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Abstract

A group G is called capable if it is the group of inner automor-

phisms of some group E. Capable pairs are defined in terms of a rel-

ative central extension. In this paper we introduce the precise center

for a pair of groups and prove that this subgroup makes a criterion for

characterizing the capability of the pair. We also show that our result

sharpens the obtained result in this area. A complete classification of

finitely generated abelian capable pairs will also be given.
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1. Introduction and motivation

Following M. Hall and J. K. Senior [5], a group G is called capable if it

is the group of inner automorphisms of some group or equivalently if there

exists a group E with E/Z(E) ∼= G. The study of capable groups was started

by R. Baer [1], who determined all capable abelian groups. P. Hall remarked

in [6] that characterization of capable groups are important in classifying

groups of prime power order. In 1979, F. R. Beyl, U. Felgner and P. Schmid

[2] studied capable groups by focusing on a characteristic subgroup Z∗(G)

which is called the precise center of G. They actually proved that the trivi-

ality of the precise center is a criterion for capability of the group itself.

The theory of capability of groups may be extended to the theory of pairs

of groups. In fact capable pairs are defined in terms of J. -L. Loday’s notion

[7] of a relative central extension. By a pair of groups we mean a group G

and a normal subgroup N and this is denoted by (G,N). Let M be another

group on which an action of G is given. The G-commutator subgroup of M

is defined by the subgroup [M,G] of M generated by all the G-commutators

[m, g] = mgm−1,

in which g ∈ G, m ∈ M and mg is the action of g on m. Also we define the

G-center of M to be the subgroup

Z(M,G) = {m ∈M |mg = m, ∀g ∈ G}.

For introducing the capable pair, we need to define a relative central ex-

tension as follows:

Definition 1.1. Let (G,N) be a pair of groups. A relative central extension

of the pair (G,N) consists of a group homomorphism σ : M → G, together
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with an action of G on M such that

(i) σ(M) = N ,

(ii) σ(mg) = g−1σ(m)g, for all g ∈ G, m ∈M ,

(iii) m′σ(m) = m−1m′m, for all m,m′ ∈M ,

(iv) Ker(σ) ⊆ Z(M,G).

We shall say that the pair (G,N) is capable if it admits such a relative

central extension with Kerσ = Z(M,G).

Note that Z(M,G) is a central subgroup of M and therefore, if N is equal

to G, then the relative central extension σ : M → G gives the following

central extension of G

1 → kerσ →M → G→ 1.

Now, it is obvious that a group G is capable precisely when the pair (G,G)

is capable.

One of the interesting results of Beyl et al.’s type [2] for the capability

of pairs of groups was proved by G. Ellis [4] in 1996. He actually introduced

the exterior G-center of N for a pair of groups (G,N), and proved that the

pair (G,N) is capable if and only if the exterior G-center of N is the triv-

ial group. Using this, he could generalize R. Baer’s [1] characterization of

finitely generated capable abelian groups to capable pairs (G,N) of finitely

generated abelian groups. His method is also based on the tensor product

and exterior product of groups.

This paper is organized as follows. In the next section we give some more

properties of capable pairs of groups of Beyl et al.’s type [2]. A description

of the exterior G-center of N , in terms of a free presentation of G, is given
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in Section 3. In Section 4, we introduce a central subgroup Z∗(G,N) of G,

for a pair of groups (G,N), and we shall call it the precise center of the pair

(G,N) throughout the article. We go on to show that the precise center of

a pair (G,N) provides a criterion for recognizing the capability of the pair

and also it is a subgroup contained in the exterior G-center of N . This shows

that the precise center is a smaller and more suitable subgroup of G, with

respect to the exterior G-center of N , for characterizing the capability of the

pair (G,N). Therefore the attained result sharpens the one obtained by G.

Ellis (See [4, Theorem 3]) and the important point is the easier technique

applied to attain the conclusion. Finally in Section 5, we turn our attention

to determining the capability of a pair of finitely generated abelian groups,

and give a complete classification of finitely generated abelian capable pairs.

2. Some results of Beyl et al.’s type

In what follows, we present some properties of a capable pair of groups.

Theorem 2.1. Let (G,N) be a pair of groups and {Ki}i∈I be a family of

normal subgroups of N . If the pair of groups ( G
Ki
, N

Ki
) is capable for all i ∈ I,

then ( G⋂
i∈I

Ki
, N⋂

i∈I
Ki

) is capable.

Proof. Suppose that for each i ∈ I, δi : Ei → G/Ki, together with an action

of G/Ki on Ei, is a relative central extension of the pair ( G
Ki
, N

Ki
) such that

δi(Ei) = N/Ki and kerδi = Z(Ei,
G
Ki

). Put

H = {{ei}i∈I ∈
∏
i∈I

Ei|∃g ∈ G; δi(ei) = gKi}

and K =
⋂

i∈I Ki, where
∏

i∈I Ei denotes the cartesian product of the groups

Ei. It is readily verified that δ : H → G/K defined by δ({ei}i∈I) = gK
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is a relative central extension of the pair ( G⋂
i∈I

Ki
, N⋂

i∈I
Ki

) and that kerδ =

Z(H, G
K

). So the result follows. 2

Theorem 2.2. If (G,N) is capable and G/G′ is of finite exponent, then the

exponent of Z(G) ∩N divides that of G/G′.

Proof. By the assumption, there is a relative central extension ϕ : M → G

with kerϕ = Z(M,G). Thus for every x ∈ N there exist tx ∈ M such that

ϕ(tx) = x. Now consider the map γ : Z(G) ∩ N × G −→ Z(M,G) with

γ((x, g)) = [tx, g], for x ∈ Z(G) ∩ N and g ∈ G. One can easily verify that

the map γ is well defined and since Z(M,G) ≤ Z(M) and kerϕ = Z(M,G),

then γ is left linear. On the other hand, for all g1, g2 ∈ G and x ∈ Z(G)∩N
we have

[tx, g1g2] = tx
−1tx

g1g2 = tx
−1tx

g2 [tx, g1]
g2 = [tx, g1][tx, g2].

This proves that γ is right linear and therefore γ is a bilinear map. Also the

equality [tx, g] = 1, for all g ∈ G, implies that tx ∈ Z(M,G) and this shows

that the left kernel of γ is trivial. The right kernel of γ also must contain

G
′
= [G,G]. So if G/G

′
is of exponent n, then γ(xn, g) = γ(x, gn) = 1, for

all x ∈ Z(G) ∩ N and g ∈ G. It follows that xn = 1, for all x ∈ Z(G) ∩ N
and this completes the proof. 2

Using Theorem 2.2, we obtain the following corollary which states a nec-

essary condition for the capability of the pair (G,N), when G is a perfect

group.

Corollary 2.3. If G is a perfect group, then the capability of the pair (G,N)

implies that Z(G) ∩N = 1.
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3. The exterior G-center subgroup and free presentation

In order to study the capability of a pair of groups (G,N), G. Ellis [4]

introduced a subgroup Z∧
G(N) with the property that the pair is capable if

and only if Z∧
G(N) = 1. But to define this subgroup, we need to recall the

definition of exterior product from [3] as follows.

Definition 3.1. Let N and P be arbitrary normal subgroups of G. The

exterior product P ∧ N is the group generated by symbols p ∧ n for p ∈ P ,

n ∈ N subject to the relations

pp′ ∧ n = (p′p ∧ np)(p ∧ n),

p ∧ nn′ = (p ∧ n)(pn ∧ n′n),

x ∧ x = 1,

for x ∈ P ∩N , n, n′ ∈ N , p, p′ ∈ P .

Now for a group G and normal subgroups N and P , the exterior P -center

of N is denoted by Z∧
P (N), and is defined to be

{n ∈ N |1 = p ∧ n ∈ P ∧N, for all p ∈ P},

(see [4]). Clearly Z∧
P (N) is a central subgroup of N , if P contains N . As

G. Ellis proved in [4], the pair (G,N) is capable if and only if Z∧
G(N) = 1.

Therefore determining the structure of exterior G-center of N is useful for

studying the capability of a pair (G,N). In what follows we intend to de-

scribe the exterior G-center of N , Z∧
G(N), in terms of a free presentation for

G. The description has some interesting applications which are stated in the

last section of the paper. To prove the main purpose of the section, we need

the following lemma which gives a considerable isomorphism. But first note

that for a group G with a free presentation G ∼= F/R and a normal subgroup

N � G with N ∼= S/R, we consider the action of G on S/[R,F ], defined by

(s[R,F ])g := sf [R,F ], such that g = π(f), for f ∈ F, s ∈ S and g ∈ G,
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where π is the natural epimorphism from F to G.

Lemma 3.2. Let F/R be a free presentation of G and N�G with N = S/R.

Then

N ∧G ∼= [
S

[R,F ]
, G].

Proof. Put F̄ = F/[R,F ] and S̄ = S/[R,F ]. It is easy to see that [S̄, G] =

[S̄, F̄ ] = [S, F ]/[R,F ]. On the other hand, by a theorem of A. S. -T. Lue [8]

there exists the epimorphism

ϕ : N ∧G → [S, F ]/[R,F ].

sR ∧ fR 7→ [s, f ][R,F ]

It remains to prove that ϕ is an isomorphism. Using the universal property of

free groups and tensor products, we obtain an isomorphism θ : [F, F ] → F∧F
with θ([x, y]) = x ∧ y, for x, y ∈ F . Then the restriction of θ to [S, F ] is

the homomorphism θ|[S,F ] : [S, F ] → S ∧ F . Now considering the natural

epimorphism S ∧ F → N ∧G, we obtain the homomorphism

ψ : [S, F ] → N ∧G,

[s, f ] 7→ sR ∧ fR

whose kernel contains [R,F ]. Hence ψ̄ : [S, F ]/[R,F ] → N ∧ G is a homo-

morphism such that ψ̄ ◦ϕ = 1 and ϕ ◦ ψ̄ = 1, and the proof is completed. 2

Let G, N , F , R and S be the above groups and the action of G on

S/[R,F ] be considered as in Lemma 3.2. Define the group homomorphism

σ :
S

[R,F ]
→ G,

s[R,F ] 7→ π(s)
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where π is the natural epimorphism from F to G. It is straightforward to

check that σ is a relative central extension. Now using this, a description of

the exterior G-center of N , in terms of the given free presentation of G, is

presented.

Theorem 3.3. Considering the above notation and assumption, we have

Z∧
G(N) = σ(Z(

S

[R,F ]
, G)).

Proof. Lemma 3.2 implies that [s̄, f̄ ] = 1 if and only if π(s) ∧ g = 1, for all

s ∈ S, f ∈ F and g ∈ G with π(f) = g (Note that for x ∈ F , x̄ denotes the

image of x in F/[R,F ]). Hence

σ(Z(
S

[R,F ]
, G)) = {σ(s̄)| [s̄, g] = 1, for all g ∈ G}

= {σ(s̄)| [s̄, f ] = 1, for all f ∈ F}

= {π(s)| π(s) ∧ g = 1, for all g ∈ G}

= Z∧
G(N).

2

4. The precise center of a pair of groups

In this section, we introduce a central subgroup Z∗(G,N) of G for a pair

(G,N), which is as useful and important as Z∧
G(N). It is also shown that the

subgroup Z∗(G,N) is actually a subgroup of Z∧
G(N) with the property that

(G,N) is capable if and only if Z∗(G,N) = 1.

Definition 4.1. Let G be a group and N � G. Then the precise center of

the pair (G,N) is denoted by Z∗(G,N) and is defined to be⋂
{ψ(Z(M,G)) | ψ : M → G is a relative central extention}.
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One may see that if N = G, then Z∗(G,G) is exactly Z∗(G) defined in [2].

Theorem 4.2. If G is a group with a normal subgroup N , then ( G
Z∗(G,N)

, N
Z∗(G,N)

)

is capable.

Proof. Let ϕ : M → G be a relative central extension of the pair (G,N)

and π : G → G/ϕ(Z(M,G)) be the natural epimorphism. Put ψ = πoϕ. It

is straightforward to check that ψ is a relative central extension of the pair

( G
ϕ(Z(M,G))

, N
ϕ(Z(M,G))

) such that kerψ = Z(M, G
ϕ(Z(M,G))

). It follows that the

pair ( G
ϕ(Z(M,G))

, N
ϕ(Z(M,G))

) is capable. So the result follows from Theorem 2.1.

2

Now the criterion for capability of a pair of groups is an immediate con-

sequence of Theorem 4.2 as follows.

Corollary 4.3. A pair (G,N) of groups is capable if and only if Z∗(G,N) =

1.

Another useful and interesting property of the precise center is given in

the next theorem.

Theorem 4.4. Let (G,N) be a pair of groups. Then Z∗(G,N) is the small-

est normal subgroup K of G such that ( G
K
, N

K
) is capable.

Proof. LetK be a normal subgroup ofG such that the pair ( G
K
, N

K
) is capable.

Then there exists a relative central extension ϕ : M → G
K

of ( G
K
, N

K
) with

kerϕ = Z(M, G
K

). Define H = {(m,x) ∈M×N |ϕ(m) = xK} with an action

of G on H defined by (m,x)g = (mgK , xg), for all g ∈ G, x ∈ N and m ∈M .

Note that mgK is the action of gK on m. Now considering ψ : H → G
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by ψ(m,x) = x, one can easily see that ψ is a relative central extension of

(G,N). So Z∗(G,N) ⊆ ψ(Z(H,G)). On the other hand, (m,x) ∈ Z(H,G)

implies that x ∈ K. Therefore Z∗(G,N) ⊆ K. 2

Invoking Theorem 3.3, one can observe that Z∗(G,N) ⊆ Z∧
G(N). This

point together with Corollary 4.3, show that the precise center of a pair

(G,N) is a smaller and more suitable subgroup for characterizing the capa-

bility of the pair with respect to the exterior G-center of N . This means

that Corollary 4.3 sharpens the criterion obtained by G. Ellis [4, Theorem

3], while in fact the method applied in this article is easier and also much

shorter than [4].

We now intend to determine a sufficient condition under which the precise

center of a pair (G,N) coincides with the exterior G-center of N . For this

aim, we should recall from G. Ellis [4] that all relative central extensions of

a pair (G,N) form a category and this category is denoted by RCE(G,N).

Let δ : M → G and δ′ : M ′ → G be two relative central extensions of a pair

(G,N). A morphism between these relative central extensions is a group

homomorphism ψ : M → M ′ satisfying δ′ ◦ ψ = δ and ψ(mg) = ψ(m)g, for

all g ∈ G and m ∈M . A universal object in this category is naturally called

a universal relative central extension. Now the above mentioned sufficient

condition is stated.

Theorem 4.5. Let (G,N) be a pair of groups and F/R be a free presentation

of G with N = S/R. If σ : S/[R,F ] → G (defined in the Section 3) is a

universal relative central extension, then

Z∗(G,N) = Z∧
G(N).

Proof. Let ϕ : M → G be an arbitrary relative central extension of
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(G,N). Since σ is universal, then there exists a group homomorphism

ψ : S/[R,F ] → M , such that ϕ ◦ ψ = σ and ψ(s̄g) = ψ(s̄)g, for all g ∈ G

and s̄ ∈ S/[R,F ]. Thus if s̄ ∈ Z(S/[R,F ], G), then ψ(s̄) ∈ Z(M,G). So

σ(s̄) = ϕ ◦ ψ(s̄) ∈ ϕ(Z(M,G)) and therefore σ(Z(S/[R,F ], G)) ≤ Z∗(G,N).

This implies that σ(Z(S/[R,F ], G)) = Z∗(G,N). Now the result is an im-

mediate consequence of Theorem 3.3. 2

The precise center of a pair of products of groups has the following prop-

erty.

Theorem 4.6. Let I be an ordered set and Gi be a group with Ni �Gi, for

all i ∈ I. Then

Z∗(
∏
i∈I

Gi,
∏
i∈I

Ni) ⊆
∏
i∈I

Z∗(Gi, Ni).

Proof. Let ψi : Mi → Gi be an arbitrary relative central extension of

(Gi, Ni), for all i ∈ I. Put G =
∏

i∈I Gi, N =
∏

i∈I Ni and M =
∏

i∈I Mi.

Define

Ψ : M → G.

{mi}i∈I 7→ {ψi(mi)}i∈I

It is easy to check that Ψ is a relative central extension of (G,N) and

Ψ(Z(M,G)) =
∏

i∈I ψi(Z(Mi, Gi)). Therefore Z∗(G,N) ≤ ∏
i∈I ψi(Z(Mi, Gi)).

Since ψ,
is are arbitrary, the result follows. 2

The above theorem has an immediate consequence for the capability of a

pair of products of groups.

Corollary 4.7. Let (Gi, Ni) be a capable pair of groups, for all i ∈ I. Then

(
∏

i∈I Gi,
∏

i∈I Ni) is capable.
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5. Finitely generated abelian group

In this section we present some interesting applications of Theorem 3.3

for finitely generated abelian groups. We give a necessary and sufficient con-

dition under which the pair (G,N) of finitely generated abelian groups is

capable. Another description of the exterior G-center subgroup Z∧
G(N), in

terms of the precise center Z∗(G), is also provided.

Now, first recall that if a group G is presented as a quotient of a free

group F by a normal subgroup R, then the Schur multiplier of G is defined

to be

M(G) =
R ∩ F ′

[R,F ]
.

To attain the mentioned results, we need the following lemma from [2].

Lemma 5.1. Let N be a central subgroup of G. Then N ⊆ Z∗(G) if and

only if the natural map M(G) →M(G/N) is monomorphism.

Theorem 5.2. Let (G,N) be a pair of groups and K ≤ N . Let F/R be a

free presentation of G with N = S/R and K = T/R. Then K ≤ Z∧
G(N) if

and only if [T, F ]/[R,F ] = 1.

Proof. Using Theorem 3.3, we have

K ≤ Z∧
G(N) ⇐⇒ σ(

T

[R,F ]
) ≤ σ(Z(

S

[R,F ]
, G))

⇐⇒ T

[R,F ]
≤ Z(

S

[R,F ]
, G)

⇐⇒ [
T

[R,F ]
, G] = 1
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⇐⇒ [
T

[R,F ]
,

F

[R,F ]
] = 1

⇐⇒ [T, F ]

[R,F ]
= 1.

2

Now Theorem 5.2 gives a relationship between the precise center Z∗(G)

and the exterior G-center subgroup Z∧
G(N) for an abelian group G as follows.

Corollary 5.3. Let G be an abelian group and N ≤ G. Then

Z∧
G(N) = N ∩ Z∗(G).

Proof. Let F/R be a free presentation of G and K ≤ N with K = T/R.

Then K ≤ Z∗(G) ∩N if and only if M(G) →M(G/K) is injective and this

is equivalent to the equality [T, F ]/[R,F ] = 1. Now the required assertion

follows from Theorem 5.2. 2

As an application of Corollary 5.3, we can establish a complete classifica-

tion of finitely generated abelian capable pairs.

Theorem 5.4. Let G be a finitely generated abelian group as follows:

G = 〈x1〉 ⊕ ...⊕ 〈xm〉 ⊕ 〈y1〉 ⊕ ...⊕ 〈yr〉,

where 〈xi〉 ∼= Z, for 1 ≤ i ≤ rm and |yi| = di for 1 ≤ i ≤ r, such that

di+1 | di. If N ≤ G such that N = 〈xα1
1 〉 ⊕ ... ⊕ 〈xαm

m 〉 ⊕ 〈yβ1
1 〉 ⊕ ... ⊕ 〈yβr

r 〉,
then (G,N) is capable if and only if

(i) m ≥ 2, or

(ii) m = 0, r ≥ 2 and d1 | [d2, β1],
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in which [d2, β1] means the least common multiple of d2 and β1.

Proof. It follows from [2, Proposition 7.3] that

Z∗(G) =


1 ;m ≥ 2,

〈xd1
1 〉 ;m = 1,

〈yd2
1 〉 ;m = 0.

Then, by Corollary 5.3, we have

Z∧
G(N) = Z∗(G) ∩N =


1 ;m ≥ 2,

〈x[d1,α1]
1 〉 ;m = 1,

〈y[d2,β1]
1 〉 ;m = 0.

The result now follows easily. 2
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