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 Abstract 

A new sliding mode control (SMC) design approach using measure theory and Lyapunov functional 
candidate is presented for nonlinear control problems. A Lyapunov function is supposed for designing 
a sliding surface (SS). In fact the problem that is considered is as follows. A state trajectory from a 
given initial point reaches into a given point on a sliding surface in the minimum time, and then tends 
to the origin (equilibrium point) along the sliding surface. A measure theory approach with 
embedding process is used to solve such a problem in two phases. In the first phase, after designing an 
appropriate SS by a suggested Lyapunove function, and using  measure theoty, an embedding is 
constructed to solve a time optimal control problem such that the system trajectory reaches a SS in 
minimum time, then in the second phase, using SS, a control is designed such that the system 
trajectory tends to the origin along the SS. A numerical example is presented to illustrate the 
effectiveness of the proposed method. 
 
Keywords  :  Sliding surface design, Lyapunov function, Time optimal control, Measure theory, 

Sliding mode control. 
 

1. Introduction  

  Variable structure control systems were first studied in Russia by Emel’yanov and Barbashin in the 
early 1960s [1, 2]. The pioneering work did not presented outside of Russia until the mid 1970s when 
a book by Itkis [1] and a survey paper by Utkin [2] were published in the West. 
  Designing sliding modes that guarantee the desired performances has been one of the major issues in 
control theory. The typical approach to sliding mode design is to handle the reduced order system 
through the nonsingular transformation to the regular form.  Also, in handling the reduced order 
system, many of the standard approaches to sliding mode control have been proposed, such neural 
network [3], fuzzy sliding control [4]. 
  This paper is organized as follows: Section 2 addresses the designing of a sliding surface. Section 3 
describes the functional space and measure theory used in this paper to solve a time-optimal control 
problem. In Section 4, a numerical example is given to illustrate the procedure and its validity. 
Finally, conclusion is presented in Section 5. 
 

2. Sliding surface design 

   Assume sliding surface be as 

ሻݔሺݏ ൌ ଶݔ ൅ ଶ݂ሺݔଵ, ,ଶݔ ሻݐ ൌ 0.                                                                                                           (2.1)  
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 The following theory shows the stability of dynamical system  
ሶଵݔ ൌ ଵ݂ሺݐ, ,ଵݔ ଶ ሻݔ ൅  ሻ                                                                                                               (2.2)ݐሺݑଵܤ
ሶଶݔ ൌ ଶ݂ሺݐ, ,ଵݔ  ଶ ሻ.                                                                                                                              (2.3)ݔ

with respect to the SS (2.1). 

Theorem 2.1. The dynamical system (2.2)-(2.3) is asymptotically stable if the sliding surface be as 
(2.1) and the system (2.2) satisfied in lim௧՜∞ ଵ݂൫ݐ, ,ଵݔ െ ଶ݂ሺݐ, ,ଵݔ ଶሻ൯ݔ ൌ 0. 

Proof. To show the stability of dynamical system (2.1) on sliding surface (2.1), one can define a 
suitable Lyapunov function ܸሺݔሻ from ܴ௡ to ܴ as: 

ܸሺݔଶሻ ൌ
ଵ

ଶ
 ଶ.                                                                                                                               (2.4)ݔଶ்ݔ 

Then, 

ሶܸ ሺݔଶሻ ൌ ଶሶݔଶ்ݔ ൌ ଶ்ݔ ଶ݂ሺݔଵ, ,ଶݔ  ,ሻݐ

now, associated with the SS (2.1) we have 

ሶܸ ሺݔଶሻ ൌ െ ଶ݂
்ሺݔଵ, ,ଶݔ  ሻݐ ଶ݂ሺݔଵ, ,ଶݔ ሻݐ ൏ 0. 

The above inequality and the condition lim௧՜∞ ଵ݂൫ݐ, ,ଵݔ െ ଶ݂ሺݐ, ,ଵݔ ଶሻ൯ݔ ൌ 0, gurantee the 
asymptotically stable of the system with respect to sliding surface (2.1).ז 

In the sequel, we select the SS as (2.1).  In the next section, we briefly describe the functional space 
that is used in our embedding method. 
 

3. Obtaining optimal time’s reaching 

  Consider the dynamical system (2.2)-(2.3) with boundary value conditions: 
ܺሺ0ሻ ൌ ܺ଴, ܺሺܶሻ ൌ ்ܺ,                                                                                                                      (3.1) 

where ݄ ൌ ቀ௙భ௙మቁ : ሾ0, ܶሿ ൈ ܣ ൈ ܷ ՜ Թ௡, ݐ ߳ ሺ0, ܶሻ ك Թ, ܺሺݐሻ ൌ ቀ௫భ௫మቁ ܣ ߳  ك Թ௡ and ݑሺݐሻ ߳ ܷ ك Թ௠.  

The operating regions ܣ and ܷ are compact sets such that ܺ଴, ்ܺ ߳ ܣ. It is desired to design the 
control ݑ  such that the system trajectory starting from the initial state ܺ଴ reaches to the final state ்ܺ. 
An optimal time control problem is presented as following: 

Minimize:   ܬ ൌ ׬ ݐ݀  
்
଴                                                                                                           (3.2) 

subject to:  
ሶଵݔ ൌ ଵ݂ሺݐ, ,ଵݔ ଶ ሻݔ ൅  ሻ                                                                                                               (3.3)ݐሺݑଵܤ
ሶଶݔ ൌ ଶ݂ሺݐ, ,ଵݔ  ଶ ሻ                                                                                                                               (3.4)ݔ

׬ ݐ݀ ሻݔሶ ሺݏ
்
଴ ൌ െݏሺ0ሻ                                                                                                                          (3.5) 
ܺሺ0ሻ ൌ ܺ଴, ܺሺܶሻ ൌ ்ܺ,                                                                                                                      (3.6)  
Indeed  the condition (3.5) is the described form of the  integral equation that force the system reaches 
the SS. The pair ݓ ൌ ൫ܺሺ·ሻ,  ሺ·ሻ൯ satisfying the conditions (3.3)-(3.6) is termed admissible. The set ofݑ
all admissible pairs, is denoted by ܹ. Now, one seeks to find an optimal pair 
כݓ ൌ ൫ܺכሺ·ሻ, ݓ defined in (3.2). Let ܬ  ሺ·ሻ൯ ߳ ܹ which gives the minimum value ofכݑ ൌ ൫ܺሺ·ሻ,  ሺ·ሻ൯ݑ
be an admissible pair and ܤ an open ball containing ܫ ൈ ܫ where ܣ ൌ ሾ 0, ܶ ሿ. Let ߔ א ܥ ′ሺ ܤ ሻ where  
ܥ ′ሺ ܤ ሻ denotes the space of real-valued continuously differentiable functions on ܤ.  Define the 

function  ߔ
௚

 as 

ߔ
௚
൫ ݐ, ܺሺ ݐ ሻ, ሻ൯ ݐ ሺݑ ൌ

ௗ

ௗ௧
,ݐ ൫ߔ  ܺሺݐሻ൯ ൌ ,ݐ ௫൫ߔ ܺሺݐሻ൯ ݄൫ ݐ, ܺሺ ݐ ሻ, ሻ൯ ݐ ሺݑ ൅ ,ݐ ௧൫ߔ ܺሺݐሻ൯,             (3.7)  

with ൫ ݐ, ܺሺ ݐ ሻ, ሻ൯ ݐ ሺݑ א Ω ൌ ܫ ൈ ܣ ൈ ܷ for all ܫ ߳ ݐ. The function ߔ
௚

 is in the space ܥሺΩሻ, the set of 
all continuous functions on the compact set Ω. For each admissible pair,   

׬ ߔ
௚
൫ ݐ, ܺሺ ݐ ሻ, ሻ൯ ݐ ሺݑ

்
଴ ݐ݀   ൌ ,ܶ ൫ߔ ܺሺܶሻ൯ െ ,൫ 0ߔ ܺሺ0ሻ൯ ൌ ߔ׊               ߔ∆ א ܥ ′ሺ ܤ ሻ.                (3.8) 
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Let ܦሺ ܫ଴ ሻ be the space of infinitely differentiable real-valued functions with a compact support in ܫ଴, 
where  ܫ଴ ൌ ሺ0, ܶሻ.  Define  

 
߰௝ ൫ ݐ, ܺሺ ݐ ሻ, ሻ൯ ݐ ሺݑ ൌ

ௗ

ௗ௧
൫ ߰ሺݐሻ ௝ܺሺݐሻ ൯                                                                                                      

                           ൌ ߰
′
ሺݐሻ  ௝ܺሺݐሻ ൅ ߰ሺݐሻ  ௝݄൫ ݐ, ܺሺ ݐ ሻ, ߰ ׊    ,ሻ൯ ݐ ሺݑ א ݆     ,଴ሻܫሺܦ ൌ 1, 2, . . . , ݊.

 (3.9)  

Then, if  ݓ ൌ ሺ ܺሺ·ሻ, ߰ ሺ·ሻ ሻ is an admissible pair, for everyݑ א   ଴ሻܫሺܦ

׬ ߰௝ ൫ ݐ, ܺሺ ݐ ሻ, ሻ൯ ݐ ሺݑ
்
଴ ݐ݀ ൌ 0, ݆ ൌ 1, 2, . . . , ݊.                                                                              (3.10) 

Let ܥଵሺΩሻ  be a subspace of the space ܥሺΩሻ of all bounded continuous functions on Ω depending only 
on the variable ݐ. Now, by selecting the function ݂ א  ;ଵሺΩሻ , we haveܥ

׬ ݂ ൫ ݐ, ܺሺ ݐ ሻ, ሻ൯ ݐ ሺݑ
்
଴ ݐ݀ ൌ ܽ௙         ൫ ݂ א   ଵሺΩሻ൯,                                                                          (3.11)ܥ

The set of equalities (3.8) excludes the special cases (3.10) and (3.11) and provides the properties of 
the admissible pairs in the classical formulation of optimal control problems.  In the following a 
transformation is developed to a non-classical problem to obtain enhanced properties in some aspects 
(see [5] for the details). 
For each admissible pair ݓ, there is a positive linear continuous functional ߉௪ on ܥሺΩሻ  such that 

:௪߉ ׬→ܨ ,ݐ ൫ܨ ,ሻ ݐ ሺݔ ூݐ݀ ሻ൯ ݐ ሺݑ ܨ )         א  .( ሺΩሻܥ

By the Riesz representation theorem (see [6]) there exists a unique positive Borel measure  ߤ on Ω 
such that 

׬ ,ݐ ൫ܨ ,ሻ ݐ ሺݔ ூݐ݀ ሻ൯ ݐ ሺݑ ൌ ׬ µ݀ ܨ
Ω

ؠ µ ሺ ܨ ሻ        ሺ ܨ א  ሺΩሻ ሻ.                                                 (3.12)ܥ
Thus, the optimal control problem (3.2)-(3.6) is equivalent to the minimization of 

ሺ µ ሻܬ ൌ ׬  ݀µ
Ω

ؠ µ ሺ 1 ሻ ߳ Թ                                                                                                          (3.13) 
over the set of measures µ,  associated with the admissible pair ݓ, which satisfy 
௚ ሻ ߔ ሺ ߤ ൌ ܥ ߳ ߔ         ߔ∆ ′ሺ ܤ ሻ  
൫ ߰௝ ൯ ߤ ൌ ଴ ሻ,       jܫ ሺܦ ߳ ߰             0 ൌ 1, 2, . . . , n                                                                           (3.14) 
ሶݏ ሺ ߤ  ሻ ൌ െݏሺ0ሻ  
ሺ ݂ ሻ ߤ ൌ ܽ௙              ݂ ߳ ܥଵሺ Ω ሻ. 
The set Ω ൌ ܫ ൈ ܣ ൈ ܷ  is covered with a grid, where the grid will be defined by taking all points in Ω 
as ݖ௝ ൌ ൫ݐ௝, ௝ܺ,  ௝൯. Instead of the infinite-dimensional linear programming problem (3.13)-(3.14), theݑ
following finite dimensional linear programming (LP) problem is considered where ݖ௝ ߳ ߱, in which 
߱ is an approximately dense subset of  Ω. 
The finite dimensional LP problem, which approximates the action of the infinite dimensional LP 
problem (3.13)-(3.14) for a sufficient large integer N is as follows, for more details see [5]. 
min  ∑  ௝ߚ

ே
௝ୀଵ   

.ݏ   .ݐ
∑ ௜ߔ ௝ߚ

௚൫ ݖ௝ ൯
ே
௝ୀଵ ൌ ݅        ௜ߔ∆ ൌ 1, 2, … ܥ ߳ ௜ߔ             ଵܯ, ′ሺ ܤ ሻ  

∑ ௝ ൯ݖ ௝ ߰௥൫ߚ
ே
௝ୀଵ ൌ ݎ             0 ൌ 1, 2, …  ଴ ሻ                                                       (3.15)ܫ ሺܦ ߳ ߰             ଶܯ,

∑ ௝ ൯ݖ ሶ൫ݏ ௝ߚ
ே
௝ୀଵ ൌ െݏሺ0ሻ  

∑  ௝ߚ ௦݂ሺ ݖ௝ ሻ
ே
௝ୀଵ ൌ ܽ௙ೞ            ݏ ൌ 1, 2, … ,                 ܮ ௦݂ ߳ ܥଵሺ Ω ሻ   

௝ߚ ൒ 0                                      ݆ ൌ 1, 2, … , ܰ  
As a final stage, from the dynamical system (3.3)-(3.4) and the boundry condition (3.6), one can 
obtain the state trajectory ܺሺ·ሻ. The reduced order system (2.3), that is, ݔሶଶ ൌ ଶ݂ሺݐ, ,ଵݔ  ଶ ሻ, can beݔ
solved by R-K formula for reaching origin from initial point ܥ. 
 

4. Numerical example 

  Consider the following control system: 
ሶଵݔ ൌ െݔଵ ൅   ݑ
ሶଶݔ ൌ െݔଶ െ ଷݔଵݔ ൅   ଵݔ 2
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