last term is zero for graviton, but is has contribution to the dilaton amplitude. Using

the identity (2.17), one can write the above equation for the graviton as

K(1, 2) ∼ i(p + 1)√
2

(

F1jaa1···ap
p2a0

pa
2(ε2)

j
ip

i
1 − p1 ·V ·p2F1ija1···ap

(ε2)
j
a0

pi
2

+p1 ·N ·p2[F1iaa1 ···ap
(ε2)

a
a0

pi
2 − 2F1iaa1 ···ap

(ε2)
aip2a0

]
)

ǫa0a1···ap (2.19)

It satisfies the Ward identity. Using the identity

F1jaa1···ap
p1ip2a0

= F1iaa1···ap
p1jp2a0

− F1ija1···ap
p1ap2a0

, (2.20)

one finds that the field theory corresponding to the above amplitude is

Tp

p!

∫

dp+1x ǫa0a1···ap

(

1

2
F

(p+2)
ija1···ap,aRa

a0

ij + F
(p+2)
jaa1···ap,iRi

a0

aj

)

(2.21)

The Riemann tensor at the linear order in the graviton is

Rµνρλ =
1

2
(hµλ,νρ + hνρ,µλ − hµρ,νλ − hνλ,µρ) (2.22)

where we have considered perturbation around the flat space where the metric takes the

form Gµν = ηµν +hµν . The last term in the above amplitude has again on-shell ambiguity.

We will show in section 3 that this term in the present form is not consistent with T-duality.

However, it can be written in a T-dual invariant form using the on-shell conditions.

The dilaton amplitude can be found from the amplitude (2.18) by using the following

polarization:

εµν =
1√
8
(ηµν − ℓµpν − ℓνpµ) ; ℓ·p = 1 (2.23)

where the auxiliary vector ℓµ insures that the polarization satisfies the on-shell condition

p·εν = 0. One finds the dilaton amplitude to be

K(1, 2) ∼ i(p − 3)√
2

(

p1 ·N ·p2F1ia0···ap
pi
2

)

ǫa0a1···ap (2.24)

The field theory corresponding to the above amplitude is

(p − 3)Tp

(p + 1)!

∫

dp+1x ǫa0a1···ap

(

F
(p+2)
ia0···ap,jφ

,ij
)

(2.25)

This coupling is zero for D3-brane which is consistent with the fact that the world volume

theory of D3-brane is a conformal field theory.

2.3 n = p + 4 case

For n = p + 4 case, one needs only the following trace:

Tr(γµ1 · · · γµp+4γµγa0 · · · γapγαγν)

= (−1)pηαµ1ηµµ2ηνµ3(p + 2)(p + 3)(p + 4)Tr(γµ4 · · · γµp+4γa0 · · · γap) (2.26)

– 7 –
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One can easily check that the kinematic factor (2.4) is zero for graviton, and for B-field

it is

K(1, 2) ∼ −i
q2

2
√

2
F1ijka0···ap

(ε2)
jkpi

2ǫ
a0···ap (2.27)

which satisfies the Ward identity. The coupling corresponding to the above amplitude is

Tp

3!(p + 1)!

∫

dp+1x ǫa0···apF
(p+4)
ijka0···ap,aH

ijk,a (2.28)

Note that H ijk,a = H ija,k when the indices i, j, k are totally antisymmetric, as in above

equation. In the next section, we will examine that the consistency of the above couplings

with T-duality.

3 T-duality

In this section we would like to study the transformation of the couplings that we have

found in the previous section under the T-duality. We denote y the Killing direction along

which the T-duality is going to be implemented. The full set of T-duality transformations

has been found in [18–21]

e2φ̃ =
e2φ

Gyy

G̃yy =
1

Gyy

G̃µy =
Bµy

Gyy

G̃µν = Gµν − GµyGνy − BµyBνy

Gyy

B̃µy =
Gµy

Gyy

B̃µν = Bµν − BµyGνy − GµyBνy

Gyy

C̃
(n)
µ···ναy = C

(n−1)
µ···να − (n − 1)

C
(n−1)
[µ···ν|yG|α]y

Gyy

C̃
(n)
µ···ναβ = C

(n+1)
µ···ναβy + nC

(n−1)
[µ···ναBβ]y + n(n − 1)

C
(n−1)
[µ···ν|yB|α|yG|β]y

Gyy
(3.1)

where µ, ν, α, β 6= y. In above transformation the metric is the string frame metric. If y is

identified on a circle of radius R, i.e., y ∼ y+2πR, then after T-duality the radius becomes

R̃ = α′/R. The string coupling is also shifted as g̃ = g
√

α′/R.

The strategy for finding T-duality invariant couplings is given in [6]. Let us review it

here. Suppose we are implementing T-duality along a world volume direction of a Dp-brane

denoted y. One should first separate the world-volume indices into y index and the world-

volume indices which do not include y, and then apply the above T-duality transformations.

– 8 –
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The latter indices are complete world-volume indices of the T-dual Dp−1-brane. However,

the y index in the T-dual theory which is a normal bundle index is not a complete index.

On the other hand, the normal bundle indices of the original theory are not complete in the

T-dual Dp−1-brane. They are not include y. In a T-duality invariant theory, the y indices

must be combined with the incomplete normal bundle indices to give the complete normal

bundle indices in the T-dual Dp−1-brane. If a theory is not invariant under the T-duality,

one should then add new terms to it to have the complete indices in the T-dual theory. In

this way one makes the theory to be T-duality invariant by adding new couplings.

One may also implement T-duality along a transverse direction of a Dp-brane denoted

y. In this case one must first separate the transverse indices to y and the transverse

indices which do not include y, and then apply the above T-duality transformations. The

latter indices are the complete transverse indices of the T-dual Dp+1-brane. However, the

complete world-volume indices of the original Dp-brane are not the complete indices of

the T-dual Dp+1-brane. They must include the y index to be complete. In a T-duality

invariant theory, the y index which is a world-volume index in the T-dual theory must be

combined with the incomplete world-volume indices of the T-dual Dp+1-brane to give the

complete world-volume indices.

3.1 Linear T-duality

In this subsection we would like to study the consistency of the couplings with linear T-

duality transformations. Assuming the NSNS and RR fields are small perturbations around

the flat space, the T-duality transformations take the following linear form:

φ̃ = φ − 1

2
hyy, h̃yy = −hyy, h̃µy = Bµy,

B̃µy = hµy, h̃µν = hµν , B̃µν = Bµν

C̃
(n)
µ···ναy = C

(n−1)
µ···να , C̃

(n)
µ···ναβ = C

(n+1)
µ···ναβy (3.2)

Consistency of the curvature squared corrections to the DBI action under the above linear

T-duality transformations has been examined in [6]. The consistency requires adding some

H-squared terms to the DBI action which are also consistent with the corresponding S-

matrix element. We are going to do similar calculation for the couplings that we have

found in the previous section.

We begin by studying the T-duality of the couplings in (2.13). Consider implementing

T-duality along a world volume direction of the Dp-brane.2 From the contraction with the

world volume form, one of the indices a2, · · · , ap of the RR field strength or the indices

a0, a1 of the NSNS field strength in (2.13) must include y, and so there are two cases to

consider: First when y appears as an index on the RR field strength and second when y

is an index in the NSNS field strength. In the former case, we note that there are p − 1

indices in the RR field strength which are contracted with the volume form. Each of these

indices can be y. However, because of the totally antisymmetric property of the volume

2The couplings (2.13) are consistent with the linear T-duality transformations (3.2) when implementing

the T-duality along a transverse direction.
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form and the RR field strength, they all are identical. So one can write (2.13) as

Tp

2!(p − 2)!

∫

dp+1x ǫa0a1···ap−1y
(

F
(p)
ia2···ap−1y,aHa0a1

a,i − F
(p)
aa2···ap−1y,iHa0a1

i,a
)

(3.3)

Note that the indices i, a appear as the derivative indices so nigher of them can be y.

Moreover, because of the world volume form, none of the indices a0, · · · ap−1 can be y.

The transform of the above couplings under the linear T-duality (3.2) gives the following

couplings for Dp−1-brane:

2π
√

α′
Tp

2!(p − 2)!

∫

dpx ǫa0a1···ap−1

(

F
(p−1)
ia2···ap−1,aHa0a1

a,i − F
(p−1)
aa2···ap−1,iHa0a1

i,a
)

where we have also used the fact that Tp ∼ 1/gs. Using the relation 2π
√

α′Tp = Tp−1, one

observes that the above couplings are exactly the couplings (2.13) for Dp−1-brane.

We will now check the case that the T-dual coordinate y is carried by the NSNS field

strength. There are two possibilities for the NSNS field strength in (2.13) to carry the

T-dual coordinate y, i.e., either a0 or a1 carries the index y. Since the two possibilities are

identical, one can write (2.13) as

Tp

(p − 1)!

∫

dp+1x ǫya1···ap

(

F
(p)
ia2···ap,aHya1

a,i − F
(p)
aa2 ···ap,iHya1

i,a
)

(3.4)

Note again that the indices i, a and a1, · · · , ap can not be y. The above couplings transform

under linear T-duality to the following couplings of Dp−1-brane:

Tp−1

(p − 1)!

∫

dpx ǫa1···ap

(

2F
(p+1)
ia2···apy,aRa

a1

iy − 2F
(p+1)
aa2···apy,iRi

a1

ay
)

(3.5)

where we have used the assumption in T-duality that all field are independent of the Killing

direction y. The coordinate y in the T-dual theory is a transverse coordinate. Inspired by

the above couplings, one may guess that the correct form of the couplings for Dp−1-brane

are in fact,

Tp−1

(p − 1)!

∫

dpx ǫa1···ap

(

F
(p+1)
ia2···apj,aRa

a1

ij − 2F
(p+1)
aa2 ···apj,iRi

a1

aj
)

(3.6)

This is consistent with the couplings (2.21) that we have found from the S-matrix.

The last term above is not consistent with the T-duality along the world volume

direction. To see this, consider the case that a1 carries the index y. The world volume

index a should be separated into y and ã, which does not include the coordinate y. So the

second term in (3.6) can be written as

− 2Tp−1

(p − 1)!

∫

dpx ǫya2···ap

(

F
(p+1)
ãa2···apj,iRi

y
ãj + F

(p+1)
ya2···apj,iRi

y
yj
)

(3.7)

Under the linear T-duality it transforms to

− Tp−1

(p − 1)!

∫

dp−1x ǫa2···ap

(

F
(p+2)
ãa2···apjy,iH

ãyj,i − (−1)pF
(p)
a2···apj,ihyy

,ij
)

(3.8)
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The first term above, in particular, indicates that there must be the following coupling:

− Tp

2!(p + 1)!

∫

dp+1x ǫa0···apF
(p+4)
aa0 ···apjk,iH

akj,i (3.9)

However, this coupling is not produced by the S-matrix element (2.27). To fix this in-

consistency, we use the on-shell conditions to rewrite the second term in (3.6) in a T-dual

form. The index a in this term can be only a1 so we can rewrite it as −2F
(p+1)
a1a2···apj,iRi

a
aj/p.

Moreover, using the on-shell conditions, one can write the curvature as R̂ij where

R̂ij ≡ 1

2
(Ria

a
j −Rik

k
j) (3.10)

It does not have a1 index anymore to produce inconsistency with T-duality. It has been

shown in [6] that it is invariant under linear T-duality transformations (3.2) when i, j 6= y.

Hence, the couplings (3.6) can be written for Dp-brane as

2Tp

∫

dp+1x ǫa0···ap

(

1

2!p!
F

(p+2)
ia1···apj,aRa

a0

ij − 1

(p + 1)!
F

(p+2)
a0···apj,iR̂ij

)

(3.11)

which are equivalent to the couplings (2.21) using on-shell conditions. These are the cou-

plings in the second line of (1.5).

It has been speculated in [6] that the non-constant dilaton appears in the string frame

D-brane action in the same way that the constant dilaton appears in the action, e.g., the

non-constant dilaton appears only through the overall factor of e−φ in the string frame DBI

action. This proposal has been verified for DBI action by explicit calculation at order α′2

in [6]. We now check the proposal for the couplings that we have found. According to this

proposal the dilaton appears only through the string frame metric in (3.11). In other words,

the dilaton couplings in the Einstein frame should be given by transforming the string frame

couplings (3.11) to the Einstein frame, i.e., replacing hµν → φηµν/2. This replacement gives

Ra
a0

ij → 0, Ri
a
aj → (ηijφ,a

a+ηa
aφ,ij)/4 and Ri

k
kj → [ηijφ,k

k+(ηk
k−2)φ,ij ]/4. Using the

on-shell condition that Fa0···api
,i = −Fa0···apa

,a = 0, one finds the following dilaton coupling:

− Tp(p − 3)

2(p + 1)!

∫

dp+1x ǫa0···apF
(p+2)
a0···apj,iφ

,ij (3.12)

which is exactly the coupling (2.25). Note that if one uses the replacement hµν → φηµν/2

in the couplings (2.21) which is consistent with S-matrix but not with T-duality, one would

not find the correct dilaton coupling in the Einstein frame.

Having fixed the on-shell ambiguity of the last term in (2.21) by requiring the consis-

tency with linear T-duality, we now fix the on-shell ambiguity of the last term in (2.13)

by requiring that the T-duality along a transverse direction of the equation (3.11) should

produce the F (p)H couplings. Reversing the steps to find the first term in (3.11), one finds

the first term in (2.13). To find the T-dual of the last term in (3.11), we write it as

− 2Tp

(p + 1)!

∫

dp+1x ǫa0···ap

(

F
(p+2)

a0···ap j̃,i
R̃ij̃ + F

(p+2)
a0···apy,iR̃iy

)

(3.13)
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where the transverse index j̃ does not include y. The T-duality transformation of the

first term above gives a term which is reproduced by the second term in (3.11), and the

T-duality of the second term gives the following terms:

Tp+1

2(p + 1)!

∫

dp+1xdy ǫya0···apF
(p+1)
a0···ap,i

(

H ia
y,a − H ij

y,j

)

(3.14)

Inspired by these terms, one guesses that there must be the following couplings:

Tp

2p!

∫

dp+1x ǫa1···apF
(p+1)
a1···ap,i

(

H ia
a0,a − H ij

a0,j

)

(3.15)

This fixes the on-shell ambiguity in the second term in (2.13). Hence, the couplings which

are consistent with the S-matrix element and with the linear T-duality are those that

appear in the first line of (1.5).

Now we consider the transformation of the couplings (3.11) under linear T-duality

transformations along a world volume direction. From the contraction with the world

volume form, one of the indices of the RR field strength or the index of the curvature in

(3.11) must include y, and so again there are two cases to consider: First when y appears

as an index on the RR field strength and second when y is an index in the curvature. In

the former case, one can easily check that the T-dual couplings are consistent with (3.11).

In the latter case, we write (3.11) as

2Tp

∫

dp+1x ǫya1···ap

(

1

2!p!
F

(p+2)
ia1···apj,aRa

y
ij

)

(3.16)

It transforms under linear T-duality to the following coupling of Dp−1-brane:

Tp−1

∫

dpx ǫa1···ap

(

1

2!p!
F

(p+3)
ia1···apjy,aH

iyj,a

)

(3.17)

Note that after T-duality the transverse indices i, j should be written as ĩ, j̃ which do not

include y, however, because H ĩyĩ is totally antisymmetric we wrote it as H iyj . Inspired by

this couplings, one may guess that the correct form of the coupling for Dp-brane is in fact,

Tp

∫

dp+1x ǫa0a1···ap

(

1

3!(p + 1)!
F

(p+4)
ia0···apjk,aH

ikj,a

)

(3.18)

which is the coupling (2.28) that we have found from the S-matrix element. This is the

coupling in the last line of (1.5). There is no index in the NSNS field strength in above

coupling that contracts with the world volume form. So continuing the T-duality along

a world volume direction, one would find no new term involving F p+6. This is consistent

with the S-matrix calculation in the previous section that indicates there is no coupling

for F p+6.

3.2 Non-linear T-duality

We have seen in the previous section that the couplings (1.5) are consistent with the linear

T-duality transformations (3.2). However, they are not consistent with nonlinear T-duality
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transformations. In this paper, we would like to study the effect of the second term in the

T-duality transformation of the RR potential in (3.1). So we consider the following T-

duality transformations:

h̃µy = Bµy, B̃µy = hµy , h̃µν = hµν , B̃µν = Bµν , C̃
(n)
µ···ναβ = nC

(n−1)
[µ···ναBβ]y (3.19)

The reason for choosing only the nonlinear term above is that the consistency of the RR

potential C with this term makes it to be eBC. To see this, consider the linear coupling of

the CS action (1.2), i.e.,

Tp

∫

C(p+1) =
Tp

(p + 1)!

∫

dp+1x ǫa0···apC
(p+1)
a0···ap

(3.20)

The transformation of the above coupling of Dp-brane under T-duality along a transverse

direction gives the following coupling for Dp+1-brane:

Tp+1

p!

∫

dp+1xdy ǫa0···apyC
(p)
a0···ap−1

Bapy (3.21)

This dictates that there must be the following coupling:

Tp

2!(p − 1)!

∫

dp+1x ǫa0···apC
(p−1)
a0···ap−2

Bap−1ap
= Tp

∫

C(p−1) ∧ B (3.22)

which is a standard term in the CS action (1.2).

We now study the consistency of the couplings in the first line of (1.5) under the

T-duality transformation (3.19). To study the effect of last term in (3.19), we have to

consider the couplings in which the RR field carries no index y. We begin by implementing

T-duality along a transverse direction of the Dp-brane. The B-fields in the first line of

(1.5) are invariant under (3.19), so these couplings transform under the T-duality to the

following couplings for Dp+1-brane:

Tp+1

2!(p − 1)!

∫

dp+1xdy ǫa0a1···apy

(

F̃
(p)
ia2···ap,aHa0a1

a,i − 1

p
F̃

(p)
a1···ap,i(Ha0a

i,a − Ha0j
i,j)

)

(3.23)

Let us first consider the second term above. The transformation of the RR field strength

F̃
(p)
a1···ap

under the T-duality (3.19) is

F̃
(p)
a1···ap

= p(C̃
(p−1)
a2···ap

),a1

= pF
(p−1)
a1···ap−1

Bapy +
p(p − 1)

2
C

(p−2)
a2···ap−1

Hapya1
(3.24)

where here and in the subsequent identities we have used the fact that the world volume

indices a0, a1, · · · ap are contracted with the totally antisymmetric world volume tensor.

Inserting this in the second term in (3.23), one finds that there must be the following

couplings:

−Tp+1

2!

∫

dp+1xdy ǫa0a1···ap+1

(

1

2!(p−1)!
F

(p−1)
a1···ap−1

Bapap+1
+

1

3!(p−2)!
C

(p−2)
a2···ap−1

Hapap+1a1

)

,i

×(Ha0a
i,a − Ha0j

i,j) (3.25)
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The terms in the bracket in the first line is

1

(p + 1)!
(B ∧ F (p−1))a1···ap+1

+
1

(p + 1)!
(H ∧ C(p−2))a1···ap+1

(3.26)

Hence, the couplings (3.25) are given by the second term in (1.5) in which the RR field

strength is (1.6).

The transformation of the RR field strength F̃
(p)
ia2···ap

in the first term of (3.23) is

F̃
(p)
ia2···ap

= C̃
(p−1)
a2···ap,i − (p − 1)C̃

(p−1)
ia3···ap,a2

= (p − 1)F
(p−1)
ia2 ···ap−1

Bapy + (−1)p−2F
(p−1)
a2···ap

Biy (3.27)

+(−1)p−2 (p − 1)(p − 2)

2
C

(p−2)
ia2···ap−2

Hap−1apy + (p − 1)C
(p−2)
a2···ap−1

Hapyi

Inserting this in equation (3.23), one finds that there must be the following new terms:

Tp+1

2!

∫

dp+1xdy ǫa0a1···apap+1 Ha0a1

a,i

(

1

2!(p−2)!
F

(p−1)
ia2···ap−1

Bapap+1
+

1

(p−1)!
F

(p−1)
a3···ap+1

Bia2

− 1

3!(p − 3)!
C

(p−2)
a2···ap−2iHap−1apap+1

+
1

2!(p − 2)!
C

(p−2)
a2···ap−1

Hapap+1i

)

,a

(3.28)

Consider the following identities:

1

p!
(B ∧ F (p−1))ia2···ap+1

=
1

(p − 1)!
Bia2

F
(p−1)
a3···ap+1

− 1

2!(p − 2)!
Ba3a2

F
(p−2)
ia4···ap+1

(3.29)

1

p!
(H ∧ C(p−2))ia2···ap+1

=
1

2!(p − 1)!
Hia2a3

C
(p−2)
a4···ap+1

− 1

3!(p − 3)!
Ha2a3a4

C
(p−2)
ia5···ap+1

The sum of the above terms gives exactly the terms in the bracket in (3.28). Hence the

new terms (3.28) are given by the coupling in the first term of (1.5) in which the RR field

strength is given by (1.6).

Now consider T-duality of the couplings in the first line of (1.5) along a world volume

direction. From the contraction with the world volume form, one of the indices a0, a1 of

the NSNS field strength must include y. Note that the RR field has no y index in the

nonlinear T-duality transformation (3.19). The T-duality on the B-field is the same as in

the previous section, so the couplings transform under the T-duality (3.19) to the following

couplings for Dp−1-brane:

2
Tp−1

(p − 1)!

∫

dpx ǫa1···ap

(

F̃
(p)
ia2···ap,aRa

a1

iy − 1

p
F̃

(p)
a1···ap,iR̂iy

)

(3.30)

The transformation of the RR field strengths are given by (3.27) and (3.24). However,

the y coordinate is now a transverse coordinate, so unlike the previous case the new terms

inspired by the above couplings can not be written as B ∧F + H ∧C. This indicates that

there must be some other contributions as well. The other contributions are coming from

the T-duality transformation of the couplings in the second line of (1.5) along a transverse
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direction. The transformation of these terms under (3.19) gives the following couplings for

Dp+1-brane:

2
Tp+1

p!

∫

dpxdy ǫa0···apy

(

1

2!
F̃

(p+2)
ia1···apj,aRa

a0

ij − 1

p + 1
F̃

(p+2)
a0···apj,iR̂ij

)

(3.31)

The new couplings inspired by the couplings (3.30) and (3.31) should be given by the

couplings in the second line of (1.5) in which the RR field strength is (1.6).

Similarly, the T-duality of the couplings in the second line of (1.5) along a world volume

direction is given by the following coupling for Dp−1-brane:

Tp−1

∫

dpx ǫa1···ap

(

1

2!p!
F̃

(p+2)
ia1···apj,aH

iyj,a

)

(3.32)

and the T-duality of the coupling in the last line of (1.5) along a transverse direction is

given by the following coupling for Dp+1-brane:

Tp+1

∫

dp+1xdy ǫa0···apy

(

1

3!(p + 1)!
F̃

(p+4)
ia0···apjk,aH

ikj,a

)

(3.33)

The new couplings inspired by the couplings (3.32) and (3.33) should be given by the

couplings in the last line of (1.5) in which the RR field strength is (1.6). Let us check this

case explicitly.

Shifting p → p + 1 in (3.32), one can write this equation as

Tp

∫

dp+1x ǫa0···ap

(

1

2!(p + 1)!
F̃

(p+3)
ia0···apj,aH

iyj,a

)

(3.34)

The transformation of the RR field strength F̃
(p+3)
ia0···apj under (3.19) is

F̃
(p+3)
ia0···apj = 2C̃

(p+2)
a0···apj,i − (p + 1)C̃

(p+2)
ia1···apj,a0

= 2F
(p+2)
ia0···ap

Bjy − (p + 1)F
(p+2)
ia0···ap−1jBapy (3.35)

−2(p + 1)C
(p+1)
a0···ap−1jHapyi + C

(p+1)
a0···ap

Hjyi +
p(p + 1)

2
C

(p+1)
a0···ap−2ijHapyap−1

Inserting this in equation (3.34), one finds that there should be the following new terms:

Tp

∫

dp+1x ǫa0···ap

([

1

2!(p + 1)!
F

(p+2)
ia0···ap

Bjk −
1

2!p!
F

(p+2)
ia0···ap−1jBapk (3.36)

− 1

2!p!
C

(p+1)
a0···ap−1jHapki +

1

3!(p+1)!
C

(p+1)
a0···ap

Hjki +
1

2!2!(p−1)!
C

(p+1)
a0···ap−2ijHap−1apk

]

,a

H ikj,a

)

Checking the indices, one realizes that the above terms are not given by the last term of

(1.5) in which F is replaced by (1.6). Now shifting p → p − 1 in equation (3.33), one can

write it as

Tp

∫

dpxdy ǫa0···ap−1y

(

1

3!(p)!
F̃

(p+3)
ia0···ap−1jk,aH

ikj,a

)

(3.37)
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The transformation of the RR field strength F̃
(p+3)
ia0···ap−1jk under (3.19) is

F̃
(p+3)
ia0···ap−1jk = 3C̃

(p+2)
a0···ap−1jk,i − pC̃

(p+2)
ia1···ap−1jk,a0

= 3F
(p+2)
ia0···ap−1jBky + pF

(p+2)
ia0···ap−2jkBap−1y

+3pC
(p+1)
a0···ap−2jkHap−1yi + 3C

(p+1)
a0···ap−1jHkyi +

p(p − 1)

2
C

(p+1)
ia1···ap−3a0jkHap−2ap−1y

Inserting this in equation (3.37), one finds that the first , third and fourth terms above are

reproduced by the new couplings (3.36) when one chooses ap = y in (3.36). The other two

terms led us to guess that there should be the following new terms:

Tp

∫

dp+1x ǫa0···ap

([

1

2!3!(p − 1)!
F

(p+2)
ia0···ap−2jkBap−1ap

(3.38)

− 1

3!3!(p − 2)!
C

(p+1)
a0···ap−3ijkHap−2ap−1ap

]

,a

H ikj,a

)

One can easily check that the new couplings (3.36) and (3.38) are reproduced by the last

term in (1.5) in which the RR field strength is given by B ∧ F (p+2) + H ∧ C(p+1).

Now consider the new couplings in (1.5) which have one RR and two NSNS states.

If one implements the T-duality on these terms and use the nonlinear T-duality transfor-

mations (3.19), one should find new terms which are given by (1.5) in which the RR field

strength is given by the terms in the second line of (1.6). Let us check this for the second

term in (1.5) which is simple to analyze. Implementing the T-duality along a transverse

direction, one finds the following couplings for Dp+1-brane:

−Tp+1

2

∫

dp+1xdy ǫa0···apy(Ha0a
i,a − Ha0j

i,j) (3.39)

×
(

1

2!(p − 2)!
Ba1a2

F̃
(p−2)
a3···ap

+
1

3!(p − 4)!
Ha1a2a3

C
(p−4)
a4···ap−1

Bapy

)

,i

where the T-duality of the RR field strength is given in (3.24). Inspired by the above

equation, one guesses that there must be the following couplings:

−Tp+1

2

∫

dp+1xdy ǫa0···apy(Ha0a
i,a − Ha0j

i,j)

(

1

2!2!2!(p − 3)!
Ba1a2

F
(p−3)
a3···ap−1

Bapap+1

+
1

2!2!3!(p − 4)!
Ba1a2

C
(p−4)
a4···ap−1

Hapap+1a3
+

1

2!2!3!(p − 4)!
Ha1a2a3

C
(p−4)
a4···ap−1

Bapap+1

)

,i

Shifting p+1 → p, one finds that the above couplings are exactly given by the second term

in (1.5) in which the RR field strength is given by the second line of (1.6). This ends our

illustration of the consistency between the couplings (1.5) and the T-duality.

We have seen that the consistency with a particular term of the nonlinear T-duality

guides us to write the RR field strength in (1.5) as F = dC. The resulting couplings

however are consistent with all nonlinear terms of the RR potential. In fact the nonlinear

T-duality transformation (3.1) for the RR potential can be written as [22]

C̃(n)
µ···ναy = C(n−1)

µ···να , C̃(n)
µ···ναβ = C(n+1)

µ···ναβy (3.40)
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The calculations in section 3.1 then show that the couplings (1.5) with the RR field strength

F = dC are consistent with the full nonlinear T-duality transformation for the RR field. It

would be interesting to confirm the couplings of one RR and two NSNS fields in (1.5) by

the disk level scattering amplitude.
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