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Abstract

Electrophysiological investigations have previously suggested that phospholipase A2 (PLA2) neurotoxins from snake

venoms increase the release of acetylcholine (Ach) at the neuromuscular junction by blocking voltage-gated K1 channels in

motor nerve terminals.

We have tested some of the most potent presynaptically-acting neurotoxins from snake venoms, namely b-bungarotoxin

(BuTx), taipoxin, notexin, crotoxin, ammodytoxin C and A (Amotx C & A), for effects on several types of cloned voltage-gated

K1 channels (mKv1.1, rKv1.2, mKv1.3, hKv1.5 and mKv3.1) stably expressed in mammalian cell lines. By use of the whole-

cell con®guration of the patch clamp recording technique and concentrations of toxins greater than those required to affect

acetylcholine release, these neurotoxins have been shown not to block any of these voltage-gated K1 channels. In addition,

internal perfusion of the neurotoxins (100 mg/ml) into mouse B82 ®broblast cells that expressed rKv1.2 channels also did not

substantially depress K1 currents. The results of this study suggest that the mechanism by which these neurotoxins increase the

release of acetylcholine at the neuromuscular junction is not related to the direct blockage of voltage-activated Kv1.1, Kv1.2,

Kv1.3, Kv1.5 and Kv3.1 K1 channels. q 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Several snake venoms contain phospholipase A2 (PLA2)

neurotoxins that affect the neuromuscular junction. These

PLA2 neurotoxins include b-bungarotoxin (from the banded

krait Bungarus multicinctus) with two dissimilar A and B

chains, which are covalently cross-linked; taipoxin from

(from the taipan Oxyuranus scutellatus scutellatus) with

three non-covalent cross-linked, a, b, and g subunits;

crotoxin (from the rattlesnake Crotalus durissus terri®cus)

composed of two non-covalently linked subunits, CA and

CB; notexin (from the tiger snake Notechis scutatus scuta-

tus), which is a single peptide chain; and ammodytoxin

(from the viper Vipera ammodytes ammodytes), which is a

single chain PLA2.These neurotoxins are primarily charac-

terized by their ability to block the release of acetylcholine

(Ach) from motor nerves. However, prior to blocking Ach

release these toxins initially depress before transiently

increasing Ach release. The mechanism of action responsi-

ble for these triphasic effects on Ach release is not clear. The

facilitatory effect of these toxins in mammalian nerve-

muscle preparations is independent of phospholipase A2

enzyme activity (Chang et al., 1973, 1997; Landon et al.,

1980; Su and Chang, 1981, 1984; Chang and Su, 1982).

Previous electrophysiological investigations indicate that

the facilitatory stage may be associated with the blockade

of some types of nerve terminal K1 channels (North, 1995;

Dreyer and Penner; 1987; Rowan and Harvey, 1988). Block-

ing K1 channels at nerve terminals would slow repolariza-

tion of the nerve terminal after action potentials. It is then

predicted that voltage-dependent Ca21 channels would open

for longer than normal, allowing a larger Ca21 in¯ux to the
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nerve terminal to trigger a greater release of transmitter

(Penner and Dreyer, 1986). However, there have been few

direct demonstrations of the potassium channel blocking

actions of PLA2 neurotoxins and most of the reports are

only about effects of b-bungarotoxin.

At the perineural waveforms of mouse motor nerve term-

inals, b-bungarotoxin, crotoxin, taipoxin and notexin were

shown to block a fraction of the waveform thought to be

associated with K1 currents (Rowan and Harvey, 1988). b-

Bungarotoxin partly blocks K1 current in dorsal root gang-

lion neurons of the guinea pig (Petersen et al., 1986) and

blocks rKv1.2 potassium channels expressed in Xenopus

oocytes (Guillemare et al., 1992)

From chick brain a binding protein for b-bungarotoxin

has been puri®ed. This protein binds 125I-labelled b-bungar-

otoxin, which can be displaced from this protein by the K1

channel blockers, dendrotoxin I and mast cell degranulating

peptide (MCDP). Hence, it was concluded that the b-

bungarotoxin binding protein is a member of a family of

voltage-gated K1 channels (possibly an A-type K1 channel)

(Schmidt and Betz, 1988, 1989). Moreover, b-bungarotoxin

could partially displace 125I dendrotoxin from its speci®c

binding in rat central nervous system (Dolly et al., 1987).

It was concluded that this effect may be related to the B

chain of the toxin that is homologous with dendrotoxin

(Rehm and Betz, 1982; Othman et al., 1982).

Little is known about the channel blocking activity of the

other PLA2 neurotoxins, crotoxin, notexin, taipoxin and

ammodytoxin. Because of their similar pharmacological

effect on neuromuscular junction, it is reasonable to ask

whether these neurotoxins can also be demonstrated to

block voltage-gated potassium channels. Hence, the aim

of this study was to examine the effects of several PLA2

neurotoxins on a family of cloned voltage-gated K1 chan-

nels, namely mKv1.1, rKv1.2, mKv1.3, hKv1.5 and mKv3.1

stably expressed in mammalian cell lines. Since these chan-

nels are widely distributed in the nervous system and BuTx

has blocking effects on rKv1.2 expressed in Xenopus oocyte

voltage-gated K1 channel (Guillemare et al., 1992), we

choose these channels for our experiments. The pharmaco-

logical characterization of these cloned voltage-gated K1

channels in mammalian cell lines has been determined

previously (Grissmer et al., 1994).

2. Methods and materials

2.1. Twitch tension recording

Biventer cervicis nerve-muscle preparations (Ginsborg

and Warriner, 1960) were isolated from 3 to 14 day old

chicks killed by exposure to CO2 and mounted with a resting

tension of approximately 1 g in 10 ml tissue baths contain-

ing physiological salt solution of the following composition

(mM): NaCl 118.5, KCl 4.7, MgSO4 1.2, KH2PO2 1.2, CaCl2

2.5, NaHCO3 25, glucose 11.1. The solution was continu-

ously bubbled with 95% O2 plus 5% CO2, maintained at

33 ^ 18C and muscles were indirectly stimulated at 0.1 Hz

using ring electrodes with pulses of 0.2 ms duration and a

voltage greater than that which produced a maximal twitch.

To detect any change in postsynaptic sensitivity, in absence

of nerve stimulation, responses to acetylcholine (1 mM),

carbachol (20 mM) and KCl (40 mM) were recorded prior

to the addition of toxin and at the end of experiment. The

muscles were exposed to acetylcholine and KCl for 30 s and

to carbachol for 60 s, and heights of contractures were

measured at these times. The preparations were washed

free of these drugs and allowed 20±30 min to stabilise

before the application of toxin. Twitches and contractures

were recorded isometrically using Grass Model 79 and

Grass Model 7D polygraphs, and Grass Force-Displacement

Transducers FTO3.

2.2. Electrophysiology

Experiments were carried out with the whole-cell con®g-

uration of the patch clamp technique at the room tempera-

ture (20±248C) with an EPC-7 patch clamp ampli®er (List

Electronic, Darmstadt, Germany). Cells were superfused at

1 ml/min with ®ltered (0.45 mm) external solution (290±

320 mOsM) containing (in mM): glucose 10, NaCl 145,

KCl 5, MgCl 1, NaH2PO4 0.06, CaCl2 2 and HEPES 10,

adjusted to pH 7.4 with NaOH. Pipettes were manufactured

from borosilicate glass capillaries (Clark Electromedical

Instruments), ®re-polished and coated with Sigmacoat.

Pipettes had resistance of about 2±3 MV when ®lled with

the following internal solution (pipette solution) (in mM):

EGTA 1, glucose 10, NaCl 5, KCl 140, MgCl2 1, and

HEPES 10, adjusted to pH 7.3 with KOH (290±

320 mOsM). This solution was ®ltered and divided into

1 ml aliquots and stored at 2208C until used on the day of

experiments. Toxin stock solutions were prepared in

distilled water and were diluted to the appropriate concen-

tration and added to a 1 ml bath that contained external

solution. All experiments were done in triplicate unless

otherwise stated in the text with at least two different

concentrations of toxins, ®rst with a low concentration (3±

10 mg/ml) and then with a high concentration (100 mg/ml).

Cells were depolarized by applying either families of

250±600 ms, depolarizing voltage steps in 10 mV incre-

ments ranging from 260 to 150 mV or single steps with

a 100 mV pulse from 260 to 140 from a holding potential

of 260 mV. Cells were depolarized every 20 s before,

during and after drug or toxin application. Voltage errors

in membrane potential (Vm) were minimized by applying

more than 70% series resistance (Rs) compensation without

introducing oscillations into the current output of the clamp

ampli®er. For recording intracellular application of toxins

whole cell clamp was established with an electrode ®lled

with intracellular solution containing toxin. Because of time

required to establish the whole cell recording, we ®lled the

tips of the electrodes with a small amount of normal
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intracellular solution and than back ®lled with solution

containing toxins or drugs. The 100% level was taken as

the current in response to the ®rst recorded voltage step.

Currents were recorded via a National Instrument Lab's

PC analog-to-digital convertor. The data was stored on

hard disk and displayed and analysed on an IBM PC-compa-

tible microcomputer, equipped with Strathclyde Electrophy-

siology Software WCP version 2.3 (supplied by Dr J.

Dempster).

2.3. Cell culture

B82 mouse ®broblasts stably transfected with rKv1.2,

mouse erythroleukemia (MEL) cells stably transfected

with hKv1.5, and L929 mouse ®broblasts cells transfected

with Kv1.1, Kv1.3 and 3.1 channels were obtained from

Professor Stephan Grissmer, University of Ulm, Albert-

Einstein-Alee ll, Ulm, Germany. They were cultured routi-

nely in 50 ml ¯asks containing media supplemented with

2 mM L-glutamine, penicillin 30 units/streptomycin

30 mg/ml, glucose 0.45 g/ml, geneticin 0.3 mg/ml, sodium

bicarbonate 25 mM in Dulbecco's Modi®ed Eagles Medium

(DMEM) with 10% foetal calf serum (FCS). pH was

adjusted to 7.3 by addition of sodium hydroxide (NaOH).

The ¯asks of cells were kept in an incubator at 378C in a

moist atmosphere of air with 5% CO2. Cells were regularly

maintained by splitting them after con¯uence. On the day of

experiment, the cells were removed by trypsin-EDTA and a

small number of cells was added to two wells of a 24-well

plate containing glass coverslips. The coverslips with

attached cells were placed in a small (1 ml) experimental

chamber and perfused (1 ml/min) with external solution.

MEL cells were differentiated by adding 1% dimethyl

sulfoxide (DMSO) into the medium 48±72 h before use

for patch clamp experiments.

2.4. Source of toxins and chemicals

b-Bungarotoxin (T-5644, Lots 124H40081, 33H40141

and 68H4003) was from Sigma Chemical Co. Ltd., Poole,

Dorset, England and Latoxan, 20 Rue Leon Blum, 2600

Valence, France. Crotoxin was a gift from Dr Grazyna

Faure from Institut Pasteur, Paris and notexin was kindly

provided by Dr AndreÂ MeÂnez from DIEP, CEN Saclay,

France and was purchased from Latoxan. Taipoxin was a

gift from Dr David Eaker, Biochemistry Department,

Uppsala University, Sweden. Dendrotoxin I (DpI) was

purchased from Ventoxin (Frederick, MD, USA). Two

PLA2 toxins from the long-nosed viper (Vipera ammodytes

ammodytes) ammodytoxin A and C were gifts from Dr Igor

Krizaj from Department of Biochemistry and Molecular

Biology, J. Stefan Institute, University of Ljubljana,

Slovenia.

Tetraethylammonium (TEA) and diaminopyridine (3,4-

DAP) and materials required for cell cultures were

purchased from Sigma Chemical Co. Ltd. Other materials

and media required for cell culture were purchased from

Gibco Brl., Life Technologies Ltd., Renfrewshire, Scotland.

3. Results

3.1. Twitch tension experiments

The chick biventer cervicis nerve-muscle preparation was

used as a convenient test of the biological activity of the

phospholipase A2 neurotoxins, prior to patch clamp experi-

ments. All neurotoxins were tested on indirectly stimulated

chick biventer cervicis preparations and equieffective

concentrations were determined (data not shown). The

toxins caused a slow, progressive decrease in twitch

responses to nerve stimulation. Time taken to 50% block

was about 100 min with different concentrations of them: b-

bungarotoxin (0.47 nM), taipoxin (6.3 nM), notexin

(0.2 mM), crotoxin (7.2 nM) and Amtx (3.6 mM). Among

these neurotoxins, b-bungarotoxin was more potent than

others on the chick preparation (in agreement with results

of Chang et al., 1977). b-Bungarotoxin abolished twitch

responses in 60 min at 47 nM (n� 7), in 120 min at

4.7 nM (n� 4), and in 180 min at 0.47 nM (n� 4) whereas

at least ten times higher concentrations were needed with the

other toxins to block twitch responses to nerve stimulation

completely in similar times.

3.2. Electrophysiology

Whole-cell K1 currents were evoked by applying families

of 250±600 ms long depolarizing voltage steps in 10 mV

increments ranging from 260 to 150 mV or single step

depolarizations with a 100 mV pulse from 260 to

140 mV. After control recordings had stabilized with

time, the toxin was added to the bath and K1 currents

recorded for 20±30 min. In control experiments, the sensi-

tivity of the K1 currents to the well-known K1 channel

blockers 3,4-diaminopyridine (3,4-DAP), tetraethylammo-

nium (TEA) and dendrotoxin I (DpI) was tested. Our results

are consistent with previous results reported by Grissmer et

al. (1994), although we used 3,4-DAP instead of 4-AP (data

not shown).

3.3. Effect of b -bungarotoxin, taipoxin, notexin, crotoxin

and ammodytoxin

Because of extensive studies on b-bungarotoxin and the

potency of this toxin in the chick biventer cervicis prepara-

tion, we tested several concentrations (220 nM to 4.7 mM)

of b-bungarotoxin on cloned voltage-gated potassium chan-

nels, especially on rKv1.2. There was no reduction of K1

currents compared with control even at high concentrations

(up to 100 mg/ml� 4.7 mM) (Fig. 1). Furthermore, to

con®rm these results we tested different batches of b-

bungarotoxin from of different sources (Sigma, UK and
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Latoxan, France). All batches of b-bungarotoxin were

shown to lack effect on the K1 channels studied.

As with BuTx, taipoxin at 20 mM had no effect on any of

the cloned voltage-gated K1 channels tested (Fig. 2).

Notexin at 7.3 mM did not affect K1 currents through

Kv1.1, Kv1.2, Kv1.3, Kv1.5 and Kv3.1 (Fig. 3). Crotoxin

at 2.4 mM (Fig. 4) and ammodytoxin C at 2 mM (Fig. 5) did

not change the K1 currents through all cloned voltage-gated

K1 channels tested. Because of a shortage of Amotx C, we

did not test it on Kv1.3 and used Amtox A on Kv1.1 (Fig. 5),

but there was no effect on the currents tested.

3.4. Internal aplication of toxins

To clarify whether these neurotoxins can affect K1

currents from an intracellular site, internal application of

the neurotoxins was tested in B82 ®broblast cells that

expressed rKv1.2 K1 channels. Whole cell recording was
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Fig. 1. Lack of effect of b-bungarotoxin (100 mg/ml� 4.7 mM) on K1 currents through different cloned voltage-gated K1 channels, Kv1.1,

Kv1.2, Kv1.3, Kv1.5 and Kv3.1. stably expressed in different cell lines. Currents were evoked by single depolarizing voltage step from 260 to

140 mV for 250±600 ms duration every 20 s from a 260 mV holding potential.
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established with an electrode ®lled with intracellular solu-

tion containing a high concentration (100 mg/ml) of the

toxins. Initiation of whole cell recording was taken as

time 0. The 100% level was taken as the current in response

to the ®rst voltage step. The current was evoked by one-step

depolarizing voltage steps from 260 mV to 150 mV at 20 s

intervals. As shown in Fig. 6, there was considerable variab-

lity in the currents recorded over a 25 min period. However
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Fig. 2. Lack of effect of taipoxin (100 mg/ml� 20 mM) on K1 currents through different cloned voltage-gated K1 channels, Kv1.1, Kv1.2,

Kv1.3, Kv1.5 and Kv3.1. stably expressed in different cell lines. Currents were evoked by single depolarizing voltage step from 260 to

140 mV for 250±600 ms duration every 20 s from a 260 mV holding potential.
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Fig. 3. Lack of effect of notexin (100 mg/ml� 7.3 mM) on K1 currents through different cloned voltage-gated K1 channels, Kv1.1, Kv1.2,

Kv1.3, Kv1.5 and Kv3.1. stably expressed in different cell lines. Currents were evoked by single depolarizing voltage step from 260 to

140 mV for 250±600 ms duration every 20 s from a 260 mV holding potential and (for effect of notexin on Kv1.2) family of voltage steps

from 260 to 150 mV in 10 mV steps for 250 ms duration every 20 s from a 260 mV holding potential.
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Fig. 4. Lack of effect of crotoxin (100 mg/ml� 2.4 mM) on K1 currents through different cloned voltage-gated K1 channels, Kv1.1, Kv1.2,

Kv1.3, Kv1.5 and Kv3.1. stably expressed in different cell lines. Currents were evoked by single depolarizing voltage step from 260 to

140 mV for 250±600 ms duration every 20 s from a 260 mV holding potential and (for effect of crotoxin on Kv1.2) family of voltage steps

from 260 to 150 mV in 10 mV steps for 250 ms duration every 20 s from a holding potential 260 mV.
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Fig. 5. Lack of effect of ammodytoxin (100 mg/ml� 2 mM) on K1 currents through different cloned voltage-gated K1 channels, Kv1.1,

Kv1.2, Kv1.3, Kv1.5 and Kv3.1. stably expressed in different cell lines. Currents were evoked by single depolarizing voltage step

from 260 to 140 mV for 250±600 ms duration every 20 s from a holding potential 260 mV and (for effect of ammodytoxin on

Kv1.2) family of voltage steps from 260 to 150 mV in 10 mV steps for 250 ms duration every 20 s from a holding potential

260 mV.
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Fig. 6. Lack of effect of internal application of b-bungarotoxin (n� 5), notexin (n� 5), crotoxin (n� 4), ammodytoxin C (n� 4) (all at

100 mg/ml), dendrotoxin I (DpI) (1 mg/ml� 0.14 mM) (n� 4) and weak effect of taipoxin (n� 4) on K1 currents through cloned voltage-gated

Kv1.2 potassium channel stably expressed in B82 mouse ®broblast cells. Currents were evoked by depolarizing voltage steps from 260 to

140 mV for 250 ms duration every 20 s. Each point represents the mean ^ S.E.M. of four to ®ve different cells.
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b-bungarotoxin (4.7 mM), crotoxin (2.4 mM) and ammody-

toxin A (2 mM) did not substantially alter the amplitude of

the K1 current. With taipoxin (20 mM) and notexin

(7.3 mM) the results were less clear: there was an initial

apparent fall in current amplitude of about 20±30%

followed by a partial recovery in three out of ®ve experi-

ments. Overall, it seems unlikely that any of the toxins were

directly blocking the rKv1.2 channels from the internal site

of the membrane, particularly when it was observed that the

cells become rather unstable during the internal application

of toxins.

Internal application of dendrotoxin I (1 mg/

ml� 0.14 mM) did not affect K1 current through rKv1.2

K1 channels while the same concentration was enough to

block this channel externally (Fig. 7). Hence, the lack of

activity of the PLA2 neurotoxins is not due to the inability

of toxic polypeptides to move from the pipette into the cell

cytosole.

4. Discussion

The pharmacological effects of PLA2 neurotoxins from

snake venoms have been extensively studied. These neuro-

toxins act at the neuromuscular junction to cause an increase

of acetylcholine release prior to blockade of release. The

mechanism of this facilitatory effect is not known, although

several hypotheses have been suggested. In particular (as

described in the Introduction), previous reports showed

that some of these neurotoxins can decrease K1 currents.

We investigated more directly the possible potassium chan-

nel-blocking action of these neurotoxins on cloned potas-

sium channels by use of patch-clamp recording.

In this study, we found that b-bungarotoxin, taipoxin,

notexin, crotoxin, and ammodytoxin do not block voltage-

activated K1 currents through cloned Kv1.1, Kv1.2, Kv1.3,

Kv1.5 and Kv3.1 potassium channels expressed in mamma-

lian cells. In addition, internal application of these neurotox-

ins into cells expressing rKv1.2 potassium channels did not

affect K1 current through this channel. These results

strongly indicate that the mechanism of the facilitatory

effect of these PLA2 neurotoxins at the neuromuscular junc-

tion is not associated with direct block of these K1 channels.

However, it should be pointed out that b-bungarotoxin was

found to block Kv1.2 channels expressed in oocytes (Guil-

lemare et al., 1992), implying that the different expression

systems may affect properties of the channels. Additionally,

it is important to realise that the current recorded from a

cloned channel after expression may not always exactly

re¯ect the behaviour of the channel in the native cell. This

is because the subunit structure of native and expressed

channels may not always be the same, and because

expressed channels may sometimes lack certain regulatory

proteins even though they are still functional. This is parti-

cularly true of voltage-activated K1 channels which form as

tetramers of individual subunits (Hille, 1992; Pongs, 1992a).

It has been shown that multiple voltage-gated K1 channels

subtypes containing several a and b subunits coexist in

native cells such as brain, heart, myelinated nerves,

myocytes and single dorsal root ganglion (DRG) neurons,

and forming heteromultimeric channels (Parcej et al., 1992;

Wang et al., 1993; Sheng et al., 1993; Scott et al., 1994;

Accili et al., 1997a,b; Jan and Jan, 1997; Ishikawa et al.,

1999) which have properties different to those of cloned

channels (Pongs, 1992b; Sheng et al., 1993; North, 1995).

We still do not know the subunit composition of native
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Fig. 7. Effect of external application of dendrotoxin I (1 mg/ml� 0.14 mM) on K1 currents through cloned voltage-gated K1 channel Kv1.2

stably expressed in B82 mouse ®broblast cell compared with external application of b-bungarotoxin (100 mg/ml� 4.7 mM). Currents were

evoked by single depolarizing voltage step from 260 to 140 mV for 250±600 ms duration every 20 s from a holding potential 260 mV.
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channels in motor nerve terminals affected by these PLA2

neurotoxins. Many details of differences between the beha-

viour of expressed channels in vitro and native channels in

vivo still remain to be discovered (Robertson, 1997).

Further evidence dissociating facilitatory effects of PLA2

neurotoxins from potassium channel blockade comes from

experiments with suramin. Suramin is an anti-trypanoso-

miasis drug which reverses the effects of non-depolarizing

neuromuscular blockers (Henning et al., 1993) and inhibits

the prejunctional Ca21 channels lead to decrease Ach

release (Henning et al., 1996). Suramin also antagonises

effects of b-bungarotoxin by prolonging time to paralysis

in vivo and delaying the block of transmitter release in vitro

(Lin-Shiau and Lin, 1999). In mouse hemi-diaphragm

nerve-muscle preparations that are partly paralysed by

high Mg21, suramin alters the triphasic action of b-bungar-

otoxin and taipoxin and inhibits the facilitatory effect of

these PLA2 neurotoxins (unpublished results), while pre-

treatment of mouse nerve-triangularis sterni muscles with

0.3 mM suramin does not change the blocking effect of b-

bungarotoxin on the nerve terminal K1 current (Lin-Shiau

and Lin, 1999).

Based on these results we conclude that the mechanism

underlying the facilitation of acetylcholine release at

mammalian neuromuscular junctions is not due to direct

blockade of voltage-gated K1 channels. However, we

cannot exclude the possibility that the cloned voltage-

gated K1 channels used in the present study may not express

the binding site for PLA2 neurotoxins. In addition, it is

possible that the decrease of K1 current at perineural wave-

forms from mouse nerve-triangularis sterni muscle prepara-

tions induced by these neurotoxins is an indirect effect

whose mechanism is not yet clear.

4. Uncited References
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