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This paper develops several aspects of shift-invariant spaces on locally compact abelian
groups. For a second countable locally compact abelian group G we prove a useful
Hilbert space isomorphism, introduce range functions and give a characterization of shift-
invariant subspaces of L2(G) in terms of range functions. Utilizing these functions, we
generalize characterizations of frames and Riesz bases generated by shifts of a countable
set of generators from L2(Rn) to L2(G).

Keywords: Second countable locally compact abelian group; shift-invariant space; range
function; frame; Riesz family.
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1. Introduction and Preliminaries

Shift-invariant (SI) subspaces of L2(Rn) are the spaces which are invariant under
integer translations. The theory of shift-invariant spaces plays an important role in
many areas, most notably in the theory of wavelets, spline systems, Gabor systems,
radial function approximation and sampling theory. The general structure of these
spaces in L2(Rn) was revealed in the work of de Boor, DeVore and Ron with the use
of fiberization techniques based on range functions.2 The study of analogous spaces
for L2(T, H) with values in a separable Hilbert spaceH , in terms of range functions,
is quite classical and goes back to Helson.8 Recently Bownik gave a characterization
of shift-invariant subspaces of L2(Rn) following an idea from Helson’s book.3 So far
the theory of SI spaces has been investigated on Rn but to work with other concrete
examples of locally compact abelian (LCA) groups, it is essential for the theory to
be extended to the general setting. Some general properties of SI spaces on LCA
groups, have been studied by the authors.10 The present paper is devoted to the
study of structural properties of SI spaces on second countable LCA groups using
a range function approach.
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Let G be an LCA group equipped with a Haar measure mG. We shall use the
notations and constructions of Ref. 6 associated to LCA groups. The dual group of
G is denoted by Ĝ. The Fourier transform f̂ of any function f ∈ L1(G) is defined by
f̂(ξ) =

∫
G
f(x)ξ(x)dmG(x), where ξ is an element in Ĝ. The Plancherel Theorem

asserts that the Fourier transform ˆ : L1(G) ∩ L2(G) → C0(Ĝ), f �→ f̂ extends
uniquely to a Hilbert space isomorphism from L2(G) onto L2(Ĝ), the so-called
Plancherel isomorphism again denoted by ˆ.6

Let K be a closed subgroup of G and G/K be the quotient group whose Haar
measure υ is unique up to a constant factor. If this factor is suitably chosen we
have ∫

G

f(x)dx =
∫
G/K

∫
K

f(xy)dmK(y)dυ(xK), f ∈ L1(G). (1.1)

This identity is known as Weil’s formula.6

A subgroup L of G is called a uniform lattice if it is discrete and co-compact
(i.e. G/L is compact). For a uniform lattice L in G, a fundamental domain is a
measurable set SL in G such that every x ∈ G can be uniquely written in the form
x = ks, where k ∈ L and s ∈ SL. The existence of a fundamental domain for a
uniform lattice in a LCA group is guaranteed by Ref. 11.

Let L be a subgroup of G. Then the subgroup L⊥ = {ξ ∈ Ĝ; ξ(L) = {1}} is
called the annihilator of L in Ĝ. For a uniform lattice L in G the subgroup L⊥ is
a uniform lattice in Ĝ.

Now we define a SI space on a LCA group.
Let G be a LCA group and L be a uniform lattice in G. A closed subspace

V ⊆ L2(G) is called SI (with respect to L) if f ∈ V implies Tkf ∈ V , for any k ∈ L,
where Tk is the translation operator defined by Tkf(x) = f(k−1x) for all x ∈ G.
For any subset φ ⊆ L2(G), let S(φ) = span{Tkϕ; ϕ ∈ φ, k ∈ L} be the SI space
generated by φ.

The rest of this paper is organized as follows. In Sec. 2, we prove a Hilbert
space isomorphism, which is famous on Rn, in the setting of LCA groups, under
the aspects of direct integral and group theory. In fact we have found a formulation
that does not require the concepts that are peculiar to Rn. In Sec. 3, we give
a definition of a range function in a LCA group. The main result of Sec. 3 is
Theorem 3.1, which sets out a characterization of SI subspaces of L2(G) in terms
of range functions, using various tools in abstract harmonic analysis. In Sec. 4, we
generalize a characterization of frames generated by shifts of a countable set of
generators in terms of their behavior on subspaces of l2(L⊥). In Sec. 5, we give
some examples which reveal the strength of our generalization.

2. A Hilbert Space Isomorphism

Throughout this paper we always assume that G is a second countable LCA group,
L is a uniform lattice in G, and SL⊥ is a fundamental domain for L⊥ in Ĝ with
a measure dξ on it. We show that L2(G) is isometrically isomorphic to the space
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L2(SL⊥ , l2(L⊥)) of square integrable functions from SL⊥ to l2(L⊥). Notice that
this space is just the direct integral

∫ ⊕
A Hξdξ, where A = SL⊥ and Hξ = l2(L⊥),

for all ξ ∈ SL⊥ .6 L2(SL⊥ , l2(L⊥)) is a Hilbert space with inner product 〈f, g〉 =∫
S

L⊥
〈f(ξ), g(ξ)〉l2(L⊥)d(ξ).5

Proposition 2.1. The mapping T : L2(G) → L2(SL⊥ , l2(L⊥)), defined by Tf(ξ) =
(f̂(ξη))η∈L⊥ is an isometric isomorphism, between L2(G) and L2(SL⊥ , l2(L⊥)).

Proof. For every f ∈ L2(G), using Weil’s formula and the Plancherel Theorem we
have

‖Tf‖2 =
∫
S

L⊥
‖Tf(ξ)‖2

l2(L⊥)dξ

=
∫
S

L⊥

∑
η∈L⊥

|f̂(ξη)|2dξ

=
∫
Ĝ

|f̂(ξ)|2dξ

= ‖f‖2
2. (2.1)

So T is an isometry. Let g ∈ L2(SL⊥ , l2(L⊥)). Let f be given by f̂(η) = g(ξ)(α),
for every η ∈ Ĝ of the form η = ξα, for ξ ∈ SL⊥ , α ∈ L⊥. Then obviously Tf = g.
So T is onto, and the proof is complete.

Applying Proposition 2.1 to G = Rn and L = Zn, the following corollary, which
is stated in Ref. 3, is immediate.

Corollary 2.1. The mapping T : L2(Rn) → L2(Tn, l2(Zn)) defined for f ∈ L2(Rn)
by Tf : Tn → l2(Zn), Tf(x) = (f̂(x+k))k∈Zn , is an isometric isomorphism between
L2(Rn) and L2(Tn, l2(Zn)).

Consider L2(L̂, l2(L⊥)) as the direct integral
∫ ⊕
A
l2(L⊥)dλ, for A = L̂ with

its Haar measure λ. It is interesting to note that this space is also isometrically
isomorphic to L2(G). To prove it we use a direct integral argument.

Proposition 2.2. L2(L̂, l2(L⊥)) is isometrically isomorphic to L2(G).

Proof. By Ref. 5, we have(∫ ⊕

L̂

Cdλ

)
⊗ l2(L⊥) 


∫ ⊕

L̂

(C ⊗ l2(L⊥))dλ,

where ⊗ is the Hilbert space tensor product (see Ref. 12). The right-hand side is
isometrically isomorphic to

∫ ⊕
L̂ l2(L⊥)dλ. Therefore,

L2(L̂) ⊗ l2(L⊥) 
 L2(L̂, l2(L⊥)).
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Let SL denote a fundamental domain for L in G. We have l2(L⊥) 

L2(SL), L2(L̂) 
 L2(SL⊥).11 Thus,

L2(SL⊥) ⊗ L2(SL) 
 L2(L̂, l2(L⊥)).

But L2(SL⊥) ⊗ L2(SL) 
 L2(SL⊥ × SL),6 (note that SL and SL⊥ are of finite
measure11), and L2(G) 
 L2(SL⊥ × SL).11 So L2(G) 
 L2(L̂, l2(L⊥)). (By 
 we
mean “is isometrically isomorphic to”.)

As an immediate consequence of Propositions 2.1 and 2.2 we have:

Corollary 2.2. Suppose G is a second countable LCA group, L is a uniform lattice
in G and SL⊥ is a fundamental domain for L⊥ in Ĝ. Then the three Hilbert spaces
L2(G), L2(L̂, l2(L⊥)) and L2(SL⊥ , l2(L⊥)) are isometrically isomorphic.

3. A Characterization of Shift-Invariant Spaces

Let G be a LCA group and L be a uniform lattice in G. A range function is a
mapping

J : SL⊥ → {closed subspaces of l2(L⊥)}.

J is called measurable if the associated orthogonal projections P (ξ) : l2(L⊥) → J(ξ)
are measurable i.e. ξ �→ 〈P (ξ)a, b〉 is measurable for each a, b ∈ l2(L⊥) (see Ref. 5).

The main result of this section is the following characterization theorem in
L2(G).

Theorem 3.1. Suppose G is a second countable LCA group, L is a uniform lattice
in G, and SL⊥ is a fundamental domain for L⊥ in Ĝ. A closed subspace V ⊆ L2(G)
is SI (with respect to the uniform lattice L) if and only if V = {f ∈ L2(G), Tf(ξ) ∈
J(ξ) for a.e. ξ ∈ SL⊥}, where J is a measurable range function and T is the
mapping as in Proposition 2.1. The correspondence between V and J is one to one
under the convention that the range functions are identified if they are equal a.e.
Moreover, if V = S(φ) for some countable set φ ⊆ L2(G) then

J(ξ) = span{T ϕ(ξ); ϕ ∈ φ}. (3.1)

We will prove this theorem in the sequel. For this, we need some preparations.
We start with a definition.

Definition 3.1. For a given range function J , we define the space

MJ = {ϕ ∈ L2(SL⊥ , l2(L⊥)), ϕ(ξ) ∈ J(ξ) for a.e. ξ ∈ SL⊥}. (3.2)

The following proposition entails that MJ defined by (3.2) is a Hilbert subspace
of L2(SL⊥ , l2(L⊥)).

Proposition 3.1. Let J be a range function. Then MJ is a closed subspace of
L2(SL⊥ , l2(L⊥)).
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Proof. Let ϕ ∈ MJ . Take any (ϕn) ⊆ MJ converging to ϕ in L2(SL⊥ , l2(L⊥)).
By Ref. 5, there exists a subsequence (ϕni) of (ϕn) which converges to ϕ almost
everywhere; that is ϕni(ξ) → ϕ(ξ) as ni → ∞, for a.e. ξ ∈ SL⊥ . Since the space
J(ξ) is closed, ϕ ∈MJ . Hence MJ is closed.

The following lemma is needed in the proof of Theorem 3.1.

Lemma 3.1. Let J be a measurable range function with associated orthogonal pro-
jections P . Let Q denote the orthogonal projection of L2(SL⊥ , l2(L⊥)) onto MJ .
Then for any ϕ ∈ L2(SL⊥ , l2(L⊥)),

(Qϕ)(ξ) = P (ξ)(ϕ(ξ))

for a.e. ξ ∈ SL⊥.

Proof. Define P′ : L2(SL⊥ , l2(L⊥)) → L2(SL⊥ , l2(L⊥)), by (P′ϕ)(ξ) = P (ξ)(ϕ(ξ)).
Note that P′(L2(SL⊥ , l2(L⊥))) ⊆ L2(SL⊥ , l2(L⊥)). Indeed, since ‖P (ξ)‖ ≤ 1 for
every ϕ ∈ L2(SL⊥ , l2(L⊥)), we have

‖P′ϕ‖2
L2(S

L⊥ ,l2(L⊥)) =
∫
S

L⊥
‖P′ϕ(ξ)‖2

l2(L⊥)dξ

=
∫
S

L⊥
‖P (ξ)(ϕ(ξ))‖2

l2(L⊥)dξ

≤
∫
S

L⊥
‖ϕ(ξ)‖2

l2(L⊥)dξ

= ‖ϕ‖2
L2(S

L⊥ ,l2(L⊥)) <∞.

Clearly (P′)2 = P′ and (P′)∗ = P′, since P (ξ) has these properties for a.e. ξ ∈ SL⊥ .
So P′ is an orthogonal projection with range Ḿ . Obviously Ḿ ⊆MJ (since P (ξ) is
an orthogonal projection onto J(ξ)). To complete the proof we show that MJ ⊆ Ḿ .
Suppose by contradiction that there is 0 = ψ ∈MJ which is orthogonal to Ḿ . Then
for each ϕ ∈ L2(SL⊥ , l2(L⊥)) we have

0 = 〈P′ϕ, ψ〉L2(S
L⊥ ,l2(L⊥)) =

∫
S

L⊥
〈P′ϕ(ξ), ψ(ξ)〉l2(L⊥)dξ

=
∫
S

L⊥
〈P (ξ)(ϕ(ξ)), ψ(ξ)〉l2(L⊥)dξ

=
∫
S

L⊥
〈ϕ(ξ), P (ξ)ψ(ξ)〉l2(L⊥)dξ

=
∫
S

L⊥
〈ϕ(ξ), ψ(ξ)〉l2(L⊥)dξ

= 〈ϕ, ψ〉L2(S
L⊥ ,l2(L⊥)).

So ψ = 0 which is a contradiction. This completes the proof.
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Proof of Theorem 3.1. Suppose V = S(φ) is a SI space for some countable
set φ ⊆ L2(G), M = TV and J(ξ) is given by (3.1). It is enough to show that
M = MJ . Let ϕ ∈ M . Then there exists a sequence {ϕn} converging to ϕ such
that T −1ϕn ∈ span{Tkϕ;ϕ ∈ φ, k ∈ L}. Since T Tkϕ(ξ) = ((T̂kϕ)(ξη))η∈L⊥ =
(ϕ̂(ξη)ξ(k))η∈L⊥ = ξ(k)T ϕ(ξ), thus ϕn(ξ) ∈ J(ξ) and so ϕ(ξ) ∈ J(ξ). This implies
that M ⊆MJ .

To show that MJ ⊆ M , we observe that M⊥ = {0}. Take any ψ ∈
L2(SL⊥ , l2(L⊥)) which is orthogonal to M . For any ϕ ∈ T φ and k ∈ L,
we have Mkϕ ∈ T V , where Mkϕ(ξ) = ξ(k)ϕ(ξ), so 0 = 〈Mkϕ, ψ〉 =∫
S

L⊥
ξ(k)〈ϕ(ξ), ψ(ξ)〉l2(L⊥)dξ. Hence 〈ϕ(ξ), ψ(ξ)〉 = 0 for a.e. ξ ∈ SL⊥ and any

ϕ ∈ T φ. Thus ψ(ξ) ∈ J(ξ)⊥ for a.e. ξ ∈ SL⊥ . This implies that there is no
0 = ψ ∈ MJ which is orthogonal to M . Therefore M = MJ . Moreover we need
to show that J , given by (3.1) is measurable. Let P (ξ) be the orthogonal pro-
jection of l2(L⊥) onto J(ξ) and ψ ∈ L2(SL⊥ , l2(L⊥)). By Ref. 5, it is enough to
show that ξ �→ P (ξ)ψ(ξ) is measurable. Let Q denote the orthogonal projection of
L2(SL⊥ , l2(L⊥)) onto M . Since the field ξ �→ Qψ(ξ) is measurable, by Lemma 3.1,
so is ξ �→ P (ξ)ψ(ξ). Thus J is measurable.

Conversely, if J is a measurable range function and V is given by (3.1) then
since V = T −1MJ , obviously it is a closed shift-invariant space.

Suppose MJ1 = MJ2 for some measurable range functions J1 and J2 with asso-
ciated projections P1 and P2, respectively. Then J1(ξ) = J2(ξ) for a.e. ξ ∈ SL⊥ .
Indeed, if we apply Lemma 3.1 to the constant function ϕ(ξ) = eη, where (eη)η∈L⊥

is the standard basis of l2(L⊥), then we have P1(ξ)eη = P2(ξ)eη for all η ∈ L⊥

and a.e. ξ ∈ SL⊥ . Therefore P1(ξ) = P2(ξ) for a.e. ξ ∈ SL⊥ . So the correspondence
between V and J is one to one.

Our goal in the next section is to generalize a characterization of frames gener-
ated by shifts of a countable set of generators in L2(G).

4. A Characterization of Frames Generated by Shifts of Functions

Suppose H is a Hilbert space. X ⊆ H is called a frame (for span(X)), if there exist
two numbers A and B with 0 < A ≤ B <∞ such that

A‖h‖2 ≤
∑
η∈X

|〈h, η〉|2 ≤ B‖h‖2 for h ∈ span(X). (4.1)

The numbers A and B are called the frame bounds. X is called a fundamental
frame if span(X) is dense in H .

Suppose G is a second countable LCA group, L is a uniform lattice in G, SL⊥ is
a fundamental domain for L⊥ in Ĝ and φ ⊆ L2(G) is a countable set. The following
theorem allows us to reduce the problem of checking whether {Tkϕ;ϕ ∈ φ, k ∈ L}
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is a frame in a subspace of L2(G), to analyzing the elements in subspaces of l2(L⊥),
parametrized by the base space SL⊥ .

Theorem 4.1. Suppose G is a second countable LCA group, L is a uniform lattice
in G, SL⊥ is a fundamental domain for L⊥ in Ĝ, φ ⊆ L2(G) is a countable set
and T is the mapping defined in Proposition 2.1. Then {Tkϕ; ϕ ∈ φ, k ∈ L} is a
frame for S(φ) with bounds A and B if and only if {T ϕ(ξ); ϕ ∈ φ} is a frame for
J(ξ) with bounds A and B, for a.e. ξ ∈ SL⊥ . Moreover {Tkϕ;ϕ ∈ φ, k ∈ L} is a
fundamental frame if and only if {T ϕ(ξ);ϕ ∈ φ} is a fundamental frame, for a.e.
ξ ∈ SL⊥.

Before presenting the proof, we need to establish the following lemma.

Lemma 4.1. Retain the assumptions of Theorem 4.1. Then for any f ∈ L2(G),
we have ∑

ϕ∈φ

∑
k∈L

|〈Tkϕ, f〉|2 =
∑
ϕ∈φ

∫
S

L⊥
|〈T ϕ(ξ), Tf(ξ)〉|2dξ. (4.2)

Proof. For f ∈ L2(G), k ∈ L and ϕ ∈ φ we have

〈Tkϕ, f〉 = 〈T Tkϕ, Tf〉

=
∫
S

L⊥
〈T Tkϕ(ξ), Tf(ξ)〉l2(L⊥)dξ

=
∫
S

L⊥
〈(T̂kϕ(ξη))η∈L⊥ , (f̂(ξη))η∈L⊥〉l2(L⊥)dξ

=
∫
S

L⊥
ξ(k)〈(ϕ̂(ξη))η∈L⊥ , (f̂(ξη))η∈L⊥〉l2(L⊥)dξ

=
∫
S

L⊥
ξ(k)〈T ϕ(ξ), Tf(ξ)〉dξ.

Utilizing the Plancherel Theorem, the Pontrjagin Duality Theorem,6 and the fact
that L2(SL⊥) = L2(L̂), we have

∑
ϕ∈φ

∑
k∈L

|〈Tkϕ, f〉|2 =
∑
ϕ∈φ

∑
k∈L

∣∣∣∣∣
∫
S

L⊥
ξ(k)〈T ϕ(ξ), Tf(ξ)〉dξ

∣∣∣∣∣
2

=
∑
ϕ∈φ

∑
k∈L

∫
S

L⊥
Fϕ(ξ)k(ξ)dξ

∫
S

L⊥
Fϕ(ξ)k(ξ)dξ

=
∑
ϕ∈φ

∑
k∈L

F̂ϕ(k)F̂ϕ(k)

=
∑
ϕ∈φ

〈F̂ϕ, F̂ϕ〉l2(L)
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=
∑
ϕ∈φ

〈Fϕ, Fϕ〉L2(L̂)

=
∑
ϕ∈φ

∫
S

L⊥
|〈T ϕ(ξ), Tf(ξ)〉l2(L⊥)|2dξ

where Fϕ(ξ) = 〈T ϕ(ξ), Tf(ξ)〉.

Proof of Theorem 4.1. Let J be the range function associated with S(φ), given
by (3.1). Suppose that {T ϕ(ξ);ϕ ∈ φ} is a frame for J(ξ) with bounds A and B,
for a.e. ξ ∈ SL⊥ i.e.

A‖a‖2 ≤
∑
ϕ∈φ

|〈T ϕ(ξ), a〉l2(L⊥)|2 ≤ B‖a‖2 for a ∈ J(ξ). (4.3)

If f ∈ S(φ), then a = Tf(ξ) ∈ J(ξ) for a.e. ξ ∈ SL⊥ . Now by (2.1), (4.2) and (4.3),
{Tkϕ;ϕ ∈ φ, k ∈ L} is a frame with bounds A and B. Indeed, since

A‖Tf(ξ)‖2 ≤
∑
ϕ∈φ

|〈T ϕ(ξ), Tf(ξ)〉l2(L⊥)|2 ≤ B‖Tf(ξ)‖2,

we have

A

∫
S

L⊥
‖Tf(ξ)‖2dξ ≤

∑
ϕ∈φ

∫
S

L⊥
|〈T ϕ(ξ), Tf(ξ)〉l2(L⊥)|2dξ

≤ B

∫
S

L⊥
‖Tf(ξ)‖2dξ.

Therefore, A‖f‖2
2 ≤

∑
ϕ∈U

∑
k∈L |〈Tkϕ, f〉l2(L⊥)|2 ≤ B‖f‖2

2.
For the converse suppose that {Tkϕ;ϕ ∈ φ, k ∈ L} is a frame with bounds A

and B. Let {di}∞i=1 be a dense subset of l2(L⊥). It is enough to show that

A‖P (ξ)di‖2 ≤
∑
ϕ∈φ

|〈T ϕ(ξ), P (ξ)di〉l2(L⊥)|2

≤ B‖P (ξ)di‖2 for a.e. ξ ∈ SL⊥ , for all i ∈ N, (4.4)

where P (ξ) is the projection onto J(ξ). By the contrary assume that (4.4) fails.
Then there exist a measurable set D ⊆ SL⊥ , with |D| > 0, i0 ∈ N and ε > 0, such
that at least one of the following holds:∑

ϕ∈φ
|〈T ϕ(ξ), P (ξ)di0 〉l2(L⊥)|2 > (B + ε)‖P (ξ)di0‖2 (ξ ∈ D) (4.5)

∑
ϕ∈φ

|〈T ϕ(ξ), P (ξ)di0 〉l2(L⊥)|2 < (A− ε)‖P (ξ)di0‖2 (ξ ∈ D). (4.6)
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First suppose that (4.5) happens. Let f ∈ S(φ) be given by Tf(ξ) = χD(ξ)P (ξ)di0 .
Then by (4.2),∑

k∈L

∑
ϕ∈φ

|〈Tkϕ, f〉l2(L⊥)|2 =
∫
S

L⊥

∑
ϕ∈φ

|〈T ϕ(ξ), χD(ξ)P (ξ)di0 〉|2dξ

=
∫
S

L⊥
χD(ξ)

∑
ϕ∈φ

|〈T ϕ(ξ), P (ξ)di0 〉|2dξ

≥
∫
S

L⊥
(B + ε)χD(ξ)‖P (ξ)di0‖2dξ

= (B + ε)
∫
S

L⊥
‖χD(ξ)P (ξ)di0‖2dξ

= (B + ε)
∫
S

L⊥
‖Tf(ξ)‖2dξ

= (B + ε)‖f‖2
2

which is a contradiction. A similar argument shows that (4.6) cannot hold. So (4.3)
is true. The statement about fundamental frames is an immediate consequence of
Theorem 3.1.

For a Hilbert spaceH ,X ⊆ H is called a Riesz family if there exist two constants
A and B such that

A
∑
η∈X

|hη|2 ≤

∥∥∥∥∥∥
∑
η∈X

hηη

∥∥∥∥∥∥
2

≤ B
∑
η∈X

|hη|2, (4.7)

for all finitely supported (hη)η∈X ⊆ C. The ideas in the proof of Theorem 4.1 can
be used to prove an analogous necessary and sufficient condition for {Tkϕ;ϕ ∈ φ,

k ∈ L} to be a Riesz family. That is we have

Theorem 4.2. Retain the assumptions of Theorem 4.1. Then {Tkϕ; ϕ ∈ φ, k ∈ L}
is a Riesz family with constants A and B if and only if {T ϕ(ξ); ϕ ∈ φ} is a Riesz
family with constants A and B, for a.e. ξ ∈ SL⊥ .

5. Application and Examples

We provide here some examples that illustrate the power of the results developed
in this paper. Applying Theorem 3.1 we get to an observation about the image of
continuous wavelet transform. Let G be a second countable LCA group, L be a
uniform lattice in G and SL⊥ be a fundamental domain for L⊥ in Ĝ. Suppose that
π is the left regular representation of G on L2(G) (see Ref. 6). For an admissible
vector ψ ∈ L2(G), consider the continuous wavelet transform Vψ : L2(G) → L2(G)
defined by Vψϕ(x) = 〈ϕ, π(x)ψ〉. By Ref. 7, Vψ(L2(G)) is a closed shift-invariant
subspace of L2(G). So by Ref. 10, Vψ(L2(G)) =

⊕
n∈N

Vhn , where {hn}n∈N is a
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Parseval frame generator (see Ref. 10) of the space Vhn . If we apply Theorem 3.1
to this space then Vψ(L2(G)) = {f ∈ L2(G); T f(ξ) ∈ J(ξ) a.e. ξ ∈ SL⊥}, for the
range function J given by J(ξ) = span{hn(ξ);n ∈ N}. (For example, let G = Z and
L = 2Z. Then L⊥ = ̂(Z/2Z) = Ẑ2 = Z2 and T is a fundamental domain for Z2 in
Ĝ = T.)

Example 5.1. For applications the most important class of LCA groups is the class
of compactly generated LCA Lie groups. By the Structure Theorem for compactly
generated LCA Lie groups, these groups are of the form Rp × Zq × Tr × F , where
p, q, r ∈ N0 and F is a finite abelian group (see Ref. 8). Let G = Ra×Zb ×Tc×Zd

for a, b, c, d ∈ N, where Zd is the finite abelian group {0, 1, 2, . . . , d− 1} of residues
modulo d. Fix α ∈ N. Then Ĝ = Ra × Zc × Tb × Zd and L = Za × αZb × Zd

is a uniform lattice in G. Thus L⊥ = Za × Zc × Zbα. Obviously SL⊥ := Ta ×
αTb × Zd is a fundamental domain for L⊥ in Ĝ. Consider the orthonormal basis
B := B1 ⊗ B2 ⊗ B3 ⊗ B4 for L2(G), where B1 = {MγTkχ[0,1); k, γ ∈ Za}, in
which MγTkχ[0,1)(x) = e2πiγxχ[0,1)(x − k) for x ∈ Ra, B2 = {χ{m};m ∈ Zb},
B3 = {e2πil; l ∈ Zc}, B4 = Zd. Then V :=

⊕
ϕ∈B,γ∈L⊥ Vϕ,γ , in which Vϕ,γ =

span{MγTkϕ; k ∈ L}, ϕ ∈ B, γ ∈ L⊥, is a shift-invariant subspace of L2(G). By
Theorem 3.1, V = {f ∈ L2(G), (f̂(ξη))η∈L⊥ ∈ J(ξ) for a.e. ξ ∈ SL⊥}, where
J(ξ) = {T (Mγϕ)(ξ); ϕ ∈ B, γ ∈ L⊥} = span{ϕ̂(γ−1ξη)η∈L⊥ ; ϕ ∈ B, γ ∈ L⊥}.

Example 5.2. Assume that A is an n by n expanding matrix which preserves
Zn. Let ψ ∈ L2(Rn) be a wavelet. Define ψm,k(x) = |detA|m/2ψ(Amx − k), for
m ∈ Z, k ∈ Zn. For eachm ∈ Z, define Wm := span{ψm,k; k ∈ Zn}. Since eachWm

is a shift-invariant subspace of L2(Rn) for m ≥ 0, so is (
⊕

m≥0Wm)⊥ =
⊕

m<0Wm.
So by Theorem 3.1, (

⊕
m≥0Wm)⊥ = {f ∈ L2(Rn); Tf(x) ∈ J(x), for a.e. x ∈ Tn}

for the range function J given by J(x) = span{gm(x), m ≥ 1}, where the isometric
isomorphism T : L2(Rn) −→ L2(Tn, l2(Zn)) is given by Tf(ξ) = (f̂(ξ+ l))l∈Zn , and

gm(x) = (ψ̂((AT )m(x+ l)))l∈Zn , a.e.
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We are indebted to Professor Hartmut Führ for valuable comments and remarks on
an earlier version of this paper. The authors are partially supported by the Center
of Excellence in Analysis on Algebraic Structure (CEAAS), in Ferdowsi University
of Mashhad.

References

1. S. T. Ali, J.-P. Antoine and J.-P. Gazeau, Coherent States, Wavelets and Their Gen-
eralizations (Springer-Verlag, New York, 2000).

2. C. de Boor, R. A. DeVore and A. Ron, The structure of finitely generated shift-
invariant spaces in L2(Rd), J. Funct. Anal. 119 (1994) 37–78.

3. M. Bownik, The structure of shift-invariant subspaces of L2(Rn), J. Funct. Anal. 176
(2000) 1–28.



February 11, 2010 11:36 WSPC/181-IJWMIP S0219691310003365

Range Function Approach to Shift-Invariant Spaces 59

4. M. Bownik and Z. Rzeszotnik, The spectral function of shift-invariant spaces, Michi-
gan Math. J. 51 (2003) 387–414.

5. J. Dixmier, Von Neumann Algebras (North-Holland, Amsterdam, 1981).
6. G. B. Folland, A Course in Abstract Harmonic Analysis (CRC Press, 1995).
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