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Abstract— Laguerre function has many advantages such as good 
approximation capability for different systems, low 
computational complexity and the facility of on-line parameter 
identification. Therefore, it is widely adopted for complex 
industrial process control. In this work, Laguerre function based 
adaptive model predictive control algorithm (AMPC) was 
implemented to control a nonlinear process. Simulation result 
reveals that AMPC has a good performance in set-point tracking 
and load rejection. For comparison purposes, a nonlinear model 
predictive control based on Laguerre- wiener model was also 
applied to the process. Simulation result demonstrates that the 
two controllers have the same performance in set point tracking 
and load rejection problem. 

Keywords-Laguerre function; predictive control; nonlinear 
process; Laguerre-Wiener model.    

I. INTRODUCTION 
Model Predictive Control (MPC) refers to a class of 

control algorithm in which a dynamic process model was used 
to predict and to optimize process performance. The first MPC 
techniques were developed in the 1970s because conventional 
single-loop controllers were unable to satisfy increasingly 
stringent performance requirements [1]. Linear model were 
successfully employed to solve control problems. However, 
many processes were sufficiently nonlinear. This led to the 
development of Adaptive Model Predictive Control (AMPC) 
and Nonlinear Model Predictive Control (NMPC) in which 
were more accurate for process prediction and optimization. 
Models are a decisive factor in MPC algorithm. Auto- 
Regressive Moving Average (ARMA), Controlled Auto-
Regressive Integrated Moving Average (CARIMA) and 
Laguerre functional model are the more important linear 
models. 

Laguerre series is one of the most elegant techniques [2]. It 
can date back to Lee [3] and Wiener [4]. They found that the 
Laplace transforms of the classical orthonormal Laguerre 

function are very useful for approximating linear dynamic 
systems. Zervos and Dumont in 1988 proposed a novel linear 
MPC algorithm based on Laguerre series in which the control 
horizon equal one [5]. From 2000 to 2004, Zhang presented a 
lot of successful industrial application of Laguerre functional 
series based control algorithm on high temperature 
semiconductor diffusion furnace, double water tank and 
distillation columns [6-8]. However, for high nonlinear 
process, it has better performance to use adaptive Laguerre 
model for approximation the behavior of the system.  

Another approach for modeling the nonlinear process is to 
use the nonlinear models. The behavior of many systems 
could be approximated by a static nonlinearity cascaded with a 
linear part in particular form. These models are known as 
Hammerstein and wiener block cascade models. These model 
structures have been successfully ustilized to represent 
nonlinear system in a number of practical applications in the 
area of chemical process, biological process, signal processing 
and control [9]. From an identification point of view, pH 
process has often been considered in the literature as having a 
wiener structure .Distillation process have been modeled using 
both Hammerstein and wiener models [10]. 

In this paper, we have considered a temperature control 
problem of CSTR with first order exothermic reaction. Two 
controllers are design for this purpose. The controllers are 
constructed through a Laguerre function based adaptive linear 
model predictive control and a Laguerre-wiener model based 
nonlinear model predictive control. The rest of the paper is 
organized as follows: 

In section 1, Laguerre function is introduced. In section 2, 
Laguerre-wiener model is presented. In section 3, model 
predictive control based on two types of model is introduced. 
Effectiveness of the proposed scheme is demonstrated in via 
simulation in section 5. Finally conclusion is drawn in the last 
section. 

 



II. LAGUERRE FUNCTION  
Laguerre function is defined as a functional series [11]: 
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where p is a constant called time scaling factor and [ ]0,t∈ ∞  
is a time variable. 

The Laplace transformation of Laguerre function is:  
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Open loop stable system can be approximated by N order 
Laguerre series. 
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The state space expression of Incremental mode Laguerre 
functional model after discretization is:  
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where ( ) ( ) ( ) ( ) ( ) ( )1 2 31 ...
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state vector of the incremental mode Laguerre functional 
model; ( ) ( ) ( ) ( ) ( )1 , 1m m my y k y k u k u k u kΔ = − − Δ = − −  are 
the input and output of this model in kth sampling period, 
respectively; [ ]1,...,

T
NC c c=  is the Laguerre coefficients 

vector. Matrices, A and b, are calculated as follows:  
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and T the sampling period. 
In the above equation uΔ were calculated as a replacement 

for u in the controller. Owing to the fact that this method could 
import integral mechanism, which in terms could guarantee 
zero steady-state error in the closed-loop system [12]. 

III.LAGUERRE-WIENER MODEL 
In this section, Laguerre-wiener model is introduced. The 

Laguerre-wiener model of a nonlinear system is constructed 
by a nonlinear gain cascaded after Laguerre functional model 
as linear part.  

The input-output relationship using this model could be 
presented as follows: 
( ) ( ) ( )
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In this model, linear and nonlinear parts in Laguerre 
function could be represented by various models such as 
polynomial, NARMA and neural network. In this paper, a 
polynomial model was considered as the nonlinear part. 
 
A. Laguerre-wiener model using second order polynomial 

The nonlinear gain of many processes can be 
approximated by second order polynomial. Khaksar and ect.al 
used second order polynomial for Hammerstein model in 
controlling the unstable reactor by MPC algorithm [13].After 
using this polynomial for Laguerre- wiener model, the 
relationship between input-output can be shown as following 
equations: 

( ) ( )

( ) ( )( ) ( )( )

0
1

2

0

N

i i
i

i

i
i

L k c c l k

y k L k L kγ

=

=

= +

= Ω =

∑

∑

 
 

(7) 

where [ ]1,..., NC c c=  are coefficients of Laguerre functional 

model and [ ]0 1 2, ,γ γ γ γ=  are coefficients of second order 
polynomial. Offline least square optimization technique were 
utilized for parameter identification in this model. 
 

IV.
 
MODEL PREDICTIVE CONTROLLER

 
MPC is an optimization-based control strategy which is 

well suited for constrained, multivariable process. A sequence 
of control move was computed to minimize an objective 
function which includes predicted future values of the 
controlled output. The predictions are obtained from a process 
model. The various MPC algorithms proposed different cost 
function for obtaining the control law. A general expression 
for such an objective function is shown below:   
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where ( ) ( ) ( )| | 1|u k j k u k j k u k j kΔ + = + − + − , Nu is the control 
horizon, H is the prediction horizon, Q is a symmetric positive 
semi definite penalty matrix on the output, R is symmetric 
definite penalty matrix on the rate of input and y (k+j|k) the 
prediction output. An important characteristic of process 
control problem is the presence of constrain on input, state and 
output variable. In this work, only input constrain was 
considered which could be represented as: 

( )| 0 1L UU u k j k U j Nu≤ + ≤ ≤ ≤ −  (9) 

The superscript L and U represents the admissible lower 
and upper bounds for the input variable, respectively. To 
compensate for the mismatch between the process and the 
model and to consider unmeasured disturbance in the process, 



a term such as one shown below must be added to predicted 
output of the plant: 
( ) ( ) ( )md k y k y k= −  (10) 

where y (k) is the output of the real process and ym (k) the 
model output. The modified predicted output could be 
represented as:  

( ) ( ) ( ) 1,...,pred my k i y k i d k i H+ = + + =  (11) 

To employ the MPC strategy, it was necessary to obtain 
vector of future output from model. For Laguerre functional 
model, the prediction output could be obtained using the 
following equations which yield from Equation 4:  

( ) ( ) ( ) ( )

( ) ( ) ( )

2

1

0

2 1
.
.
.

Nu
H H i

i

L k A L k Ab u k b u k

L k H A L k A b u k i− −

=

Δ + = Δ + Δ + Δ +

Δ + = Δ + Δ +∑

 
 

 

(12) 

and 
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Thus:  
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Coefficients of Laguerre model were identified on-line by 
RLS (Recursive Least Square) algorithm with forgetting factor 
[14]. For Laguerre-wiener model, the signal L (k) was defined 
as follows: 
( ) ( ) ( )1 ,...,

T
L k L k L k H= + +⎡ ⎤⎣ ⎦
Therefore, Laguerre-wiener model based output prediction 
could be computed as: 
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Finally, adaptive Laguerre based model predictive control 
and Laguerre –wiener models were transferred to sequential 
quadratic programming problem. 
 

V. SIMULATION RESULTS 
Reactors are the heart of many chemical processes and 

dynamic simulation of these critical units is absolutely 
essential for the safe and profitable operation of the entire 
plant [15]. In exothermic reactors where irreversible reactions 
were taken place, the most challenging criteria are the 
potential for temperature runaways. The case study which was 
considered in this paper is high nonlinear CSTR reactors 
which is the most common type of reactor used in industry. 
Consider a reactor in which the following exothermic reaction 
takes place: 
A B→
The reaction rate is given by: 

A Ar kc− = (17) 
where k is the reaction constant dependant on temperature and 
is defined as: 

exp( / )ok k E RT= − (18) 
Using the mass and energy balance fundamentals, the reactor 
could be modeled as: 
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where the variable cA is concentration of A and T is reactor 
temperature. Tcf is the coolant temperature which was 
considered as a manipulated variable and V is the reactor 
volume considered constant. The main objective of this work 
was to control the reactor temperature. The reactor parameters 
adopted in this study are given in Table1 [16]. 

Moreover, the feed flow rate q of this work was considered 
as unmeasured disturbance of the process. Figure 1 
demonstrates the open-loop response of the process for 

20 % step change in the coolant temperature. 
To categorize the process, a uniform random signal was 

generated in MATLAB as an excitation signal. The switching 
time between different levels were selected for 16 samples. 



This signal was applied as the input signal to the process. 
Input and output data are gathered with sampling time of 0.06 
min and with 2000 samples for identification purpose. Figure 
2 shows the input and output which were collected for the 
identification of the process. 
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Figure1. Open-loop step-response of the CSTR reactor for change in the 
coolant temperature. 
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Figure2. Signals for identification of CSTR reactor  a) input and  b)output 
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Subsequent to identifying the process, initial parameters 
for Laguerre functional model and parameters for Laguerre-
wiener model were obtained. These parameters are shown in 
Table 2: 

 
Table2. Model's Parameter. 

Model Parameter 

Laguerre 
Functional 
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1 2 3 4
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By applying the Equation 20, the forgetting factor which 
has been utilized in RLS algorithm was updated. 
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where e is error between process output and model output. 
Figures 3 and 4 illustrate the performance of temperature 

tracking for the proposed controllers as well as the control 
action. The transient response of the system for load rejection 
was also studied in this work. The temperature transient 
response for the controllers and their corresponding control 
actions are shown in Figure 7 and 8. The control horizon and 
prediction horizons were tuned by trial and error 5 and 10, 
respectively. The weighting matrices were selected as Q = 100 
I and R = 0.3 I. To imposing saturation constraints in 
manipulated variable, a lower limit of 297 K and an upper 
limit of 372K were chosen. These figures demonstrate that 
AMPC based on Laguerre function has a good performance in 
set-point tracking and load rejection. In this work, the 
robustness of AMPC model mismatch was also examined and 
the deviation in the heat of reaction was considered as the 
model uncertainty. The performance of the proposed 
controller and control action in presence of model mismatch 
are shown in Figures 7 and 8, respectively. 
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Figure 3. Set-point tracking.  
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Figure 4. control action for set-point tracking. 
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Figure5. Load rejection.  
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Figure 6: Control action for load rejection. 
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Figure 7. Performance of AMPC for deviation in the heat of reaction. 

 

Time(min)

Tc
f(K

)

0 5 10 15 20

350

355

360

365

 
Figure8. Control action in presence of model mismatch. 

 

VI. CONCLUSION 
In this paper, an adaptive model predictive control using 

Laguerre functional model was presented. This controller for 
the control of CSTR reactor process was applied and 
simulated. The simulation result reveals that AMPC has a 
good performance in set-point tracking and load rejection. The 
results have also been compared with NMPC controller. 
Simulation results demonstrate that two purposed controller 
almost have the same performance. 
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