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Abstract: In this paper, the optimization of compression helical springs is investigated. The design process 
involves determining wire material, end type of the spring and wire diameter. In this regards, important design 
constraints are taken into account. The objective is to minimize the figure of merit, which shows the relative 
cost of spring. Two heuristic algorithms, namely simulated annealing and ant colony optimization, are 
employed to optimize the spring. The results obtained by these methods are compared with each other, and 
with the exact solution of the problem. 
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1   Introduction 
The optimization of structures and mechanical 
systems has been investigated during last decades. 
Optimization techniques can be applied to various 
types of problems such as finding the optimum 
frequency and modal responses of dynamical 
systems [1], minimal weight stress [2], cost, volume 
or any other mechanical and structural objectives. 
They can be employed when the objective function 
is stated in closed form, that is, there are linear or 
nonlinear relationships between the design variables. 
Since there are several local optima in these 
functions, the optimization technique should be 
capable of escaping from local maxima or minima 
and finding the global optimum. The common 
classical methods of optimization usually fail to find 
the global optimum, therefore; the heuristic methods 
have been considered and improved during the past 
three decades. The heuristic algorithms, such as 
Genetic Algorithm (GA), Simulated Annealing (SA) 
and Ant Colony Optimization (ACO) are inspired by 
natural systems in physics and biology. They can 
process functions with any degrees of nonlinearities 
and discontinuities. They can also deal with discrete, 
continuous and mixed variables.  
 Simulated annealing (SA) was first proposed by 
Metropolis et al. [3]. Based on the physical process 
of annealing, a succession of options is assumed to 
decrease their configuration energy by decreasing 
temperature, and form a low energy crystal. 
 Since its proposal, many attempts have been made 
to improve SA algorithm, and to apply it on various 

types of problems. Szu and Hartley [4] proposed the 
fast simulated annealing (FSA), which uses a 
Cauchy probability density to provide a random 
process and permits large steps rather than the 
Gaussian probability used by the canonical 
simulated annealing (CSA). This method provides 
an inverse linear cooling rate rather than the inverse 
logarithmic cooling rate. On the other hand, the SA 
algorithm proposed by Kiselyov et al. [5] focuses on 
the improvement of the quality of the solution rather 
than the reduction of the annealing time.  
 One of the first attempts to employ the simulated 
annealing algorithm in structural engineering 
problems performed in the late 1980s. Using 
discrete design parameters, Elperin [6] described the 
main ideas of Monte Carlo annealing algorithms for 
structural optimization. Later, Topping et al. [7] 
developed a search strategy by using the SA method 
for the optimization of planar truss structures with 
discrete and continuous variables. 
 Optimization using Ant Colony Optimization is 
relatively new. In the field of structural 
optimization, a few optimization works have been 
reported;  mostly on simplified models. Camp et al. 
[8] studied the application of ACO for designing 
steel frames. Christodoulou [9] presented the 
optimal truss design using ACO. From few reported 
works it seems ACO is a challenging area and 
research on ACO is still on its early stages. 
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2   Problem Formulation 
Helical Springs are among the most common 
flexible parts in mechanisms and machineries. They 
are widely employed in various machines to absorb 
shocks and to bring flexibility to the structure. They 
are also used to store potential energy of strain for 
releasing at a later time.  
 In this paper, the optimal design of a helical 
compression spring for static load service is 
investigated. The helical spring is expected to have 
certain displacement (compression) in response to a 
specified force. The compressed and free lengths 
should also be within a pre-specified range.  
In order to design the spring, the design procedure 
presented by Shigley et al. [10] is employed. The 
design variables are as follows: 
• Wire material: Six types of materials are 
proposed for the spring wire in [10] including music 
wire A228, hard-drawn wire A227, chrome-
vanadium wire A232, chrome-silicon wire A401, 
stainless steel wire A313 and phosphor-bronze wire 
B159. 
• End conditions: Four end types are available for 
helical springs: plain end, plain and ground end, 
squared end, squared and ground end. 
• Wire diameter (d): Generally, it is set between 
0.004 to 0.5 inches. However, there are some size 
limitations which depend on the wire material [10]. 
Other design parameters considered in this research 
include spring coefficient (K), spring index (C), 
number of active turns ( ), free length of the 
spring ( ) and safety factor (SF). In our 
computations, the range of these parameters is set as 
follows:  
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 Where ξ  is the fractional overrun to closure and 
to achieve linear behavior of the spring, it is 
assumed that 15.0=ξ [10]. The objective is to 
design a spring with the highest figure of merit 
(fom) given by: 
 

4/)costmaterialrelative( 22 DNdfom tγπ=    (2) 
 

where d and D denote wire and coil diameters 
respectively, γ  is the density of spring material and 

 is the number of helices. This function is the 
representative of relative cost, and is used as the 
objective function for optimization. 
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3   Simulated Annealing (SA) 
Simulated annealing is a powerful search technique 
for optimization of large scale problems, especially 
ones with global optimum hidden among many local 
optima [2, 11]. 
 This method is based on the concept of 
metallurgical annealing of solids and metals. In 
annealing process, a molten metal with high 
temperature is slowly cooled until thermal mobility 
molecules can move about freely, and then a cooling 
process is performed until solidification. If the 
cooling is slow enough a perfect crystal is formed in 
which all the atoms are arranged in a low level 
lattice, and so the crystal reaches the minimum 
energy. As the metal cools, atoms may align in 
different directions. In this case, the whole regions 
of atoms should be reversed to escape this state of 
local optimum. The required energy is available as 
heat in the metal, and it depends on the current 
temperature of the system, given by the Boltzmann 
distribution. As the temperature is decreased, great 
changes become more difficult for the system. When 
the temperature approaches zero, movements 
become impossible and the state of the atoms is 
frozen. In this way, for the slowly cooled system, 
the atoms are arranged in a low energy state and 
produce a pure crystal. However, if the cooling 
process is performed too quickly, a polycrystalline 
or metastable amorphous is formed with higher 
energy state. 
 In simulated annealing optimization technique, the 
probability function is based on the Boltzmann 
distribution as follows:  
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 In the above equation, Z(T) is the normalization 
factor,  is the Boltzmann constant,  denotes 
the system energy in a configuration q at time t, and 

 shows the energy in a new randomly generated 
configuration r at time t+1.   

bk qE

rE

If 0<− qr EE , then the configuration r is accepted 
as the next configuration at time t+1. Otherwise, the 
acceptance of this new configuration is decided by 
the probability function. That is to say, the system 
state may be at a higher energy state with a certain 
probability. This acceptance rule for next 
configurations is referred to as the Metropolis 
Criterion. Simulated Annealing algorithm requires 
the following data: 
• A definition of possible configurations, which 
represents the solution space. 
• An objective function for minimization. 
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• A control parameter representing the temperature; 
and a cooling schedule that shows the rate of 
cooling. 
• A generator of random changes of the system 
configuration that models the movement of system 
towards the lower energy state. 
Generally, the SA algorithm can be stated as 
follows: 
 

0TT = ; 
while ( ) freezingTT >

 do until (Equilibrium is reached) 
  Alternation (State i to State j); 
if ( ) then 0<Δ ijE
   accept update (State j); 
  else 
   r=random number [0, 1]; 
   if ( ) then rTEij >Δ− )/exp(
    accept update (State j); 
   else 
    refuse update (State i); 

fnn TTT *= ; 
 

 In the above  is the temperature reduction rate 
dependent on the time or number of iterations, n, 
and is given by: 
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 The algorithm consists of two main loops. The 
external loop controls the rate of temperature 
reduction. The internal loop provides the uphill 
movement possibilities. For the presented research 
the SA method is executed as the following: 
First, the initial temperature ( ), the final 
temperature ( ), the coefficient of temperature 
decrease (k), and the total number of configurations 
(N) are set. Then, a set of feasible design variables 
( ) is selected and the internal loop starts with the 
creation of a new set of the design variables . The 
corresponding value of the objective function  
is computed. If the constraints are fulfilled, the 
penalty function is set to zero; otherwise it is 
given sufficiently high value to force discarding the 
generated configuration. The function is then 
evaluated as the sum of  and . The 
difference 
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 is computed. The configuration is accepted, 

if it satisfies the acceptance criterion; otherwise it is 
discarded. The acceptance condition is given by:  
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 In the first case the number of the accepted 
configurations n is updated and the internal loop is 
repeated until n equals N. Then, on the external 
loop, the temperature T is decreased and the 
procedure is repeated with the updated temperature. 
The external loop ends when  is satisfied. fTT =

 
4   Ant Colony Optimization (ACO) 
First proposed by Dorigo et al. [12], this algorithm is 
based on the nature of ants finding their paths by 
pheromone deposition. Ants usually prefer the path 
with more pheromone trail on it. Such a path is 
passed by more ants. In this way, the shorter paths 
are more desirable and have stronger pheromone 
trail, because it takes shorter time to march. 
Therefore, these paths are more frequently visited by 
ants. These behaviors are simulated by three rules in 
ACO, which can be best applied on TSP problem 
where it deals with finding the shortest tour. 
Regarding the nature of problem presented here, the 
definition of rules is to some extent different than 
those used in TSP-based formulation. 
 Regarding the new formulation, the design 
variables are presented by i and their divided search 
domains are shown by j. The sections of total 
solution are chosen in a constructive approach 
named as “state transition rule”:  
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 Where ),( jiτ  shows the amount of pheromone 
related to the jth element of variable i, and ),( jiη  is 
the heuristic function defined according to the 
problem. In this rule, q is a random number, and  
is a parameter set by the user (

0q
1,0 0 ≤≤ qq ). If 

, the next step is selected according to 
proportional distribution of probability function, like 
the roulette wheels, as follows: 
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 An important factor in this process is the amount 
of which defines the range of randomness and 
determination of state transition rule. It is clear that 
the higher amounts of  directs the algorithm 
towards deterministic decisions, while the lower 
amounts of it generates more randomness. 

0q

0q
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To avoid stagnation of the algorithm and similar to 
evaporation of pheromone in real world, the amount 
of pheromone level is changed after finishing each 
evaluation by applying “the local updating rule”: 
 

),(.),().1(),( jijiji τρτρτ Δ+−=         (8) 
 

 In this equation, ρ  denotes the local evaporation 
coefficient. According to Dorigo [12], the best 
performance is obtained where 0),( ττ =Δ ji . 
 The third rule known as “the global updating rule” 
acts as a positive feedback and accumulates more 
pheromone around the best solution obtained so far: 
 

τατατ Δ+−= .),().1(),( jiji           (9) 
 

Where 

f
1

=Δτ                (10) 

and α  is the global evaporation coefficient. The 
parameter f is the amount of objective function 
which is the value of fom here. 
 This process of next step evaluation and updating 
is repeated until the termination condition, which is 
usually the maximum number of cycles, is satisfied.  
 
5   Numerical Results 
The problem described in section 2 is solved with 
the help of ACO and SA algorithms. For illustrative 
purpose, we consider a helical spring which is 
expected to have 2 inches compression in response 
to 20 lb force. The compressed and free lengths 
should be less than 1 inch and 4 inches, respectively. 
 The computational results are presented in Table 1. 
The global optimum is also obtained by direct 
enumeration to be the criterion for the efficiency of 
the algorithms. 
 It should be noted that the percentage of feasible 
solutions in this problem is much limited due to 
several constraint defined based on mechanical and 
manufacturing considerations. Therefore, the 
optimization algorithm should be powerful enough 
to direct the solution toward optimum and also 
feasible regions. 
Regarding SA and its nature of the randomness, it is 
not able to jump over unfeasible zones and so the 
results are satisfactory only to some extent. 

Concerning ACO, as it is equipped with the 
pheromone data communication, the algorithm 
performs effectively in achieving much higher ratio 
of feasible solutions to total trials. It is also able to 
find the global optimum which validates the 
application of ACO in this type of problems. 
 In this procedure, the ACO employs 5 ants in 1000 
iterations which are 5000 evaluations in total. The 
parameter setting, which is of great importance in 
ACO, is performed considering the nature of 
problem. As explained earlier, the feasible zone is 
strictly limited so the biased randomness should be 
intensified in order to provide more efficient 
searching of solution space. To this end, 5.00 =q  is 
applied that gives equal chance to deterministic and 
probabilistic rules. The decay parameters ρ and 
α are both set to 0.1, which is a common strategy in 
ACO applications. No heuristic function is used 
here, since defining them particularly in mechanical 
and structural problems is very intricate. Therefore, 
the algorithm relies on its pheromone mechanism 
and also the feedback by objective function 
evaluation and its effect on the amount of 
pheromone embedded in the global updating rule. 
 
6   Conclusion 
The problem of optimizing helical compression 
springs for minimum figure of merit (a cost index) 
was investigated. The design variables were the 
spring wire diameter, wire material and spring end 
condition. Simulated annealing and ant colony 
optimization were the two methods described and 
employed for the optimization process. The 
computational results were compared with the 
global optimum obtained by direct enumeration. 
Against the common definition of operators in ACO 
in problems like TSP, a modified pheromone 
communication was proposed. It was shown that, the 
results obtained by inserting these modifications in 
ACO method were of better quality in comparison to 
the SA. In summary, ACO performs better than SA 
in terms of solution quality as it reached the global 
optimum but SA failed to achieve it. 
 

 
Table1. Optimization results for the helical compression spring  

Optimization 
method 

Best 
fom 

Best wire diameter 
(in) Best material Best end 

condition 
SA 0.3394 0.182 Phosphor-bronze B159 Plain 

ACO 0.2254 0.097 Hard-drawn A227 Plain 

Optimum Solution 0.2254 0.097 Hard-drawn A227 Plain 
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