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Abstract

Electrophysiological investigations have previously suggested that phospholipase A, (PLA2) neurotoxins from snake
venoms increase the release of acetylcholine (Ach) at the neuromuscular junction by blocking voltage-gated K* channels in
motor nerve terminals.

We have tested some of the most potent presynaptically-acting neurotoxins from snake venoms, namely [3-bungarotoxin
(BuTx), taipoxin, notexin, crotoxin, ammodytoxin C and A (Amotx C & A), for effects on several types of cloned voltage-gated
K™ channels (mKv1.1, rKv1.2, mKv1.3, hKv1.5 and mKv3.1) stably expressed in mammalian cell lines. By use of the whole-
cell configuration of the patch clamp recording technique and concentrations of toxins greater than those required to affect
acetylcholine release, these neurotoxins have been shown not to block any of these voltage-gated K* channels. In addition,
internal perfusion of the neurotoxins (100 pg/ml) into mouse B82 fibroblast cells that expressed rKv1.2 channels also did not
substantially depress K currents. The results of this study suggest that the mechanism by which these neurotoxins increase the
release of acetylcholine at the neuromuscular junction is not related to the direct blockage of voltage-activated Kv1.1, Kv1.2,

Kvl1.3, Kv1.5 and Kv3.1 K* channels. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Several snake venoms contain phospholipase A, (PLA,)
neurotoxins that affect the neuromuscular junction. These
PLA, neurotoxins include 3-bungarotoxin (from the banded
krait Bungarus multicinctus) with two dissimilar A and B
chains, which are covalently cross-linked; taipoxin from
(from the taipan Oxyuranus scutellatus scutellatus) with
three non-covalent cross-linked, o, 3, and <y subunits;
crotoxin (from the rattlesnake Crotalus durissus terrificus)
composed of two non-covalently linked subunits, CA and
CB; notexin (from the tiger snake Notechis scutatus scuta-
tus), which is a single peptide chain; and ammodytoxin
(from the viper Vipera ammodytes ammodytes), which is a

* Corresponding author. Tel.: +44-141-548-2689; fax: +44-141-
552-2562.
E-mail address: e.g.rowan@strath.ac.uk (E.G. Rowan).

single chain PLA,.These neurotoxins are primarily charac-
terized by their ability to block the release of acetylcholine
(Ach) from motor nerves. However, prior to blocking Ach
release these toxins initially depress before transiently
increasing Ach release. The mechanism of action responsi-
ble for these triphasic effects on Ach release is not clear. The
facilitatory effect of these toxins in mammalian nerve-
muscle preparations is independent of phospholipase A,
enzyme activity (Chang et al., 1973, 1997; Landon et al.,
1980; Su and Chang, 1981, 1984; Chang and Su, 1982).
Previous electrophysiological investigations indicate that
the facilitatory stage may be associated with the blockade
of some types of nerve terminal K* channels (North, 1995;
Dreyer and Penner; 1987; Rowan and Harvey, 1988). Block-
ing K* channels at nerve terminals would slow repolariza-
tion of the nerve terminal after action potentials. It is then
predicted that voltage-dependent Ca** channels would open
for longer than normal, allowing a larger Ca*" influx to the
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nerve terminal to trigger a greater release of transmitter
(Penner and Dreyer, 1986). However, there have been few
direct demonstrations of the potassium channel blocking
actions of PLA, neurotoxins and most of the reports are
only about effects of 3-bungarotoxin.

At the perineural waveforms of mouse motor nerve term-
inals, 3-bungarotoxin, crotoxin, taipoxin and notexin were
shown to block a fraction of the waveform thought to be
associated with K™ currents (Rowan and Harvey, 1988). B-
Bungarotoxin partly blocks K current in dorsal root gang-
lion neurons of the guinea pig (Petersen et al., 1986) and
blocks rKv1.2 potassium channels expressed in Xenopus
oocytes (Guillemare et al., 1992)

From chick brain a binding protein for -bungarotoxin
has been purified. This protein binds '*I-labelled B-bungar-
otoxin, which can be displaced from this protein by the K*
channel blockers, dendrotoxin I and mast cell degranulating
peptide (MCDP). Hence, it was concluded that the (-
bungarotoxin binding protein is a member of a family of
voltage-gated K* channels (possibly an A-type K* channel)
(Schmidt and Betz, 1988, 1989). Moreover, 3-bungarotoxin
could partially displace '*I dendrotoxin from its specific
binding in rat central nervous system (Dolly et al., 1987).
It was concluded that this effect may be related to the B
chain of the toxin that is homologous with dendrotoxin
(Rehm and Betz, 1982; Othman et al., 1982).

Little is known about the channel blocking activity of the
other PLA, neurotoxins, crotoxin, notexin, taipoxin and
ammodytoxin. Because of their similar pharmacological
effect on neuromuscular junction, it is reasonable to ask
whether these neurotoxins can also be demonstrated to
block voltage-gated potassium channels. Hence, the aim
of this study was to examine the effects of several PLA,
neurotoxins on a family of cloned voltage-gated K* chan-
nels, namely mKv1.1, rKv1.2, mKv1.3, hKv1.5 and mKv3.1
stably expressed in mammalian cell lines. Since these chan-
nels are widely distributed in the nervous system and BuTx
has blocking effects on rKv1.2 expressed in Xenopus oocyte
voltage-gated K channel (Guillemare et al., 1992), we
choose these channels for our experiments. The pharmaco-
logical characterization of these cloned voltage-gated K*
channels in mammalian cell lines has been determined
previously (Grissmer et al., 1994).

2. Methods and materials
2.1. Twitch tension recording

Biventer cervicis nerve-muscle preparations (Ginsborg
and Warriner, 1960) were isolated from 3 to 14 day old
chicks killed by exposure to CO, and mounted with a resting
tension of approximately 1 g in 10 ml tissue baths contain-
ing physiological salt solution of the following composition
(mM): NaCl 118.5, KC1 4.7, MgSO, 1.2, KH,PO, 1.2, CaCl,
2.5, NaHCO; 25, glucose 11.1. The solution was continu-
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ously bubbled with 95% O, plus 5% CO,, maintained at
33 *+ 1°C and muscles were indirectly stimulated at 0.1 Hz
using ring electrodes with pulses of 0.2 ms duration and a
voltage greater than that which produced a maximal twitch.
To detect any change in postsynaptic sensitivity, in absence
of nerve stimulation, responses to acetylcholine (1 mM),
carbachol (20 uM) and KCl (40 mM) were recorded prior
to the addition of toxin and at the end of experiment. The
muscles were exposed to acetylcholine and KCI for 30 s and
to carbachol for 60 s, and heights of contractures were
measured at these times. The preparations were washed
free of these drugs and allowed 20-30 min to stabilise
before the application of toxin. Twitches and contractures
were recorded isometrically using Grass Model 79 and
Grass Model 7D polygraphs, and Grass Force-Displacement
Transducers FTO3.

2.2. Electrophysiology

Experiments were carried out with the whole-cell config-
uration of the patch clamp technique at the room tempera-
ture (20-24°C) with an EPC-7 patch clamp amplifier (List
Electronic, Darmstadt, Germany). Cells were superfused at
1 ml/min with filtered (0.45 wm) external solution (290—
320 mOsM) containing (in mM): glucose 10, NaCl 145,
KCl 5, MgCl 1, NaH,PO, 0.06, CaCl, 2 and HEPES 10,
adjusted to pH 7.4 with NaOH. Pipettes were manufactured
from borosilicate glass capillaries (Clark Electromedical
Instruments), fire-polished and coated with Sigmacoat.
Pipettes had resistance of about 2—-3 M{2 when filled with
the following internal solution (pipette solution) (in mM):
EGTA 1, glucose 10, NaCl 5, KCI 140, MgCl, 1, and
HEPES 10, adjusted to pH 7.3 with KOH (290-
320 mOsM). This solution was filtered and divided into
1 ml aliquots and stored at —20°C until used on the day of
experiments. Toxin stock solutions were prepared in
distilled water and were diluted to the appropriate concen-
tration and added to a 1 ml bath that contained external
solution. All experiments were done in triplicate unless
otherwise stated in the text with at least two different
concentrations of toxins, first with a low concentration (3—
10 pg/ml) and then with a high concentration (100 pg/ml).

Cells were depolarized by applying either families of
250-600 ms, depolarizing voltage steps in 10 mV incre-
ments ranging from —60 to +50 mV or single steps with
a 100 mV pulse from —60 to +40 from a holding potential
of —60mV. Cells were depolarized every 20s before,
during and after drug or toxin application. Voltage errors
in membrane potential (Vm) were minimized by applying
more than 70% series resistance (Rs) compensation without
introducing oscillations into the current output of the clamp
amplifier. For recording intracellular application of toxins
whole cell clamp was established with an electrode filled
with intracellular solution containing toxin. Because of time
required to establish the whole cell recording, we filled the
tips of the electrodes with a small amount of normal
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intracellular solution and than back filled with solution
containing toxins or drugs. The 100% level was taken as
the current in response to the first recorded voltage step.
Currents were recorded via a National Instrument Lab’s
PC analog-to-digital convertor. The data was stored on
hard disk and displayed and analysed on an IBM PC-compa-
tible microcomputer, equipped with Strathclyde Electrophy-
siology Software WCP version 2.3 (supplied by Dr J.
Dempster).

2.3. Cell culture

B82 mouse fibroblasts stably transfected with rKv1.2,
mouse erythroleukemia (MEL) cells stably transfected
with hKv1.5, and L929 mouse fibroblasts cells transfected
with Kvl.1, Kv1.3 and 3.1 channels were obtained from
Professor Stephan Grissmer, University of Ulm, Albert-
Einstein-Alee 11, Ulm, Germany. They were cultured routi-
nely in 50 ml flasks containing media supplemented with
2mM L-glutamine, penicillin 30 units/streptomycin
30 pg/ml, glucose 0.45 g/ml, geneticin 0.3 mg/ml, sodium
bicarbonate 25 mM in Dulbecco’s Modified Eagles Medium
(DMEM) with 10% foetal calf serum (FCS). pH was
adjusted to 7.3 by addition of sodium hydroxide (NaOH).

The flasks of cells were kept in an incubator at 37°C in a
moist atmosphere of air with 5% CO,. Cells were regularly
maintained by splitting them after confluence. On the day of
experiment, the cells were removed by trypsin-EDTA and a
small number of cells was added to two wells of a 24-well
plate containing glass coverslips. The coverslips with
attached cells were placed in a small (1 ml) experimental
chamber and perfused (1 ml/min) with external solution.

MEL cells were differentiated by adding 1% dimethyl
sulfoxide (DMSO) into the medium 48-72 h before use
for patch clamp experiments.

2.4. Source of toxins and chemicals

B-Bungarotoxin (T-5644, Lots 124H40081, 33H40141
and 68H4003) was from Sigma Chemical Co. Ltd., Poole,
Dorset, England and Latoxan, 20 Rue Leon Blum, 2600
Valence, France. Crotoxin was a gift from Dr Grazyna
Faure from Institut Pasteur, Paris and notexin was kindly
provided by Dr André Ménez from DIEP, CEN Saclay,
France and was purchased from Latoxan. Taipoxin was a
gift from Dr David Eaker, Biochemistry Department,
Uppsala University, Sweden. Dendrotoxin I (Dpl) was
purchased from Ventoxin (Frederick, MD, USA). Two
PLA, toxins from the long-nosed viper (Vipera ammodytes
ammodytes) ammodytoxin A and C were gifts from Dr Igor
Krizaj from Department of Biochemistry and Molecular
Biology, J. Stefan Institute, University of Ljubljana,
Slovenia.

Tetraethylammonium (TEA) and diaminopyridine (3,4-
DAP) and materials required for cell cultures were
purchased from Sigma Chemical Co. Ltd. Other materials
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and media required for cell culture were purchased from
Gibco Brl., Life Technologies Ltd., Renfrewshire, Scotland.

3. Results
3.1. Twitch tension experiments

The chick biventer cervicis nerve-muscle preparation was
used as a convenient test of the biological activity of the
phospholipase A, neurotoxins, prior to patch clamp experi-
ments. All neurotoxins were tested on indirectly stimulated
chick biventer cervicis preparations and equieffective
concentrations were determined (data not shown). The
toxins caused a slow, progressive decrease in twitch
responses to nerve stimulation. Time taken to 50% block
was about 100 min with different concentrations of them: 3-
bungarotoxin (0.47 nM), taipoxin (6.3 nM), notexin
(0.2 uM), crotoxin (7.2 nM) and Amtx (3.6 uM). Among
these neurotoxins, B-bungarotoxin was more potent than
others on the chick preparation (in agreement with results
of Chang et al., 1977). B-Bungarotoxin abolished twitch
responses in 60 min at 47nM (n=7), in 120 min at
4.7 nM (n=4), and in 180 min at 0.47 nM (n = 4) whereas
at least ten times higher concentrations were needed with the
other toxins to block twitch responses to nerve stimulation
completely in similar times.

3.2. Electrophysiology

Whole-cell K currents were evoked by applying families
of 250-600 ms long depolarizing voltage steps in 10 mV
increments ranging from —60 to +50 mV or single step
depolarizations with a 100 mV pulse from —60 to
+40 mV. After control recordings had stabilized with
time, the toxin was added to the bath and K" currents
recorded for 20—30 min. In control experiments, the sensi-
tivity of the K* currents to the well-known K* channel
blockers 3,4-diaminopyridine (3,4-DAP), tetraecthylammo-
nium (TEA) and dendrotoxin I (Dpl) was tested. Our results
are consistent with previous results reported by Grissmer et
al. (1994), although we used 3,4-DAP instead of 4-AP (data
not shown).

3.3. Effect of B-bungarotoxin, taipoxin, notexin, crotoxin
and ammodytoxin

Because of extensive studies on [3-bungarotoxin and the
potency of this toxin in the chick biventer cervicis prepara-
tion, we tested several concentrations (220 nM to 4.7 puM)
of B-bungarotoxin on cloned voltage-gated potassium chan-
nels, especially on rKv1.2. There was no reduction of K*
currents compared with control even at high concentrations
(up to 100 pg/ml=4.7 uM) (Fig. 1). Furthermore, to
confirm these results we tested different batches of B-
bungarotoxin from of different sources (Sigma, UK and
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Fig. 1. Lack of effect of B-bungarotoxin (100 wg/ml= 4.7 wM) on K™ currents through different cloned voltage-gated K* channels, Kv1.1,
Kv1.2, Kv1.3, Kv1.5 and Kv3.1. stably expressed in different cell lines. Currents were evoked by single depolarizing voltage step from —60 to

+40 mV for 250-600 ms duration every 20 s from a —60 mV holding potential.

Latoxan, France). All batches of [-bungarotoxin were did not test it on Kv1.3 and used Amtox A on Kv1.1 (Fig. 5),

shown to lack effect on the K* channels studied. but there was no effect on the currents tested.
As with BuTx, taipoxin at 20 wM had no effect on any of
the cloned voltage-gated K™ channels tested (Fig. 2).

) " . 3.4. Internal aplication of toxins
Notexin at 7.3 puM did not affect K" currents through

Kvl.1, Kvl.2, Kv1.3, Kv1.5 and Kv3.1 (Fig. 3). Crotoxin To clarify whether these neurotoxins can affect K"
at 2.4 pM (Fig. 4) and ammodytoxin C at 2 pM (Fig. 5) did currents from an intracellular site, internal application of
not change the K™ currents through all cloned voltage-gated the neurotoxins was tested in B82 fibroblast cells that
K™ channels tested. Because of a shortage of Amotx C, we expressed rKv1.2 K* channels. Whole cell recording was
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Fig. 2. Lack of effect of taipoxin (100 pg/ml =20 pM) on K™ currents through different cloned voltage-gated K™ channels, Kv1.1, Kv1.2,
Kvl1.3, Kv1.5 and Kv3.1. stably expressed in different cell lines. Currents were evoked by single depolarizing voltage step from —60 to
+40 mV for 250-600 ms duration every 20 s from a —60 mV holding potential.

established with an electrode filled with intracellular solu- to the first voltage step. The current was evoked by one-step
tion containing a high concentration (100 pwg/ml) of the depolarizing voltage steps from —60 mV to +50 mV at 20 s
toxins. Initiation of whole cell recording was taken as intervals. As shown in Fig. 6, there was considerable variab-
time 0. The 100% level was taken as the current in response lity in the currents recorded over a 25 min period. However
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Fig. 3. Lack of effect of notexin (100 wg/ml = 7.3 M) on K™ currents through different cloned voltage-gated K™ channels, Kv1.1, Kv1.2,
Kv1.3, Kv1.5 and Kv3.1. stably expressed in different cell lines. Currents were evoked by single depolarizing voltage step from —60 to
+40 mV for 250—-600 ms duration every 20 s from a —60 mV holding potential and (for effect of notexin on Kv1.2) family of voltage steps

from —60 to +50 mV in 10 mV steps for 250 ms duration every 20 s from a —60 mV holding potential.

Toxicon - Model 4 - Ref style 2 - IO RXSNVNONEE AIXNINEGE KM PH

Alden

617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672



673
674
675
676
677
678
679
680
681
682
683
684

686
687
688
689
690
691
692

694
695
696
697
698
699
700
701
702

704
705
706

708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728

H. Behrooz Fathi et al. / Toxicon 00 (2001) 000—000

125
Kv1.1
100
75
150T
1254 crotoxin
2 1004
-
=
[~}
()
L 125
3 '} Kv1.5
E 1004 crotoxin
g
2 754
N
=
2
Bt
-
&}
125
100
75 Crotoxin
0 5 10 15 20 25
Time (min)
Kv1.2
100-
(]
"5 75 —O— control
£
£ E —e— crotoxin
& L 50
e
g <
3 25
U

-75 -50 -25 0 25 50 75

Membrane potential (mV)

Fig. 4. Lack of effect of crotoxin (100 wg/ml = 2.4 puM) on K™ currents through different cloned voltage-gated K* channels, Kv1.1, Kv1.2,
Kvl1.3, Kv1.5 and Kv3.1. stably expressed in different cell lines. Currents were evoked by single depolarizing voltage step from —60 to
+40 mV for 250-600 ms duration every 20 s from a —60 mV holding potential and (for effect of crotoxin on Kv1.2) family of voltage steps

from —60 to +50 mV in 10 mV steps for 250 ms duration every 20 s from a holding potential —60 mV.
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Fig. 5. Lack of effect of ammodytoxin (100 wg/ml =2 pM) on K™ currents through different cloned voltage-gated K* channels, Kv1.1,
Kv1.2, Kv1.3, Kvl.5 and Kv3.1. stably expressed in different cell lines. Currents were evoked by single depolarizing voltage step
from —60 to +40 mV for 250-600 ms duration every 20 s from a holding potential —60 mV and (for effect of ammodytoxin on
Kvl1.2) family of voltage steps from —60 to +50 mV in 10 mV steps for 250 ms duration every 20s from a holding potential

—60 mV.
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Fig. 6. Lack of effect of internal application of B-bungarotoxin (n = 5), notexin (n = 5), crotoxin (n = 4), ammodytoxin C (n=4) (all at
100 pg/ml), dendrotoxin I (DpI) (1 wg/ml = 0.14 uM) (n = 4) and weak effect of taipoxin (n = 4) on K™ currents through cloned voltage-gated
Kv1.2 potassium channel stably expressed in B82 mouse fibroblast cells. Currents were evoked by depolarizing voltage steps from —60 to
+40 mV for 250 ms duration every 20 s. Each point represents the mean * S.E.M. of four to five different cells.
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Fig. 7. Effect of external application of dendrotoxin I (1 wg/ml= 0.14 uM) on K* currents through cloned voltage-gated K* channel Kv1.2
stably expressed in B82 mouse fibroblast cell compared with external application of B-bungarotoxin (100 wg/ml = 4.7 uM). Currents were
evoked by single depolarizing voltage step from —60 to +40 mV for 250—-600 ms duration every 20 s from a holding potential —60 mV.

3-bungarotoxin (4.7 uM), crotoxin (2.4 uM) and ammody-
toxin A (2 uM) did not substantially alter the amplitude of
the K" current. With taipoxin (20 uM) and notexin
(7.3 uM) the results were less clear: there was an initial
apparent fall in current amplitude of about 20-30%
followed by a partial recovery in three out of five experi-
ments. Overall, it seems unlikely that any of the toxins were
directly blocking the rKv1.2 channels from the internal site
of the membrane, particularly when it was observed that the
cells become rather unstable during the internal application
of toxins.

Internal ~ application of dendrotoxin I (1 pg/
ml=0.14 pM) did not affect K* current through rKv1.2
K" channels while the same concentration was enough to
block this channel externally (Fig. 7). Hence, the lack of
activity of the PLA, neurotoxins is not due to the inability
of toxic polypeptides to move from the pipette into the cell
cytosole.

4. Discussion

The pharmacological effects of PLA, neurotoxins from
snake venoms have been extensively studied. These neuro-
toxins act at the neuromuscular junction to cause an increase
of acetylcholine release prior to blockade of release. The
mechanism of this facilitatory effect is not known, although
several hypotheses have been suggested. In particular (as
described in the Introduction), previous reports showed
that some of these neurotoxins can decrease K currents.
We investigated more directly the possible potassium chan-
nel-blocking action of these neurotoxins on cloned potas-
sium channels by use of patch-clamp recording.
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In this study, we found that B-bungarotoxin, taipoxin,
notexin, crotoxin, and ammodytoxin do not block voltage-
activated K™ currents through cloned Kv1.1, Kv1.2, Kv1.3,
Kv1.5 and Kv3.1 potassium channels expressed in mamma-
lian cells. In addition, internal application of these neurotox-
ins into cells expressing rKv1.2 potassium channels did not
affect K* current through this channel. These results
strongly indicate that the mechanism of the facilitatory
effect of these PLA, neurotoxins at the neuromuscular junc-
tion is not associated with direct block of these K™ channels.
However, it should be pointed out that 3-bungarotoxin was
found to block Kv1.2 channels expressed in oocytes (Guil-
lemare et al., 1992), implying that the different expression
systems may affect properties of the channels. Additionally,
it is important to realise that the current recorded from a
cloned channel after expression may not always exactly
reflect the behaviour of the channel in the native cell. This
is because the subunit structure of native and expressed
channels may not always be the same, and because
expressed channels may sometimes lack certain regulatory
proteins even though they are still functional. This is parti-
cularly true of voltage-activated K™ channels which form as
tetramers of individual subunits (Hille, 1992; Pongs, 1992a).
It has been shown that multiple voltage-gated K™ channels
subtypes containing several o and 3 subunits coexist in
native cells such as brain, heart, myelinated nerves,
myocytes and single dorsal root ganglion (DRG) neurons,
and forming heteromultimeric channels (Parcej et al., 1992;
Wang et al., 1993; Sheng et al., 1993; Scott et al., 1994;
Accili et al., 1997a,b; Jan and Jan, 1997; Ishikawa et al.,
1999) which have properties different to those of cloned
channels (Pongs, 1992b; Sheng et al., 1993; North, 1995).
We still do not know the subunit composition of native
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channels in motor nerve terminals affected by these PLA,
neurotoxins. Many details of differences between the beha-
viour of expressed channels in vitro and native channels in
vivo still remain to be discovered (Robertson, 1997).

Further evidence dissociating facilitatory effects of PLA,
neurotoxins from potassium channel blockade comes from
experiments with suramin. Suramin is an anti-trypanoso-
miasis drug which reverses the effects of non-depolarizing
neuromuscular blockers (Henning et al., 1993) and inhibits
the prejunctional Ca®' channels lead to decrease Ach
release (Henning et al., 1996). Suramin also antagonises
effects of B-bungarotoxin by prolonging time to paralysis
in vivo and delaying the block of transmitter release in vitro
(Lin-Shiau and Lin, 1999). In mouse hemi-diaphragm
nerve-muscle preparations that are partly paralysed by
high Mg?", suramin alters the triphasic action of B-bungar-
otoxin and taipoxin and inhibits the facilitatory effect of
these PLA, neurotoxins (unpublished results), while pre-
treatment of mouse nerve-triangularis sterni muscles with
0.3 mM suramin does not change the blocking effect of 3-
bungarotoxin on the nerve terminal K* current (Lin-Shiau
and Lin, 1999).

Based on these results we conclude that the mechanism
underlying the facilitation of acetylcholine release at
mammalian neuromuscular junctions is not due to direct
blockade of voltage-gated K™ channels. However, we
cannot exclude the possibility that the cloned voltage-
gated K™ channels used in the present study may not express
the binding site for PLA, neurotoxins. In addition, it is
possible that the decrease of K™ current at perineural wave-
forms from mouse nerve-triangularis sterni muscle prepara-
tions induced by these neurotoxins is an indirect effect
whose mechanism is not yet clear.

4. Uncited References

Baker and Ritchie, 1996.
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