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Abstract

A new sliding mode control (SMC) design approach using measute theory and Lyapunov functional
candidate is presented for nonlinear control problems. A Lyapunov funetion is supposed for designing
a sliding surface (SS). In fact the problem that is considered isyas follows. A state trajectory from a
given initial point reaches into a given point on a sliding surface in the minimum time, and then tends
to the origin (equilibrium point) along the sliding surface. A" measure theory approach with
embedding process is used to solve such a problem in two phases: In the first phase, after designing an
appropriate SS by a suggested Lyapunove function, and using  measure theoty, an embedding is
constructed to solve a time optimal control problem such that the'system trajectory reaches a SS in
minimum time, then in the second phase, using SS; a control is designed such that the system
trajectory tends to the origin along the SS. Al'numerical example is presented to illustrate the
effectiveness of the proposed method.

Keywords: Sliding surface design, Lyapunov function, Time optimal control, Measure theory,

Sliding mode control.
1. Introduction

Variable structure control systems were first studied in Russia by Emel’yanov and Barbashin in the
early 1960s [1, 2]. The pioneering work did not presented outside of Russia until the mid 1970s when
a book by Itkis [1] and a survey paper by Utkin [2] were published in the West.

Designing sliding modes that guarantee the desired performances has been one of the major issues in
control theory.. The typical approach to sliding mode design is to handle the reduced order system
through the' nonsingular transformation to the regular form. Also, in handling the reduced order
system, many of the standard approaches to sliding mode control have been proposed, such neural
network [3], fuzzy sliding control [4].

This paper is organized as follows: Section 2 addresses the designing of a sliding surface. Section 3
describes the functional space and measure theory used in this paper to solve a time-optimal control
problem. In Section 4, a numerical example is given to illustrate the procedure and its validity.
Finally, conclusion is presented in Section 5.

2. Sliding surface design

Assume sliding surface be as

s(x) = x, + fo(x1,%x5,t) = 0. (2.1
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The following theory shows the stability of dynamical system
%1 = f1 (6,21, %2 ) + Byu(t) (2.2)
Xy = fo(t,x1,%2 ). (2.3)

with respect to the SS (2.1).

Theorem 2.1. The dynamical system (2.2)-(2.3) is asymptotically stable if the sliding surface be as
(2.1) and the system (2.2) satisfied in lim,_, f1 (¢, x1, —f> (¢, %1, %2)) = 0.

Proof. To show the stability of dynamical system (2.1) on sliding surface (2.1), one can define a
suitable Lyapunov function V (x) from R™ to R as:

V(xy) = % x,Tx,. (2.4)
Then,

V(x2) = 7%, = 57 f,(x1, %2, 1),

now, associated with the SS (2.1) we have

V() = —f5" (x1,%2,8) fo(x1,%5,1) < 0.

The above inequality and the condition lim,_, fl(t, x1, —f2 (tyxq, xz)) = 0, gurantee the
asymptotically stable of the system with respect to sliding surface (2.1).m

In the sequel, we select the SS as (2.1). In the next section, we'briefly describe the functional space
that is used in our embedding method.

3. Obtaining optimal time’s reaching

Consider the dynamical system (2.2)-(2.3) with‘boundary value conditions:
X(0) = Xo, X(T) = Xr, (3.1)
where h = (11):[0,T] x Ax U > R", t (0, TV R, $(t) = (1) € A R" and u(t) e U € R™.
The operating regions A and U are compact sets such that Xy, X7 € A. It is desired to design the

control u such that the system trajectory starting from the initial state X, reaches to the final state Xr.
An optimal time control problent’is presentedas following:

Minimize: J = [ dt (3.2)
subject to:

%1 = f1(t, x1, %2 ) + Biu(t) (3.3)
Xy = fo(t,x1,%2) (3.9
f) 5 (x) dt = —s(0) 3.5)
X(0) = Xo, X(T)= Xrs (3.6)

Indeed the condition (3,5) is the described form of the integral equation that force the system reaches
the SS. The pair w = (X ), u(-)) satisfying the conditions (3.3)-(3.6) is termed admissible. The set of
all admissible wpairs, is denoted by W. Now, one seeks to find an optimal pair
w* = (X*(-),u*(-)) e W which gives the minimum value of | defined in (3.2). Let w = (X(-),u(-))
be an admissible pair and B an open ball containing I X A where I = [0,T ]. Let ® € C'( B) where
C'(B) denotes the space of real-valued continuously differentiable functions on B. Define the

function <Dg as
d)g( t,X(t)u(t)) = % (6, X)) =2 (6, X©) h( 6, X(6),ult)) + o t, X)), (3.7)

with (t,X( t),u(t )) €Q=1xAxU forall t € I. The function @’ is in the space C(Q), the set of
all continuous functions on the compact set Q. For each admissible pair,

fOT cp‘g( t,X(t)u(t)) dt=o(T,X(T))—¢(0,x(0)) =Ad vo € C'(B). (3.8)



Let D(I°) be the space of infinitely differentiable real-valued functions with a compact support in 1°,
where 19 = (0,T). Define

P, (6X(e),u(t)) =2 (pOX©))

=y @ X +9@® h(t,X(t)u(t)), YYeDU®), j=12,...,n
Then, if w = (X(-),u(-)) is an admissible pair, for every ¥ € D(I°)
foTlpj(t,X(t),u(t))dt=O,j=1,2,...,n. (3.10)
Let C; () be a subspace of the space C (L) of all bounded continuous functions on Q depending only
on the variable t. Now, by selecting the function f € C;(Q) , we have;

T

Jo F(tx(t)u(t))dt=a;  (f€Ci(Q), (3.11)
The set of equalities (3.8) excludes the special cases (3.10) and (3.11) and provides the properties of
the admissible pairs in the classical formulation of optimal control problems. In the following a
transformation is developed to a non-classical problem to obtain enhanced properties in some aspects
(see [5] for the details).
For each admissible pair w, there is a positive linear continuous functional A , on.C(£2) such that

A F— [ F(t,x(t)u(t))dt  (FeC(Q)).

By the Riesz representation theorem (see [6]) there exists a unique pesitive Borel measure p on
such that

(3.9)

J, F(t.x(e)u(t))dt= [, Fdu=u(F) (F€C(Q)). (3.12)
Thus, the optimal control problem (3.2)-(3.6) is equivalent to_the minimization of
JCu)=[, du=u(1)eR (3.13)

over the set of measures u, associated with the admissible pain w, which satisfy

u(®9)=A0 deC'(B)

u(yp;)=0 YeD(I®), j=1,2,...,n (3.14)
u(s)=-s(0)

,u(f)=af f el (Q).

Theset Q =1x A X U is covered with'a grid, where-the grid will be defined by taking all points in Q
as zj = (tj, Xj, uj). Instead of the infinite-dimensional linear programming problem (3.13)-(3.14), the
following finite dimensional linear programming (LP) problem is considered where z; € w, in which
w is an approximately dense subset:of Q.

The finite dimensional LPspreblem, which approximates the action of the infinite dimensional LP
problem (3.13)-(3.14) for a sufficientilarge integer N is as follows, for more details see [5].

min Zﬂy:lﬁj
s.t.
VB 7 (z) =A®; i=12.,M ®;eC(B)
Y B (7 ) =0 r=1,2,..,M, YeD(I%) (3.15)
%)=18; 5(7) = —s(0)
1B fs(z)) =y, s=1,2,..,L fieCi(Q)
B =0 ji=12,..,N

As a final stage, from the dynamical system (3.3)-(3.4) and the boundry condition (3.6), one can
obtain the state trajectory X(-). The reduced order system (2.3), that is, X, = f,(t, x4, x, ), can be
solved by R-K formula for reaching origin from initial point C.

4. Numerical example

Consider the following control system:
561 = _xl +u
Xy = —Xp —X1X3 + 2 x4



X3 = X1X, + Xq.

It is desired to design a control such that the trajectory starting from the initial point B = (=3, 3.5, 0)
reaches the point C = (—2,2,—2) on the SS in minimum time, then derive the system from C to the
origin (equilibrium point) along the SS. We consider the Lyapunov function:

V) =2 (3 +x3),

hence

V(X)=23 X5 + X3 X3 = X (=X — Xy%3 + 2 %1) + 2300120, +x1) = —x2 + x,(2 x5 + x3),

now, the sliding surface suggested to be as s(x) = x; + 2 x, + x3 = 0.

Assume A = [-3.05,—1.95] x [1.95,3.55] X [—2.05,0.05] and U = [-5,2]. By solving the LP
problem (3.15), the optimal time is found as t, =0.87, i.e, after 0.87 seconds, the system reaches the
sliding surface. In the next step, the SS and sub-control u,, are designed such that the system is
stable and the trajectories remain on the SS after t; =0.87.

5. Conclusions

In this paper, a new numerical approach based on embedding process and measure theory techniques
for solving SMC problems has been proposed. This approach is straightforward without requiring any
predication or condition on the initials. In this paper an optimal SMC has been designed for time-
varying nonlinear systems. However, since the method is independent from the linearity or non-
linearity of the dynamical system, it can be applied to any linear and/nonlinear system. A numerical
example was used to support the theoretical results.
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Figure 1: The action of the¢ optimal SMC system and the behaviour of the state trajectories using this
controller.
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