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SUMMARY
In this paper, accuracy and stiffness analysis of a 3-
RRP spherical parallel manipulator (SPM) (Enferadi and
Tootoonchi, A novel spherical parallel manipulator: Forward
position problem, singularity analysis and isotropy design,
Robotica, vol. 27, 2009, pp. 663–676) with symmetrical
geometry is investigated. At first, the 3-RRP SPM is
introduced and its inverse kinematics analysis is performed.
Isotropic design, because of its design superiority, is
selected and workspace of the manipulator is obtained.
The kinematics conditioning index (KCI) is evaluated
on the workspace. Global conditioning index (GCI) of
the manipulator is calculated and compared with another
SPM. Unlike traditional stiffness analysis, the moving
platform is assumed to be flexible. A continuous method
is used for obtaining mathematical model of the manipulator
stiffness matrix. This method is based on strain energy and
Castigliano’s theorem. The mathematical model is verified
by finite element model. Finally, using mathematical model,
kinematics stiffness index (KSI), and global stiffness index
(GSI) are evaluated.

KEYWORDS: Spherical parallel manipulator, Inverse
kinematics, Accuracy analysis, Stiffness analysis, Finite
element method.

1. Introduction
A parallel manipulator typically consists of a moving
platform and a fixed base that are connected together by
several limbs. Because of the closed-loop architecture, not all
joints can be independently actuated. In general, the number
of actuated joints is equal to the number of degrees of freedom
of the manipulator. A spherical parallel manipulator (SPM)
is one in which the end-effector is moved on the surface of
a sphere. In other words, the end-effector can rotate around
any axis passing through a fixed point, center of sphere. Thus,
all points fixed to the moving platform move on concentric
spheres.2 Therefore, a spherical manipulator can be used as a
device to orient the end-effector. Spherical manipulators can
be either serial3 or parallel.2,4–5 Parallel architectures are
usually more stiff and accurate than the serial ones; however,
their structures are more complex.
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Accuracy of Parallel manipulators is of utmost importance.
Therefore, simple and fast methods for computing the
accuracy of a given robot design are needed. This information
can then be used in design optimization procedures that
look for maximum accuracy. Accuracy errors in position
and orientation of a parallel robot are due to several factors,
among them:

• Manufacturing errors, which may be taken into account
through calibration.

• Preloading, backlash, and other mechanical clearances,
which may be minimized through proper choice of
mechanical components.

• Compliance, which may be minimized through the use
of more rigid structures and proper choice of material
(thoughthese may increase inertia and decrease operating
speed).

• Actuated joints errors, coming from the finite resolution
of motor encoders.

• Control errors coming from inaccurate mechanical and
electrical dynamic models and sensor errors.

• Round off errors mainly coming from calculating inverse
of Jacobian matrix. Structural design and configuration
effect Jacobian matrix. Therefore, these errors can be
minimized by choosing an isotropic design and avoiding
workspace singularities.

Parallel manipulator design can be based on many criteria
such as, workspace,6–7 dexterity,8–9 payload,10 global
conditioning index (GCI),11–13 stiffness14 and singularity
avoidance.15 Depending on the application each of these
criteria may be emphasized by the robot designer. For
example, stiffness and GCI may be more important in an
application where a parallel manipulator is used to orient
material for computer numerical control (CNC) machine
tool. Several performance indices have been developed
and used to roughly evaluate the accuracy of serial and
parallel robots. An exhaustive study16 reviewed most of these
performance indices and discussed their inconsistencies
when applied to parallel robots with having both translational
and rotational degrees of freedom.

The most common performance indices used to indirectly
optimize the accuracy of parallel robots are the dexterity
index9 and the GCI.17

In theory, parallel mechanisms seem capable of answering
the increasing needs of industry in terms of automation.
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The nature of their architectures tends to reduce absolute
positioning and orienting errors.18 Furthermore, since the
actuators of a parallel mechanism are often fixed to its
base, the inertia of its mobile parts is reduced and the end-
effector can perform movements with higher accelerations.
These factors have led to an increase in parallel mechanism’s
popularity. Another important characteristic of parallel
manipulators is high stiffness. Stiffness is a mechanical
characteristic, which describes the behavior of a structure
under static force in terms of elastic deflection. It can be
evaluated for robotic manipulators by means of specific
formulation and experimental tests.19 When a manipulator
performs a given task, the end-effector exerts force and/or
moment onto its environment. The reaction force and/or
moment will cause the end-effector to be deflected away from
its desired location. Intuitively, the amount of deflection is a
function of the applied force and/or moment and the stiffness
of the manipulator. Thus, the stiffness of a manipulator is
related with accurate positioning and high payload capability.
A simple way to predict the stiffness of a manipulator is
to obtain its stiffness matrix.20 Additionally, stiffness can
be evaluated using the eigenvalues of the stiffness matrix
which is experienced in the direction of the corresponding
eigenvectors.14,21 It has been shown that the stiffness is
bounded by the minimum and maximum eigenvalues of
the stiffness matrix.22 Therefore, stiffness values have been
reported by evaluating either minimum, maximum, average
eigenvalues and/or ratio of the maximum and minimum
eigenvalues of the stiffness matrix.22 Additionally, the
determinant of stiffness matrix, which is the product of
its eigenvalues, has been adopted to assess the stiffness of
parallel manipulators.19,23

Condition number of the stiffness matrix may also be
calculated in the same manner that the condition number
of Jacobian matrix is calculated. The global stiffness index
(GSI) can now be defined as the inverse of the condition
number of the stiffness matrix integrated over the reachable
workspace divided by the workspace volume.24

In the present paper, accuracy, and stiffness analysis
of an SPM with symmetric geometry is investigated.
First, the SPM namely spherical star triangle (SST) is
re-introduced. The forward kinematics problem, isotropic
design, and singularity analysis of this manipulator has
been previously investigated and reported in ref. [1]. We
select the isotropic design because it is the superior design
and obtain its performance indices. Although the isotropic
design is selected, all methods presented in this paper
apply to general structure of SST manipulator. To perform
accuracy and stiffness analysis, the inverse kinematics
problem is first solved. Next, workspace of the manipulator
is obtained and its kinematics accuracy is evaluated on
its workspace. GCI of the manipulator is calculated and
compared with another parallel manipulators with known
GCI. It is shown that the SST manipulator has relatively high
accuracy. Unlike traditional parallel manipulators that used
a plate as moving platform, the moving platform of SST
manipulator is constructed by three branches or rods. It is
then natural to consider the flexibility of these three branches.
Therefore, the moving platform is considered flexible and
a continuous model is used for its representation. To the

best of authors’ knowledge previous work in this area have
assumed a rigid moving platform and a lumped model.25–26

Next, using strain energy the mathematical model relating
stiffness and end-effector deflection is developed. Using
commercial software, a finite element model for end-effector
rotation is also developed. The results of the mathematical
and finite element models for several configurations on
the workspace are compared. It is shown that the two
models are in close agreement. Finally, using mathematical
model, the kinematics stiffness index (KSI) and GSI are
evaluated.

2. Description of the Spherical Star Triangle Parallel
Manipulator
The SST parallel manipulator consists of a fixed spherical
triangular base P and a moving platform which is shaped
like a spherical star S. The fixed base and the moving
platform are connected via three legs. Each of the three
moving legs is made of curved prismatic-revolute-curved
prismatic (PRP) joints. We use the term curved prismatic to
denote a motion that slides on a curved path. An example of
this joint used in industry is CURVILINE which is a curved
linear bearing.27 The three branches of the spherical star
and the three moving legs are each assumed to be identical
resulting in a symmetrical geometry for the SST manipulator.
The general model of this manipulator is depicted in Fig. 1.
The first curved prismatic joint which is also the motorized
joint moves along circular arc, PiPi+1, located on the surface
of the sphere. In practice, it is difficult to manufacture an
actuated curved prismatic joint which moves on a circular arc.
However, by closer inspection, one can see that each of the
motorized joints can also be viewed as a revolute joint with
its axis passing through the origin of the sphere (see Figs. 2
and 3). Another word, each of the three legs can also be
thought of being revolute-revolute-curved prismatic (RRP)
joints. Therefore, to physically construct this manipulator
we will build its legs with RRP joints. The physical model

Fig. 1. General model of SST.
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Fig. 2. Physical model of the SST manipulator with motors.

Fig. 3. Parameters description of ith leg.

of this manipulator is depicted in Fig. 2. To develop the
mathematical model of the manipulator, first a sphere with
center at O and a fixed spherical triangle, P1P2P3, on its
surface is considered. The unit vector vi is defined along OPi.

B
ER =

⎡
⎢⎣

cos θ cos ϕ cos ψ − sin θ sin ψ − cos θ cos ϕ sin ψ − sin θ cos ψ cos θ sin ϕ

sin θ cos ϕ cos ψ + cos θ sin ψ − sin θ cos ϕ sin ψ + cos θ cos ψ sin θ sin ϕ

− sin ϕ cos ψ sin ϕ sin ψ cos ϕ

⎤
⎥⎦, (3)

Actuators stroke which can travel along the arc PiPi+1 are
defined by angle γi (see Figs. 1 and 3). The moving spherical
star (MSS), S, is next considered. The star is made of three
arcs which are located on a surface of a second sphere. The
first and the second sphere have the same center but the radius
of the second sphere is slightly larger due to intermediate

revolute joint. This difference should be minimized in order
to increase the structural stiffness of the manipulator. The
three arcs of MSS intersect at point E. The angle between
these arcs, α1, α2, and α3 can be manually selected by the
robot designer to obtain the desired performance. Position
of point E defines end-effector position. Direction OE can
be defined by unit vector s (see Figs. 1 and 3). The arcs
of the moveable star platform ERi intersect the line which
is along actuator links at the point Ri. Angular position of
the actuators are defined by the unit vector ri. Direction of
this unit vector is defined along ORi. Furthermore, Ri is a
joint which allows rotation about ri axis as well as a rotation
about the axis that passes through center of sphere, O and is
perpendicular to OERi plane (see Fig. 3).

3. Unit Vectors and Coordinates Frames
In this section, we define unit vectors and two coordinate
frames that are required to solve inverse kinematic problem
and perform velocity analysis of SST manipulator. For
this purpose, two unit vectors ti and wi are defined as
follows:

ti = s × ri

‖s × ri‖ , (1)

wi = vi × vi+1

‖vi × vi+1‖ , (2)

where the unit vectors ti and wi are perpendicular to planes
OERi and OPiPi+1, respectively (See Fig. 3). The first
coordinate frame B(x, y, z) is attached to the fixed based and
is called base coordinate frame. The x and z axes of this frame
are chosen along the unit vectors v1 and w1 respectively (see
Figs. 4 and 5(a)). The y axis is chosen by the right hand rule.
The second coordinate frame E(u, v, w) is attached to the
MSS and is called the moving coordinate frame. The v and w

axes of this frame are chosen along t1 and s, respectively (see
Figs. 4 and 5(d)). The u axis is chosen by the right hand rule.
The coordinate frames as well as unit vectors defined will
now allow us to describe the MSS rotation with respect to
the fixed base. Using w-v-w Euler angles, the rotation matrix
is defined as

where angles θ , ϕ, and ψ specify the MSS orientation. Angle
θ is rotation about z axis, angle ϕ is rotation about y′ axis
and angle ψ is rotation about z′′ axis. These rotations are
shown in Fig. 5. The moving coordinate frame E(u, v, w) is
shown in Fig. 5(d) and coincides with coordinate frame (x′′′,
y′′′, z′′′).
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Fig. 4. The fixed coordinate frame, the moving coordinate frame,
and orientation of MSS.

4. Inverse Kinematics Analysis
A solution to the inverse kinematics problem is required
for accuracy and stiffness analysis. Therefore, inverse

kinematics problem of SST manipulator is the subject of
this section. The orientation of the MSS is defined by unit
vector s as well as angle ψ (the rotation angle about the unit
vector s) according to Figs. 4 and 5(d). The unit vector s is
defined by two angles θ and ϕ. Therefore, the orientation
analysis (inverse kinematics problem) can be defined as:
given orientation of the MSS (unit vector s and angle ψ) and
other kinematics parameters, obtain the actuator rotations,
γi .

For inverse kinematics analysis, we use equivalent angle–
axis representation28–29 which is special form of Rodriguez
formula.30 The equivalent angle–axis representation is
defined by

Q(e, η) = cos η I3×3 + (1 − cos η) eeT

+ sin η

⎡
⎢⎣

0 −ez ey

ez 0 −ex

−ey ex 0

⎤
⎥⎦ , (4)

where the unit vector e is the axis of rotation, η is the angle
of rotation about the unit vector e, and ex, ey, ez are Cartesian
components of the unit vector e.

Fig. 5. Rotation angles of MSS with respect to the base coordinate frame.
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The step by step procedure for solving inverse kinematics
problem of the SST manipulator is as follow:

Step 1: Given rotation matrix MSS with respect to base
frame, B

ER, unit vectors s and t1 can be calculated.

As stated before, the w and v axes of the base coordinate
frame {B} are along the unit vectors s and t1, respectively
(See Fig. 4). Therefore, we can write s and t1 in the base
coordinate frame as follows:

s = B
EREw = B

ER

⎡
⎣0

0
1

⎤
⎦ =

⎡
⎣ cos θ sin ϕ

sin θ sin ϕ

cos ϕ

⎤
⎦ , (5)

t1 = B
EREv = B

ER

⎡
⎣0

1
0

⎤
⎦

=
⎡
⎣− cos θ cos ϕ sin ψ − sin θ cos ψ

− sin θ cos ϕ sin ψ + cos θ cos ψ

sin ϕ sin ψ

⎤
⎦ . (6)

Step 2: Using equivalent axis–angle representation, we can
define unit vectors t2 and t3.

The physical structure of the moveable star can be used
in order to find unit vectors t2 and t3 (consider Fig. 3). The
unit vector, ti, is perpendicular to the plane that contains the
corresponding arc, ERi, of the moveable star. We previously
obtained t1 in step 1. Now, using Eq. (4), the unit vectors t2

and t3 can be obtained by rotating t1 about s by α3 and −α2,
respectively:

t2 = Q(s, α3)t1 = cos α3I3×3t1

+ (1 − cos α3)ssTt1 + sin α3(s × t1), (7)

t3 = Q(s, −α2)t1 = cos α2I3×3t1

+ (1 − cos α2)ssTt1 − sin α2(s × t1). (8)

The unit vector ti is perpendicular to the unit vector s.
Therefore, above equations can be simplified as,

t2 = cos α3t1 + sin α3(s × t1), (9)

t3 = cos α2t1 − sin α2(s × t1). (10)

Step 3: Position of the actuators are described by unit vectors
ri as a function of γi for i = 1, 2, 3.

Consider Figs. 1 and 3. The three actuated curved prismatic
joints move along arc PiPi+1. This motion can be viewed as
revolution about an axis that passes through the origin of
the sphere. This axis is defined by a unit vector, wi. This
unit vector is perpendicular to the plane OPiPi+1 and passes
through origin. In inverse kinematics problem, positions
of the actuators are unknown. These positions are defined
by the unit vectors ri. The unit vector can be defined by
rotation of unit vector vi about unit vector wi in positive
direction by angle γi. Therefore, unit vector ri can be written

Fig. 6. Rotation value of actuators.

as

ri = Q (wi, γi) vi

= cos γiI3×3vi + (1 − cos γi) wiwT
i vi

+ sin γi(wi × vi). (11)

Since vi is perpendicular to wi , the above equation can be
simplified as

ri = cos γivi + sin γi (wi × vi) for i = 1, 2, 3. (12)

Therefore the unit vector ri is defined as a function of
unknown angle γi.

Step 4: Obtaining rotation angle of the actuators, γi.

To obtain unknown angles γi, three independent
trigonometric equations are formulated by noting that ti is
perpendicular to ri (see Eq. (1)):

rT
i ti = 0 for i = 1, 2, 3. (13)

Equations (6), (9), (10), and (12) can be placed in Eq. (13)
which results in

cos γivT
i ti + sin γi(wi × vi)

Tti = 0 for i = 1, 2, 3. (14)

Therefore, closed form solution of inverse kinematics
problem is given by

γi = A tan 2
[−vT

i ti, (wi × vi)
Tti

]
for i = 1, 2, 3. (15)

Note that vT
i ti and (wi × vi)T ti both have numerical values.

This is because, ti were calculated in steps 1 and 2, vi

are known and given by the structure of the base spherical
triangle, and wi are obtained by Eq. (2). The angles γi rep-
resenting rotational values of actuators are shown in Fig. 6.
This completes solution of inverse kinematics problem.

Now, we can obtain the unit vectors ri using of Eq. (12).
These unit vectors are needed to obtain Jacobian matrices,
workspace, accuracy analysis and stiffness analysis of the
SST manipulator. Also, we can calculate the βi angles as
follows:

βi = cos−1
(
rT

i s
)
. (16)
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Fig. 7. The angles βi.

The angles βi are shown in Fig. 7 and will be later needed
for stiffness analysis of the SST manipulator.

5. Kinematics Accuracy Analysis
The structure of SST manipulator can be designed as
either isotropic or non-isotropic. The isotropic design of
this manipulator has several advantages. For example, it
has a relatively a large workspace since the end-effector
can travel the entire area of its fixed spherical triangle
base. Additionally, all points in the workspace are free of
singularities.1 Therefore, the isotropic design is considered
for the kinematics accuracy analysis. To perform the accuracy
analysis, kinematics and global conditioning indices must
be determined. These two indices require the knowledge of
condition numbers of Jacobian matrices.

5.1. Jacobian matrices
For parallel mechanisms in general, the Jacobian matrix is
used to establish a relation between generalized and actuators
velocities as well as between generalized and actuators forces
and couples. This relation for SST manipulator can be written
as,

J1γ̇ + J2ω = 0. (17)

where J1 and J2 are the direct kinematic problem and
inverse kinematic problem Jacobian matrices for the SST
manipulator, respectively. Moreover, γ̇ is the vector of
actuated joint rates and ω is the angular velocity of the
moving platform, MSS, defined in the base frame. The
Jacobian matrices J1 and J2 are obtained by velocity analysis
and reported in ref.1 as follows:

J1 =
⎡
⎣c1 0 0

0 c2 0
0 0 c3

⎤
⎦ (18)

and

J2 =
⎡
⎣−(r1 × t1)T

−(r2 × t2)T

−(r3 × t3)T

⎤
⎦ , (19)

Fig. 8. Discreted area of the fixed base spherical triangle.

Fig. 9. Range of values for ψ .

where

ci = (ri × ti)
Twi for i = 1, 2, 3. (20)

Equation (17) may be used to obtain a single Jacobian matrix
for the manipulator

J γ̇ = ω, (21)

Where J = −J−1
2 J1.

5.2. Workspace determination
Robot workspace is an important criterion in evaluating
manipulator performance. Determination of the workspace
can be performed either by a numerical discretization of the
Cartesian space or by the derivation of analytical expressions
of the boundaries of the workspace.31–32

In this paper, we use the first method and determine
workspace of isotropic design of the SST manipulator. To
perform workspace analysis, we will assume the radius of
the sphere is unity (for example, one meter). To determine
workspace, we discretize area of the base spherical triangle
according to Fig. 8. Next, we move end-effector on the
discretized area for different values of angle ψ . According
to Fig. 4, for the isotropic design, range of values for θ

and ϕ is 0◦ to 90◦. Similarly according to Fig. 9, for the
isotropic design, the range of values for ψ is −60◦ to 60◦.
The following procedure determines the workspace.



Accuracy and stiffness analysis of a 3-RRP spherical parallel manipulator 199

Fig. 10. Workspace area of the SST manipulator on sphere in x–y–z space for different ψ .

For ψ = −60◦ to 60◦
For θ = 0◦ to 90◦

For ϕ = 0◦ to 90◦
Calculate γi using Eq. (15)
If 0◦ ≤ γi ≤ 90◦ Then

Point on sphere is on workspace

Else

Point is not on workspace

Next ϕ

Next θ

Next ψ

As shown in Fig. 10, workspace of the SST manipulator
depends on the angle ψ . This figure shows that workspace
for ψ = −60◦ and ψ = 60◦ is minimum and is maximum
for ψ = 0◦.

The volumetric workspace in θ-φ-ψ space is shown in
Fig. 11. Area of the workspace, on the sphere, for different
values of ψ is calculated and shown in Fig. 12. The maximum
workspace area occurs at ψ = 0◦and its value is equal to
1.57 square units. This value represents one-eighth area of a
sphere with radius of unity (see Fig. 10d). This value is equal
to the area of fixed base spherical triangle and shows that
end-effector can travel the entire area of its base. Therefore,
SST manipulator has a relatively large workspace.

In the next sections, we will use workspace of the
manipulator to perform kinematics accuracy analysis as well
as stiffness analysis.

5.3. Kinematics accuracy analysis
As shown by Strang,33 condition number is a measure of
stability or sensitivity of a matrix to numerical operations. It
is used in numerical analysis to estimate the error generated
in the solution of a linear system of equations. In numerical

Fig. 11. Volumetric workspace in θ -ϕ-ψ space for the isotropic
design.

Fig. 12. Workspace area on sphere for the isotropic design vs. ψ .

analysis, a problem with a low condition number is said to
be well-conditioned, while a problem with a high condition
number is said to be ill-conditioned. When applied to
manipulator Jacobian matrix, condition number will give a
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Fig. 13. KCI of the SST manipulator on sphere for different ψ .

measure of accuracy of the Cartesian velocity of the end-
effector. It also provides a measure of accuracy of static load
acting on the end-effector. The condition number can also be
used to evaluate the dexterity of a manipulator.34 It should
be noted that the use of condition number for robot with
mixed type of degrees of freedom (translations and rotations)
is problematic.16,35 However, the SST parallel manipulator
has only rotational degrees of freedom and is not a mixed
type. Therefore, we can use condition number as measure of
accuracy. The condition number of Jacobian matrix can be
written as

κJ = σJ,max

σJ,min
, (22)

where, σJ,max and σJ,min represent the maximum and
minimum singular values of Jacobian matrix, respectively.
κJ can reach values from 1 to ∞. In order to bound κJ,
one may consider its inverse value defined by ηJ = 1/κJ.
The variable ηJ is defined as kinematics conditioning index
(KCI) and ranges between 0 and 1 (i.e., singular and isotropic
configurations, respectively). This performance index is
plotted for different values of ψ in Fig. 13. As seen in these
figures, for any value of ψ there exists a minimum and a
maximum value for KCI. These maximum and minimum
values of KCI versus angle ψ are shown in Figs. 14 and 15,
respectively. Figure 14 shows maximum value of KCI, which
is equal to 1, occurs at ψ = 0∗. This configuration represents
the isotropic configuration of the SST manipulator. Figure 15

Fig. 14. Maximum KCI vs. angle ψ .

shows that minimum value of KCI occurs at ψ = 60∗ and
ψ = −60∗. This value is equal to 0.412. As stated earlier,
KCI value equal to zero represents singular configuration.
Since the minimum value of KCI is higher than zero, the
isotropic design of the SST manipulator is free of singularity.

Since the kinematics index is dependent on the Jacobian
matrix, it is a local property of the mechanism. KCI thus
depends on the position and orientation of the end-effector
as well as robot structure. Another performance index that
covers the entire workspace is called global kinematics index
(GCI). This type of index was introduced by Gosselin and
Angeles.17 This index is used to measure the global behavior
of manipulator condition number. It computes the average of
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Fig. 15. Minimum KCI vs. angle ψ .

Table I. Comparison maximum GCI.

SST manipulator Spherical 3-RRR

0.67 0.52

the KCI throughout robot workspace. Therefore, GCI can be
written as

GCI = ∫w ηJdw

∫w dw
, (23)

where w is the manipulator’s reachable workspace. For the
SST manipulator, this value is equal to 0.67. This value
is compared with the optimum design of another parallel
manipulator13 in Table I. Clearly the GCI of the SST
manipulator is in “good” range compared with another SPM.

6. Stiffness Analysis
Stiffness (or rigidity) of a mechanism can be a primary
consideration in the design of a parallel manipulator
especially in applications involving large forces while
requiring high accuracy. Stiffness measures resistance of an
end-effector to small displacements when external forces or
couples are applied to the end-effector. The stiffness of a
parallel manipulator is primarily a function of:

(1) Structure and material for each leg.
(2) Joints stiffness.
(3) Moving platform and base stiffness.
(4) Topology of the manipulator.
(5) Position and orientation of the end-effector.
(6) Temperature, gap, preload, and other parameters.

The basic assumptions made for the stiffness analysis of
the SST manipulator is as follows:

(1) Negligible applied external forces compare to applied
external torques. This assumption is made because the
expected use of a spherical manipulator is to orient the
tool.

(2) Joints are frictionless.
(3) Rigidity of the passive joints and base are assumed to be

infinite.
(4) Negligible weight for legs and MSS.
(5) Remaining components are assumed to be flexible.
(6) Strain energy due to shear forces is negligible.36

Fig. 16. Free body diagram (FBD) of MSS.

In the present paper, flexibility of the actuated joints, MSS,
and all links between MSS and base will be considered. In
order to obtain stiffness, we must first obtain forces acting
on joints and links of the manipulator.

6.1. Force analysis
Before performing stiffness analysis, we must find
relationship between the applied external torques on MSS
(see Fig. 16) and the resultant joints forces. The aim of force
analysis is to obtain analytical expressions for forces acting
on joints while the manipulator is in equilibrium. These
analytical expressions will allows us to calculate forces for
all manipulator configurations. It is assumed that there is
no friction in the system. The forces acting on the joints
are found from the equilibrium equations written for each
link and moving platform of the manipulator. Each leg of
SST manipulator has three joints, an actuated revolute joint,
a passive intermediate revolute joint, a curved prismatic
passive joint as well as two links (see Fig. 1).

As stated before, the length of the link between passive
intermediate revolute joint and passive curved prismatic joint
is assumed to be negligible. Therefore, the reaction forces
acting on passive curved prismatic joint are the same as those
acting on passive intermediate revolute joint. The reaction
forces Fti and Fri between MSS and ith curved prismatic
passive joint are shown in Fig. 16. These reaction forces acts
through links attached to motors and are transferred to actu-
ated joints (see Fig. 17). Therefore, we first obtain the reac-
tion forces and next calculate torques applied to motors joints.

6.1.1. Obtaining reaction forces. As shown in Fig. 16,
assume Fti and Fri are reaction force vectors between the
MSS and ith curved prismatic passive joint. These forces
can be written as

Fri = Fri ri, (24)
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Fig. 17. Applied torque to ith motor.

Fti = Fti ti, (25)

where Fri , Fti are values and ri, ti are directions of reaction
forces, respectively. For a given configuration of SST
manipulator, direction of unit vectors ri and ti are determined
by inverse kinematics problem. The relation between these
forces and applied external torques on MSS may be written as

∑
Mo = r (r1 × t1) Ft1 + r (r2 × t2) Ft2 + r (r3 × t3) Ft3

+ Me = 0, (26)

∑
F =

3∑
i=1

(Fri + Fti ) = r1Fr1 + t1Ft1 + r2Fr2 + t2Ft2

+ r3Fr3 + t3Ft3 = 0, (27)

where Me = [Mex Mey Mez ]Tis a vector of external torques
applied to MSS. Using above equations, Ft and Fr can be
written as function of Me

Ft = AMe, (28)

Fr = BMe, (29)

where

Ft = [
Ft1 Ft2 Ft3

]T
, (30)

Fr = [
Fr1 Fr2 Fr3

]T
, (31)

and

A3×3 = −[ r(r1 × t1) r(r1 × t1) r(r1 × t1) ]−1, (32)

B3×3 = −[ r1 r2 r3 ]−1[ t1 t2 t3 ]A. (33)

Components of matrices A and B are called aij and bij ,
respectively.

6.1.2. Torque applied to motors joints. As shown in Fig. 17,
if Fti and Fri are reaction force vectors then torque applied to
ith motor can be written as

τmi
= rFti sinμi, (34)

where μi is angle between OPiPi+1 and OERi planes.

6.2. Stiffness matrix generation
Most previous stiffness analysis studies of parallel
manipulators are performed using lumped model as well
as assuming a rigid moving platform.25–26,37–39 In this
paper, we use continuous model as well as assuming
flexible moving platform. Using strain energy approach,
Castigliano’s theorem, we obtain torsional stiffness of the
SST manipulator. For this purpose, strain energy of all links,
MSS as well as actuated joints are calculated. Strain energy
of these elements are calculated using force analysis and
inverse kinematics problem. When the motors are locked,
we can write

U = Us + Ul + Um, (35)

where Us is strain energy of the MSS, Ul is strain energy
of the three links, Um is strain energy of the three motors
and U is total strain energy of the SST manipulator. The
values of strain energy depend on the applied external torques
and manipulator configuration. These forces are assumed
to act at point E since tool is attached to this point (see
Fig. 16). If we assume motors are locked, the applied external
torques will cause rotational deflection of the tool. The value
of this rotation also depends on manipulator configuration.
Therefore, in order to obtain torsional stiffness, K, we can
write

Me = K δϕ, (36)

where δϕ is called virtual rotation vector of the MSS center
and Me is the external torques applied to center of MSS.
Using Castigliano’s theorem, we can obtain virtual rotation
(rotational deflection) vector of MSS center as follows:

δϕ = ∂U

∂Me
= ∂Us

∂Me
+ ∂Ul

∂Me
+ ∂Um

∂Me
= δϕs + δϕl + δϕm

= (Cs + Cl + Cm)Me = C Me, (37)

where δϕs is virtual rotation vector due to flexibility of MSS,
δϕl is virtual rotation vector due to flexibility of links and
δϕm is virtual rotation vector due to flexibility of motors.
Additionally, Cs, Cl, and Cm are compliance matrices of
MSS, all links and motors, respectively. C is compliance
matrix of the manipulator. The above equation can be written
as

Me = C−1δϕ. (38)

Comparing Eqs. (36) and (38), we can write

K = C−1 (39)
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Fig. 18. FBD of ith branch of MSS.

In order to calculate matrix K, we must calculate compliance
matrix, C, of the manipulator.

Calculation of compliance matrix for MSS, Cs

For this calculation, we must first obtain strain energy of
MSS. The reaction forces Fri , Fti result into two bending
moments and a torsional moment in each branch of MSS
(see Fig. 18).

We can write

Mi = r‖Fri‖ sin λi for i = 1, 2, 3, (40)

Ni = r‖Fti‖ sin λi for i = 1, 2, 3, (41)

Ti = 2r‖Fti‖sin2(λi/2) for i = 1, 2, 3, (42)

where i represents one of the three MSS branches, ‖Fri‖ =
Fri , ‖Fti‖ = Fti , Mi and Ni are bending moments and Ti is
torsional moment. Using Eqs. (28) and (29), Eqs. (40–42)
can be written as

Mi = r(bi1Mex + bi2Mey + bi3Mez)sinλi, (43)

Ni = r(ai1Mex + ai2Mey + ai3Mez)sinλi, (44)

Ti = 2r(ai1Mex + ai2Mey + ai3Mez)sin2(λi/2), (45)

where aij and bij are the components of matrices A and B,
respectively. Strain energy of MSS, Us , can now be written
as follows:

Us =
3∑

i=1

∫ βi

0

(
1

2EI

(
M2

i + N2
i

) + 1

2GJ
T2

i

)
(rdλi) ,

0 ≤ λi ≤ βi, (46)

where E is elasticity modulus, G is elasticity shear modulus,
I is centroidal moment of inertia and J is centroidal moment

of polar inertia. Using Castigliano’s theorem, we must obtain
partial derivation of Eq. (46) with respect to Mex , Mey, and
Mez. This will result in

δϕsx = ∂Us

∂Mex

=
3∑

i=1

∫ βi

0

[
1

EI

(
Mi

∂Mi

∂Mex

+ Ni
∂Ni

∂Mex

)

+ 1

GJ

(
Ti

∂Ti

∂Mex

)]
(rdλi), (47)

δϕsy = ∂Us

∂Mey

=
3∑

i=1

∫ βi

0

[
1

EI

(
Mi

∂Mi

∂Mey

+ Ni
∂Ni

∂Mey

)

+ 1

GJ

(
Ti

∂Ti

∂Mey

)]
(rdλi), (48)

δϕsz = ∂Us

∂Mez

=
3∑

i=1

∫ βi

0

[
1

EI

(
Mi

∂Mi

∂Mez

+ Ni
∂Ni

∂Mez

)

+ 1

GJ

(
Ti

∂Ti

∂Mez

)]
(rdλi), (49)

where δϕs = [ δϕsx δϕsy δϕsz ]T is virtual rotation vector
due to flexibility of MSS and δϕsx, δϕsy, and δϕsz are its x, y,
and z components, in radians, respectively. By taking partial
derivative of Eqs. (43–45), we can write:

∂Mi

∂Mex

= rbi1sinλi,
∂Mi

∂Mey

= rbi2sinλi,
∂Mi

∂Mez

= rbi3sinλi,

(50)

∂Ni

∂Mex

= rai1sinλi,
∂Ni

∂Mey

= rai2sinλi,
∂Ni

∂Mez

= rai3sinλi,

(51)

∂Ti

∂Mex

= 2rai1sin2(λi/2),
∂Ti

∂Mey

= 2rai2sin2(λi/2),
∂Ti

∂Mez

= 2rai3sin2(λi/2). (52)

Substituting above equations into Eqs. (47–49), will
result

δϕsx = r3

EI

3∑
i=1

∫ βi

0
bi1(bi1Mex + bi2Mey + bi3Mez)

× sin2λidλi + r3

EI

3∑
i=1

∫ βi

0
ai1(ai1Mex + ai2Mey

+ ai3Mez)sin2λidλi + 4r3

GJ

3∑
i=1

∫ βi

0
ai1(ai1Mex

+ ai2Mey + ai3Mez)sin4(λi/2)dλi, (53)

δϕsy = r3

EI

3∑
i=1

∫ βi

0
bi2(bi1Mex + bi2Mey + bi3Mez)

× sin2λidλi + r3

EI

3∑
i=1

∫ βi

0
ai2(ai1Mex + ai2Mey
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+ ai3Mez)sin2λidλi + 4r3

GJ

3∑
i=1

∫ βi

0
ai2(ai1Mex

+ ai2Mey + ai3Mez)sin4(λi/2)dλi, (54)

δϕsz = r3

EI

3∑
i=1

∫ βi

0
bi3(bi1Mex + bi2Mey + bi3Mez)

× sin2λidλi + r3

EI

3∑
i=1

∫ βi

0
ai3(ai1Mex + ai2Mey

+ ai3Mez)sin2λidλi + 4r3

GJ

3∑
i=1

∫ βi

0
ai3(ai1Mex

+ ai2Mey + ai3Mez)sin4λidλi. (55)

To calculate above integrations, we must obtain values of βi.
For any given orientation of MSS, the values of βi, given by
Eq. (16), are first determined from solving inverse kinematics
problem. Substituting the values of βi into Eqs. (53–55) and
using MAPLE software to obtain the integration will result in

δϕsx = r3

EI

3∑
i=1

bi1(bi1Mex + bi2Mey + bi3Mez)

× (0.5βi − 0.25 sin(2βi))

+ r3

EI

3∑
i=1

ai1(ai1Mex + ai2Mey + ai3Mez)

×(0.5βi − 0.25 sin(2βi))

+ 4r3

GJ

3∑
i=1

ai1(ai1Mex + ai2Mey + ai3Mez)

× (0.75βi − 0.75 sin(2βi)

− 0.5 sin3(βi/2)cos(βi/2)), (56)

δϕsy = r3

EI

3∑
i=1

bi2(bi1Mex + bi2Mey + bi3Mez)

× (0.5βi − 0.25 sin(2βi))

+ r3

EI

3∑
i=1

ai2(ai1Mex + ai2Mey + ai3Mez)

× (0.5βi − 0.25 sin(2βi))

+ 4r3

GJ

3∑
i=1

ai2(ai1Mex + ai2Mey + ai3Mez)

× (0.75βi − 0.75 sin(2βi)

− 0.5 sin3(βi/2)cos(βi/2)), (57)

δϕsz = r3

EI

3∑
i=1

bi3(bi1Mex + bi2Mey + bi3Mez)

× (0.5βi − 0.25 sin(2βi))

+ r3

EI

3∑
i=1

ai3(ai1Mex + ai2Mey + ai3Mez)

× (0.5βi − 0.25 sin(2βi))

+ 4r3

GJ

3∑
i=1

ai3(ai1Mex + ai2Mey + ai3Mez)

× (0.75βi − 0.75 sin(2βi)

− 0.5 sin3(βi/2)cos(βi/2)). (58)

By factoring external applied torques, Mex , Mey, and Mez,
the above equations can be written as

δϕsx =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3∑
i=1

⎛
⎜⎜⎜⎝

r3

EI

(
b2

i1 + a2
i1

)
(0.5βi − 0.25 sin(2βi ))

+ 4r3

GJ
α2

i1(0.75βi − 0.75 sin(2βi ) − 0.5 sin3(βi/2) cos(βi/2))

⎞
⎟⎟⎟⎠

3∑
i=1

⎛
⎜⎜⎜⎝

r3

EI
(bi1bi2 + ai1ai2) (0.5βi − 0.25 sin(2βi ))

+ 4r3

GJ
ai1ai2(0.75βi − 0.75 sin(2βi ) − 0.5 sin3(βi/2) cos(βi/2))

⎞
⎟⎟⎟⎠

3∑
i=1

⎛
⎜⎜⎝

r3

EI
(bi1bi3 + ai1ai3) (0.5βi − 0.25 sin(2βi ))

+ 4r3

GJ
ai1ai3(0.75βi − 0.75 sin(2βi ) − 0.5 sin3(βi/2) cos(βi/2))

⎞
⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

×

⎡
⎢⎣

Mex

Mey

Mez

⎤
⎥⎦ = CsxMe, (59)

δϕsx =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3∑
i=1

⎛
⎜⎜⎜⎝

r3

EI
(bi2bi1 + ai2ai1) (0.5βi − 0.25 sin(2βi ))

+ 4r3

GJ
ai2ai1(0.75βi − 0.75 sin(2βi ) − 0.5 sin3(βi/2) cos(βi/2))

⎞
⎟⎟⎟⎠

3∑
i=1

⎛
⎜⎜⎜⎝

r3

EI

(
b2

i2 + a2
i2

)
(0.5βi − 0.25 sin(2βi ))

+ 4r3

GJ
a2

i2(0.75βi − 0.75 sin(2βi ) − 0.5 sin3(βi/2) cos(βi/2))

⎞
⎟⎟⎟⎠

3∑
i=1

⎛
⎜⎜⎝

r3

EI
(bi2bi3 + ai2ai3) (0.5βi − 0.25 sin(2βi ))

+ 4r3

GJ
ai2ai3(0.75βi − 0.75 sin(2βi ) − 0.5 sin3(βi/2) cos(βi/2))

⎞
⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

×

⎡
⎢⎣

Mex

Mey

Mez

⎤
⎥⎦ = CszMe, (60)

δϕsx =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3∑
i=1

⎛
⎜⎜⎜⎝

r3

EI
(bi3bi1 + ai3ai1) (0.5βi − 0.25 sin(2βi ))

+ 4r3

GJ
ai3ai1(0.75βi − 0.75 sin(2βi ) − 0.5 sin3(βi/2) cos(βi/2))

⎞
⎟⎟⎟⎠

3∑
i=1

⎛
⎜⎜⎜⎝

r3

EI
(bi3bi2 + ai3ai2) (0.5βi − 0.25 sin(2βi ))

+ 4r3

GJ
ai3ai2(0.75βi − 0.75 sin(2βi ) − 0.5 sin3(βi/2) cos(βi/2))

⎞
⎟⎟⎟⎠

3∑
i=1

⎛
⎜⎜⎝

r3

EI

(
b2

i3 + a2
i3

)
(0.5βi − 0.25 sin(2βi ))

+ 4r3

GJ
a2

i3(0.75βi − 0.75 sin(2βi ) − 0.5 sin3(βi/2) cos(βi/2))

⎞
⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

×

⎡
⎢⎣

Mex

Mey

Mez

⎤
⎥⎦ = CszMe. (61)
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Fig. 19. FBD of ith link.

Finally, we can write

δϕs =

⎡
⎢⎣

δϕsx

δϕsy

δϕsz

⎤
⎥⎦ =

⎡
⎢⎣

Csx

Csy

Csz

⎤
⎥⎦

T

Me = CsMe, (62)

where Cs is compliance matrix due to flexibility of MSS.

Calculation of compliance matrix for all links, Cl

As shown in Fig. 19, forces Fri and Fti are applied to end
of each link. Forces Fri and Fti result in an axial force and
a bending moment in each link, respectively. Therefore, we
can write strain energy of links, Ul , as follow

Ul =
3∑

i=1

∫ r

0

(
P2

li

2AlEl

+ M2
li

2ElIl

)
dq 0 ≤ q ≤ r, (63)

where Mli is bending moment in each link, Pli is axial force
each link, Al is cross section of link, El is moudoule of
elasticity, Il is centroidal moment of inertia. Additionally,
Mli and Fri can be written as

Mli = qFti = q(ai1Mex + ai2Mey + ai3Mez) 0 ≤ q ≤ r,

(64)

Pli = Fri = (bi1Mex + bi2Mey + bi3Mez), (65)

where aij and bij are the components of the matrices A and
B, respectively. Using Castigliano’s theorem, we must obtain
partial derivation of Eq. (63) with respect to Mex , Mey, and
Mez will result

δϕlx = ∂Ul

∂Mex

=
3∑

i=1

∫ r

0

[
Pli

AlEl

∂Pli

∂Mex

+ 1

ElIl

(
Mli

∂Mli

∂Mex

)]
dq

0 ≤ q ≤ r, (66)

δϕly = ∂Ul

∂Mey

=
3∑

i=1

∫ r

0

[
Pli

AlEl

∂Pli

∂Mey

+ 1

ElIl

(
Mli

∂Mli

∂Mey

)]
dq

0 ≤ q ≤ r, (67)

δϕlz = ∂Ul

∂Mez

=
3∑

i=1

∫ r

0

[
Pli

AlEl

∂Pli

∂Mez

+ 1

ElIl

(
Mli

∂Mli

∂Mez

)]
dq

0 ≤ q ≤ r, (68)

where δϕl = [ δϕlx δϕly δϕlz ]T is virtual rotation vector due
to flexibility of links and δϕlx, δϕly, and δϕlz are its x, y,
and z components, in radians, respectively. By taking partial
derivative of Eqs. (66–68), we can write

∂Mli

∂Mex

= qai1,
∂Mli

∂Mey

= qai2,
∂Mli

∂Mez

= qai3, (69)

∂Pli

∂Mex

= bi1,
∂Pli

∂Mey

= bi2,
∂Pli

∂Mez

= bi3. (70)

Substituting above equations into Eqs. (66)–(68), will result

δϕlx =
3∑

i=1

∫ r

0

[
1

AlEl

bi1
(
bi1Mex + bi2Mey + bi3Mez

)

+ 1

ElIl

(
q2ai1(ai1Mex + ai2Mey + ai3Mez)

)]
dq,

(71)

δϕly =
3∑

i=1

∫ r

0

[
1

AlEl

bi2
(
bi1Mex + bi2Mey + bi3Mez

)

+ 1

ElIl

(
q2ai2(ai1Mex + ai2Mey + ai3Mez)

)]
dq,

(72)

δϕlz =
3∑

i=1

∫ r

0

[
1

AlEl

bi3
(
bi1Mex + bi2Mey + bi3Mez

)

+ 1

ElIl

(
q2ai3(ai1Mex + ai2Mey + ai3Mez)

)]
dq.

(73)

Integrating above equations and factoring external applied
torques, Mex , Mey, and Mez, will result in

δϕlx =
[

3∑
i=1

rb2
i1

AlEl

+ r3a2
i1

3ElIl

3∑
i=1

rbi1bi2

AlEl

+ r3ai1ai2

3ElIl

×
3∑

i=1

rbi1bi3

AlEl

+ r3ai1ai3

3ElIl

]⎡
⎢⎣

Mex

Mey

Mez

⎤
⎥⎦ = ClxMe, (74)

δϕly =
[

3∑
i=1

rbi2bi1

AlEl

+ r3ai2ai1

3ElIl

3∑
i=1

rb2
i2

AlEl

+ r3a2
i2

3ElIl

×
3∑

i=1

rbi2bi3

AlEl

+ r3ai2ai3

3ElIl

]⎡
⎢⎣

Mex

Mey

Mez

⎤
⎥⎦ = ClyMe, (75)
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δϕlz =
[

3∑
i=1

rbi3bi1

AlEl

+ r3ai3ai1

3ElIl

3∑
i=1

rbi3bi2

AlEl

+ r3ai3ai2

3ElIl

×
3∑

i=1

rb2
i3

AlEl

+ r3a2
i3

3ElIl

]⎡
⎢⎣

Mex

Mey

Mez

⎤
⎥⎦ = ClyMe, (76)

Finally, we can write

δϕl =

⎡
⎢⎣

δϕlx

δϕly

δϕlz

⎤
⎥⎦ =

⎡
⎢⎣

Clx

Cly

Clz

⎤
⎥⎦

T

Me = ClMe, (77)

where Cl is compliance matrix due to flexibility of links.

Calculation of compliance matrix for motors, Cm

Finally, we can obtain strain energy of motors as follow

Um =
3∑

i=1

(
1

2
τmi

θmi

)
=

3∑
i=1

(
τ 2
mi

2kmi

)
, (78)

where τmi
is applied torque to ith motor, θmi

is rotation of ith
motor about axis wi when motor is locked and kmi

is torsional
stiffness of ith motor.

Substituting Eq. (34) in Eq. (78) and using Eq. (28),
Eq. (78) can be written as

Um =
3∑

i=1

(
(rFti sin(μi))2

2kmi

)
=

3∑
i=1

(
r2

(
1 − (

wT
i ti

)2)
F 2

ti

2kmi

)

=
3∑

i=1

(
r2

(
1 − (

wT
i ti

)2)
(ai1Mex + ai2Mey + ai3Mez)2

2kmi

)
,

(79)

where aij are components of matrix A. Using Castigliano’s
theorem, we must obtain partial derivation of Eq. (79) with
respect to Mex , Mey, and Mez. This will result in

δϕmx = ∂Um

∂Mex

=
3∑

i=1

(
r2

(
1 − (

wT
i ti

)2)
kmi

ai1(ai1Mex + ai2Mey + ai3Mez)

)
,

(80)

δϕmy = ∂Um

∂Mey

=
3∑

i=1

(
r2

(
1 − (

wT
i ti

)2)
kmi

ai2(ai1Mex + ai2Mey + ai3Mez)

)
,

(81)

δϕmz = ∂Um

∂Mez

=
3∑

i=1

(
r2

(
1 − (

wT
i ti

)2)
kmi

ai3(ai1Mex + ai2Mey + ai3Mez)

)
.

(82)

By factoring external applied torques, Mex , Mex, and Mex ,
the above equations can be written as

δϕmx =
[

3∑
i=1

r2
(
1 − (

wT
i ti

)2)
a2

i1

kmi

3∑
i=1

r2
(
1 − (

wT
i ti

)2)
ai1ai2

kmi

×
3∑

i=1

r2
(
1 − (

wT
i ti

)2)
ai1ai3

kmi

] ⎡
⎢⎣

Mex

Mey

Mez

⎤
⎥⎦ = CmxMe,

(83)

δϕmy =
[

3∑
i=1

r2
(
1 − (

wT
i ti

)2)
ai2ai1

kmi

3∑
i=1

r2
(
1 − (

wT
i ti

)2)
a2

i2

kmi

×
3∑

i=1

r2
(
1 − (

wT
i ti

)2)
ai2ai3

kmi

] ⎡
⎢⎣

Mex

Mey

Mez

⎤
⎥⎦ = CmyMe,

(84)

δϕmz =
[

3∑
i=1

r2
(
1 − (

wT
i ti

)2)
ai3ai1

kmi

3∑
i=1

r2
(
1 − (

wT
i ti

)2)
ai3ai2

kmi
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]⎡
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Mey

Mez

⎤
⎥⎦ = CmzMe.

(85)

Therefore, we can assemble Eqs. (83–85) as follow

δϕm =

⎡
⎢⎣

δϕmx

δϕmy

δϕmz

⎤
⎥⎦ =

⎡
⎢⎣

Cmx

Cmy

Cmz

⎤
⎥⎦ Me = CmMe, (86)

where Cm is compliance matrix due to flexibility of motors.
This completes mathematical calculation of SST

manipulator stiffness. The correctness of the mathematical
stiffness model is next verified using a commercial finite
element analysis package. Therefore, a finite element
analysis model is next considered.

7. Finite Element Analysis (FEA) Model
An FEA model is used to simulate the physical structure
and compare its results with the stiffness predicted by the
mathematical model developed in the previous section.

7.1. Description of the FEA model
A finite element commercial software is used to develop
finite element model of SST manipulator. Three element
types are used in this modeling: BEAM189, MPC184 and
COMBIN14. In this model, the number of elements and
nodes are 378 and 727, respectively. Structural members are
assumed to be the end-effector (MSS) and the motor links.
These members are modeled by BEAM189 element type.
This element is based on Timoshenko beam theory. In this
modeling, the cross-section of the structural members are
assumed to be circular. Diameter of this circle is 0.02 meters.
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The radius of sphere on which MSS travels is assumed to be
one meter. The structural members are assumed to be made
of steel with module of elasticity and Poisson’s ratio of 207
GPa and 0.27, respectively.

Each leg of SST manipulator has two passive and one
active joint. The two passive joints, assumed to be rigid,
connect the flexible MSS to the flexible motor link and
produce simple kinematic constraint. This constraint allows
motion transmission between the two flexible members.
To define this constraint, multipoint constraint element,
MPC184, is used. For this purpose, two nodes are selected,
one attached to MSS and the other attached to the motor link.
The two nodes coincide with each other but are not merged.
Since, the intermediate revolute and curved prismatic joints
are assumed to be rigid, then the MPC184 element that is
also a rigid element is a good choice to model the revolute
and curved prismatic joints.

The motor of SST manipulator are not completely rigid.
Therefore, the motors are modeled by a torsional spring about
motor’s revolution axis. For this purpose, a torsional spring
element, COMBIN14, is selected to simulate stiffness of
motor. In this model, torsional spring constant is assumed as
2 × 106 Nm/rad. Next, using the selected elements discussed
above, SST manipulator is modeled.

7.2. Case studies description and results
In this subsection, three different orientations for MSS are
considered. These three case studies are used to compare
the mathematical model developed in Section 6 with FEA
model. For all three cases, the external torque applied to the
center of MSS is assumed to act about vector s. Therefore,
we can write

Me = [Mex Mey Mez ]T = 10s Nm.

Note that the unit vector s shows the direction about which
external torque is applied. To obtain rotational deflection of
end-effector, rotation of the node that coincides with center of
MSS (point E) is considered. Rotation of this node depends
on external torque Me and orientation of MSS. Rotations of
this node for three different case studies are computed by
finite element commercial software and compared with the
mathematical model (see Table II). These results verify the
correctness of the mathematical model. Also, you can see
deformed and un-deformed shape of FEM model for case 1
in figure 20.

8. Stiffness Evaluation
For a given SST manipulator structure, stiffness is a function
of its configuration. This is because the effective length and

Fig. 20. Deformed and un-deformed shape of FEM model for case 1.

orientation of branches are different for the given configura-
tion. For this reason, the KSI, used in ref. [40] and others, is
considered. This index, κK, is computed in a similar fashion
to KCI by using condition number of stiffness matrix as

κK = σK,max

σK,min
, (87)

where, σK,max and σK,min represent the maximum and
minimum singular values of stiffness matrix, K, respectively.
Since κK can reach values from 1 to ∞, ηK = 1/κK is
used which bounds stiffness index between 0 and 1. This
performance index is called KSI and is plotted for different
values of ψ in Fig. 20 Fig. 21. Also, the maximum value
of KSI versus angle ψ is shown in Fig. 22. This figure
demonstrates that maximum KSI occurs at ψ = 0◦.

In the present work, another performance measure of
stiffness, namely, GSI, that depicts the uniformity of stiffness
within the whole workspace, used in ref. [40], is considered.
The GSI is defined as inverse of condition number of stiffness
matrix, ηK, integrated over the reachable workspace and
divided by the volume of the workspace. Therefore, GSI
can be written as

GSI = ∫w ηKdw

∫w dw
. (88)

Where GSI is used to measure global behavior of manipulator
stiffness index and w is the manipulator’s reachable
workspace. For SST manipulator, the value of GSI is equal
to 0.47.

Table II. Comparison results of FEM model with mathematical model.

Orientation of MSS FEM model Mathematical model

Case study θ (rad) ϕ (rad) ψ (rad) δϕx (rad) δϕy (rad) δϕz (rad) ‖δϕ‖ (rad) δϕx (rad) δϕy (rad) δϕz (rad) ‖δϕ‖ (rad)

1 π
4

54.74π
180 0 0.00149 0.00149 0.00149 0.00258 0.0015 0.0015 0.0015 0.00259

2 π
4

44.74π
180 0 0.0013 0.0013 0.0020 0.00272 0.00121 0.00121 0.0021 0.00271

3 π
4

54.7π
180

π
6 0.00129 0.00129 0.00129 0.00223 0.0013 0.0013 0.0013 0.00225
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Fig. 21. KSI of SST manipulator on sphere for different ψ .

Fig. 22. Maximum KSI vs. angle ψ .

It should be noted that values of GSI and KSI are both
functions of material and structural properties of links and
MSS as well as torsional stiffness of the motors. By choosing
proper values of these parameters, designers can design a
robot with desired GSI with minimum variation.

9. Conclusion
The need for a mechanism capable of accurately orienting a
heavy payload is apparent. This has motivated us to design
the SST manipulator. Previous studies regarding parallel
manipulators have assumed rigid moving platform. However,
the need to carry heavy payload has motivated us to assume

a flexible moving platform. Therefore, in the present paper,
inverse kinematics problem, workspace analysis, accuracy,
and stiffness analysis of SST manipulator, a 3-RRP SPM,
were studied. To perform these analyses, isotropic design
was selected. Equivalent angle–axis representation was used
and a closed form solution was obtained for the inverse
kinematics problem. Workspace analysis was presented
and it was shown that SST manipulator has a relatively
large workspace. Next, accuracy analysis was performed
using inverse kinematics, Jacobian matrices, and workspace
analyses. Two accuracy performance measures, KCI and GCI
were calculated. The GCI of SST manipulator was compared
with the 3-RRR SPM. Results indicated that GCI of SST
manipulator is in “good” range. Stiffness analysis was next
presented. A continuous method based on strain energy and
Castigliano’s theorem was used for stiffness analysis. The
moving platform (MSS), all links and motors were assumed
flexible and torsional stiffness matrix of SST manipulator was
obtained. A commercial FEM package was used to model
the SST manipulator. Results of finite element analysis were
compared with mathematical model and was shown that the
two models closely agree. Lastly, using mathematical model,
stiffness evaluation of SST manipulator was performed and
KSI and GSI indices were evaluated.
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