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Abstract—Support vector machine (SVM) formulation has 
been originally developed for binary classification problems. 
Finding the direct formulation for multi-class case is not easy 
but still an on-going research issue. This paper presents a novel 
approach for multi-class SVM by modifying the training phase 
of the SVM. First, we propose the Emphatic Constraints 
Support Vector Machines (ECSVM) as a new powerful 
classification method. Then, we extend our method to find 
efficient multi-class classifiers. We evaluate the performance of 
the proposed scheme by means of real world data sets. The 
obtained results show the superiority of our method. 

Keywords: Support vector machines; multi-class 
classification; fuzzy inequality; emphatic constraints; 

I.  INTRODUCTION 
The theory of support vector machine (SVM), which is 

based on the idea of structural risk minimization, is a new 
classification technique and has drawn much attention due to 
its good performance and solid theoretical foundations [1, 2]. 
The good generalization ability of SVMs is achieved by 
finding a large margin between two classes [4]. In many real 
world applications, the theory of SVM has been shown to 
provide higher performance than traditional learning 
methods [5] and has been introduced as a powerful tool for 
solving classification problems. 

SVMs work by implicitly (using the kernel trick) 
mapping all training data from input space into a higher 
dimensional feature space. An oriented linear hyperplane is 
constructed in this feature space such that it bisects the two 
classes of training vectors and maximizes the perpendicular 
distance between itself and those points lying closest to the 
support vectors. Maximizing this margin is a quadratic 
programming (QP) problem and can be solved from its dual 
problem by introducing Lagrangian multipliers. 

In spite of all advantages, there are some limitations in 
using SVMs. One problem is that the SVM formulation has 
been initially developed for the binary (two-class) case and 
the direct formulation of the multiclass problems is seldom 
applied in practice, due to its complexity [6]. There are two 
ways of designing a multi-class classifier, one is to directly 
develop a multi-class algorithm; the other is to decompose a 
multi-class problem to multiple two-class problems. 

Recently, the decomposition scheme has gained a lot of 
attention. The reason is twofold: First, binary classifiers are 
easier to implement; second, some powerful algorithms are 
inherently binary such as SVM [7]. 

Furthermore there are more and more applications using 
the SVM techniques. However, in many applications, some 
input points may not be exactly assigned to one of these two 
classes. Some are more important to be fully assigned to one 
class so that SVM can separate these points more correctly. 
Some data points corrupted by noises are less meaningful 
and the machine should better to discard them. SVM lacks 
this kind of ability and it is another problem with SVM [8]. 
Lin and Wang proposed Fuzzy SVM (FSVM) [8, 9] to 
overcome this problem. 

In this paper we present a new model of SVM, namely 
Emphatic Constraints SVM (ECSVM) that considers an 
importance degree for each training sample in the constraints 
of SVM formulation. This is contrary to the FSVM that 
considers importance degrees in the cost function. Then we 
extend our proposed ECSVM to find multi-class classifiers. 

The remainder of this paper is organized as follows. 
Section II reviews the SVM formulation and multi-class 
SVM classifiers. The structure of the proposed ECSVM is 
given in Section III. Section IV presents the empirical 
experiments to demonstrate the effectiveness of the proposed 
system. The conclusion is given in Section V. 

II. SUPPORT VECTOR MACHINES 

A. SVM Formulation 
Support vector machine (SVM) is an advanced model for 

the classification of different sorts of data. In this section, the 
focus is on two-class classification problem. The training 
data is represented as: 

 ( 1, 1), ( 2, 2), … , ( , ) × {±1}, 
 
where, = +1, 1  represent positive class and negative 
class, respectively. The geometrical interpretation of support 
vector classification is that the algorithm searches for the 
optimal separating hyperplane. First, the SVM is outlined for 
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the linearly separable case. The training data are linearly 
separable if there exists a pair (w,b)  such that 

 + 1,                 for all = +1  + 1,            for all = 1          (1) 

 
with the decision rule given by 
 ( ) = ( + )                           (2) 

 
where w is the normal vector and b is a scalar. The inequality 
constraints (1) can be combined to give 
 ( + ) 1                                   (3) 

 
The learning problem is hence reformulated as a convex 

quadratic programming (QP) problem 
   12 2 +  =1      ( + ) 1               (4) 0,   = 1, … ,  
 
This problem has a global optimum. The dual form of the 

SVM problem presented in (4) is to maximize the objective 
function   

( ) = =1
12 =1=1             (5) 

subject to the constraints: 

=1 = 0, 0   ,           for  = 1, … , . 
 
The decision function is given by: 

 ( ) = ( + ) = ( + )      (6) 

 
where S is the set of support vector indices. D (x) is the 
desired hyperplane sought.  

For nonlinear separable case, the original input space is 
mapped into high-dimensional dot-product feature space 
using a -function. Using the kernel function  

 ( , ) = ( ). ( ), 
 

the dual problem in the feature space is to maximize the 
objective function 

 ( ) =  =1
12 =1=1 ( ). ( ) 

 

= =1
12 =1=1 ,              (7) 

 
subject to the constraints 

 

=1 = 0, 0   C,           for  = 1, … , . 
 
The decision function is given by 
 ( ) = ( ( , ) + )                      (8) 

where b is given by 
 = ,                        (9) 

  
where S is the set of support vector indices.  Here, D(x) is 
the desired hyperplane separating the two classes. 

B. Multi-class SVM Classifiers 
The basic SVM is designed to separate only two classes 

from each other. However, in many real applications, a 
method to deal with several classes is required. A solution is 
to decompose a multi-class problem into several two-class 
classification problems. The solution to the multi-class 
classification can be reconstructed from the outputs of the 
two-class classi
adopted: “one-against-all” and “one-against-one”. Although, 
other methods exist, for instance, the error- correcting code 
techniques [10]). 

The one-against-all [1] method constructs n SVMs (where 
n is the number of classes). Let the i-th decision function, 
with the maximum margin that separates Class i from the 
remaining classes, be 

 ( ) = ( ) + ,                           (10) 
 

where wi is the l-dimensional vector, ( ) is the mapping 
function that maps x into the l-dimensional feature space, 
and  is the bias term. In classi
vector x, if there is only one i for which ( ) > 0, x is 
classified into Class i. Because only the sign of the decision 
function is used, the decision is of a discrete type as opposed 
to a continuous decision. If ( ) > 0 is satisfied for more 
than one i or there is no i for which ( ) > 0 , x is 
unclassifiable. To avoid this, instead of discrete decision 
functions, continuous decision functions are proposed for the 
classi In the continuous case, datum x is classified 
into the class 
 arg max=1,…, ( ).                               (11) 
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The one-against-one [11] (pairwise), instead, constructs 
n(n-1)/2 decision functions for all the combinations of class 
pairs, where n is the number of classes. Let the decision 
function for Class i against class j, with the maximum 
margin, be 

 ( ) = ( ) +  .                          (12) 
 

The regions  
 = ( ) > 0, = 1,2, … , , .               (13) 

 
do not overlap thus if  is in Ri, we classify  into Class i. If 

 is not in ( = 1,2, … , ) for any i,  is classified by 
voting. In this case, for the input vector , ( ) calculates 
at follow: 

 ( ) = ( ), =1 ,                      (14) 

where  
 ( ) = 1         0,1         < 0,                      (15) 

 
and x is classified into class: 
 arg max=1,2,.., ( ).                                   (16) 

 
If   , ( ) = 1  and ( ) < 1 for . 

Thus,  is classified into . But if any of ( ) is not 1, (16)  may be satisfied for plural is. In this case,  is 
unclassifiable. To resolve this problem, Vapnik [3] proposed 
to use continuous decision functions. To do so, a datum is 
classified into the class with maximum value of the decision 
functions. Another popular solution is Directed Acyclic 
Graph Support Vector Machines (DAG SVM) [12] that uses 
a decision tree in the testing stage. Classi the 
original DAG is executed by list processing. First, we 
generate a list with class numbers as elements. Then, we 
calculate the value of the decision function for the input x.  
Let the two classes for which the classification decision is 
performed be i and j. If Dij (x) > 0 we delete the element j 
from the list. We repeat the procedure until one element is 
left. Then we classify x into the class that corresponds to the 
element number. 

In the next section we will present ECSVM for training 
SVM classifier and will use it for multi-class classification 
problem. 

III. THE PROPOSED EMPHATIC CONSTRAINTS SVM 
In this section we propose a new structure for support 

vector machines and then use it for solving multi-class 
classification problems. Whereas in the training phase of the 
SVM (4) a constraint is assigned to each sample, our 

primary question is that can we investigate the importance 
degree of samples in the constraint which is ascribed to each 
sample. To answer this question we use fuzzy inequality in 
each constraint of the training samples in order to give more 
flexibility and relaxation to each constraint satisfaction. 
Note that slack variables  in conventional SVM cannot 
play this role because they are the unknowns of the system 
not the input variables. 

The proposed method is obtained by modifying the 
conventional SVM (4) into the following formulation: 

  , , = 12 2 + =1   
 subject to   ( + ) 1 ,   = 1, … ,   (17) 

    , = 1, 2, … , ,  0, = 1, … ,  
 
The symbol  means that we like to permit some 

violations in the satisfaction of the constraints. The fuzzy 
greater than or equal symbol defines membership functions  

 : +1+ (0,1], = 1, … , . 
 
According to the use of the representation theorem of fuzzy 
sets, consider a linear membership function for the i-th 
constraint (Figure 1), 

 ( , , )= 
 1,                                    ( + ) 1+ 1+ +di ,         if 1 + ( + ) 10,                                  if ( + ) 1 +                   (18) 

 
 
Note that  is function of an m-dimensional vector w, a 
scalar b, and an n-dimensional vector . 
 

 
Figure 1.  Membership function i  

For each constraint i, i=1,2,…n, of (17), 
 = , , +1+ ( + ) 1 , 0, = 1, … , , (19) 
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where = 1, 2, … , . 
Taking = , where = {1, … , }, then (17) can be 
written as  
   Q , , = 12 w 2 + C n

i=1 , , .     (20) 

 
It is clear that (0,1], an -cut of the constraint set 

will be the classical set  
 ( ) = { , , m+1+n  | ( , , ) }, 
 

where ( ) = inf { ( ), } . In this way ( )  will 
denote an -cut of the i-th constraint. 

The optimal solution of (18) for a given (0,1] is:  
 ( ) = , , m+1+n   12 2 + =1  

= {Min 12 2 + }, ( , , ) X( )=1 }   (21) 

 
As  (0,1], 
 ( ) = ( , , ) m+1+n ( + ) ( ), 0, i = 1, … , n  (22) 

 
with ( ) = 1 (1 ) , thus we have the 
following problem: 
  12 2 + =1   
     subject to ( + ) 1 (1 ),   = 1, … ,      0, = 1, … ,                          (23)

   
Similar to the conventional SVM, we first convert this 

constrained problem into the equivalent unconstrained one. 
Introducing the nonnegative Lagrange multipliers  and , 
we obtain: 
 ( , , , , ) = 12 2 + =1  

 

=1 ( + ) 1 + + (1 )  

 =1                             (24)                  

where  = ( 1, 2, … , )  and = ( 1, 2, … , ) .  
For the optimal solution, the following Karush-Kuhn-

Tucker (KKT) conditions are satisfied: 
  ( , , , , ) = 0,      . . , = =1  ,         (25) 

  ( , , , , ) = 0,      . . , =1 = 0 ,               (26) 

  ( , , , , ) = 0,     . . , + = .                  (27) 

  ( + ) 1 + + (1 ) = 0          (28)  = 0                                        (29) 
 

  0,       0,    0                             (30) 
 

where i=1,…,n. 
Thus substituting (25), (26), and (27) into (24), we obtain 

the following dual problem. Maximize 
 ( ) = =1

12 =1=1 (1 )=1  

 = (1 +=1 ) 12 =1=1      (31) 

 
subject to the constraints: 
 

=1 = 0, 0   C,           for  = 1, … , . 
 
The decision function is given by: 
 ( ) = ( + ) = ( + )      (32) 

 
and b is given by:  = ,                        (33) 

  
where S is the set of support vector indices. 

In fact, we have changed constraints formulation of the 
SVM problem for our purposes and name this scheme 
Emphatic Constraints Support Vector Machine (ECSVM). 
Constraints of ECSVM have more relaxation than 
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traditional SVMs because of their fuzzy inequalities. In this 
system, di and  are meaningful parameters. Each constraint 
is given a specific di which acts as a tolerance to the 
corresponding sample. In fact, the feasible region is 
extended for finding the unknown variables (w,b, ). Note 
that, slack variables  are not user defined and are 
computed during the training phase. Therefore, we cannot 
control noisy or outlier samples directly or give importance 
degree to specific samples using . If the same di is 
assigned to all constraints, the system can equally tolerate 
crossing over any sample. On the other hand, if different ds 
are assigned to different constraints, it means we have 
assumed a different degree of importance to samples; 
similar to Fuzzy SVM. Larger di causes the corresponding 
sample xi to be less important and to be able to consider this 
data as noise or outlier. It then plays a less important role in 
determining the separating hyperplane. For ECSVM we 
need a subsystem to determine di. We used Circle Method 
[13] which is a geometric based model for giving 
importance degree to each sample. 

Also, is another user defined parameter in RSVM 
formulation. It is the level at which the membership degree 
of the fuzzy inequality of constraints, , is cut. This new 
SVM formulation as nonlinear optimization problem with 
fuzzy inequality constraints adds useful concepts to 
conventional SVMs. 

We can use ECSVM for both binary and multi-class 
classification problems. To do this, modifications should be 
applied to one-against-all, pairwise, and DAG SVM 
classifiers.  

In one-against-all ECSVM, we train n ECSVM, where n 
is the number of classes. ECSVMi separates Class i from the 
remaining classes. A testing sample xt is assigned to the class 
with maximum decision function value.  Figure 2 shows the 
details of this method. Note that, Di is the value of i-th 
decision function. Figure 2 illustrates this method. 

In the pairwise ECSVM and DAG ECSVM, n(n-1)/2 
ECSVMs are trained. ECSVMij is the optimal separating 
hyperplane between Class i and class j. In the pairwise 
ECSVM, a testing sample xt is assigned to class with 
maximum decision function represented by the Equation 
(14). The DAG ECSVM uses a decision tree in the testing 
stage. Figure 3 shows the decision tree for the case where 
there are three classes. In this figure,  shows that xt does not 
belong to Class i. For the top-level classification, we can 
choose any pair of classes. Except for the leaf node, if ( ) 0 it means that xt does not belong to class j, On 
the other hand, if   ( ) < 0 it means that xt does not 
belong to Class i. Thus, if 12( ) > 0, x does not belong to 
Class II. Therefore, it belongs to either Class I or Class III. 
Therefore, the next classification is between classes I and III. 

In the next section we will evaluate our proposed method 
using real world data sets. 

 
Figure 2.  Details of one-against-all ECSVM 

 
Figure 3.  Classification by DAG ECSVM 

 

IV. EXPERIMENTAL RESULTS 
In the previous section, we presented the ECSVM 

classifier that was equipped with new concepts. In this 
section, our proposed method is tested using real world data 
sets. All data sets used in the following tests are obtained 
from the UCI Repository of Machine Learning Databases 
and Domain Theories [14]. Details of these data sets are 
summarized in Table I. We applied one-against-all SVM 
and one-against-all ECSVM to different data sets. The 
results are summarized in Table II. The one-against-all 
ECSVM technique is similar to the one-against-all SVM 
with the difference that all of decision functions are trained 
using our proposed ECSVM. In the same way, we compared 
the pairwise SVM to the pairwise ECSVM and also the 
DAG SVM to the DAG ECSVM and summarized the 
results in Table III and Table IV, respectively. In these 
experiments, RBF kernel function ( , ) = 2 2 2  is 
used, with = 100, and , in the ECSVM, being equal to 
0.9. It is worth mentioning that 70% of the data in the data 
set were randomly selected for the training phase and the 
rest for the testing phase.  
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TABLE I.  DETAILS OF DATA SETS IN EXPERIMENTS 

Data set 
Number 

of 
classes 

Number 
of 

attributes 

Number 
of 

instances 

Area 

Glass 
Identification 

 

6 
 

10 
 

214 
 

Physical 

Page Blocks 
 

5 
 

10 
 

5473 
 

Computer 

Image 
Segmentation 

 

7 
 

19 
 

2310 
 

N/A 

Statlog (Shttle) 
 

7 
 

9 
 

58000 
 

Physical 
 

TABLE II.  ONE-AGAINST-ALL SVM VS. ONE-AGAINST-ALL ECSVM 
RECOGNITION RATES 

Data set One-against-all 
SVM  

One-against-all 
ECSVM 

Glass Identification 
 

66.33 
 

71.43 

Page Blocks 
 

80.45 
 

84.56 

Image Segmentation 
 

70.62 
 

77.12 

Statlog (Shttle) 
 

69.16 
 

79.16 

 

TABLE III.  PAIRWISE SVM VS. PAIRWISE ECSVM RECOGNITION 
RATES 

Data set Pairwise  
SVM  

Pairwise 
ECSVM 

Glass Identification 
 

63.33 
 

65 

Page Blocks 
 

80.67 
 

84.29 

Image Segmentation 
 

68.04 
 

73.04 

Statlog (Shttle) 
 

72.04 
 

78.38 

 

TABLE IV.  DAG SVM VS. DAG ECSVM RECOGNITION RATES 

Data set DAG 
SVM  

DAG 
 ECSVM 

Glass Identification 
 

66.67 
 

68.33 

Page Blocks 
 

85.06 
 

90.33 

Image Segmentation 
 

71.43 
 

78.82 

Statlog (Shttle) 
 

65.18 
 

75.70 

 
As shown in all of the experiments when ECSVM is used 
for different multi-class SVM classifiers, better results are 
achieved. In some cases we had up to10% improvement. 

V. CONCLUSION 
SVM formulation has been originally developed for two-

class classification problems. Finding the direct formulation 
for the multi-class classification case is not easy and it is an 

on-going research issue. In this paper, we proposed a new 
approach for multi-class SVM by improving the training 
phase of the previous one. First, we proposed a new model 
of support vector machines with emphasis on constraints of 
the optimization problem of the SVM formulation and 
named it ECSVM. Using fuzzy inequalities, the constraints 
of the ECSVM are relaxed in order to offer a higher degree 
of flexibility. Then, we used the ECSVM for solving multi-
class classification problems. In fact, we train all of the 
binary SVMs with our proposed ECSVM. The experimental 
results showed the superiority of our proposed methods over 
previous ones.  
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