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Abstract Inverse dynamics of a general model of a
spherical star-triangle (SST) parallel manipulator (En-
feradi and Akbarzadeh Tootoonchi, Robotica 27:663–
676, 2009) is the subject of this paper. This manip-
ulator is of type 3-RRP, has good accuracy and rel-
atively a large workspace which is free of singulari-
ties (Enferadi and Akbarzadeh Tootoonchi, Robotica,
Revised paper, 2009). First, inverse kinematics utiliz-
ing the angle axis representation is solved. Next, ve-
locity and acceleration analysis as well as link Jaco-
bian matrices are obtained in invariant form. Finally,
a systematic approach based on the principle of virtual
work and the concept of link Jacobian matrices is pre-
sented. This method allows elimination of constraint
forces and moments at the passive joints from motion
equations. It is shown that the dynamics of the manip-
ulator can be reduced to solving a system of three lin-
ear equations with three unknowns. Moreover, a com-
putational algorithm for solving the inverse dynamics
is developed. Two examples with different trajectories
for the moving spherical platform are presented and
motor torques are obtained. Results are verified using
a commercial dynamics modeling package.
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1 Introduction

A parallel manipulator typically consists of a mov-
ing platform and a fixed base that are connected to-
gether by several legs. Because of the closed-loop ar-
chitecture, not all joints can be independently actu-
ated. In general, the number of actuated joints is equal
to the number of degrees of freedom of the manipula-
tor. Over the past decades, parallel mechanisms have
received more and more attention from researchers
and industries. They can be found in several practi-
cal applications, such as aircraft simulators [3], posi-
tional trackers [4], telescopes [5], and micro-motion
devices [6]; as well as in the development of high-
precision machine tools [7–9].

A spherical parallel manipulator (SPM) is an ef-
fective parallel manipulator whose moving platform
can undergo only rotational displacements. Thus all
points fixed to the moving platform move on concen-
tric spheres [10]. Several SPMs with different archi-
tectures have been reported in the literature; see, for
instance, [11–13]. One typical SPM, called the agile
eye [14], is used for orienting cameras and antennas.
The pioneering work of Gosselin and Angeles [14],
an overconstrained mechanism with actuated revolute
joints, has contributed significantly to the subsequent
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development of SPMs. Nowadays, the agile eye is a
successful technical application of an SPM. However,
it has a low lifting capacity. In Di Gregorio [12], a new
SPM with RUU-type legs is introduced. Moreover, Di
Gregorio [10] proposed a non-overconstrained SPM
composed of three RRS-type legs. Also, Gallardo et al.
[15] proposed a family of spherical parallel manipula-
tors with a compact asymmetrical topology consisting
of two legs and one spherical joint.

With regard to the parallel manipulators, the kine-
matics and dynamics analysis is more complicated
than serial manipulators due to the presence of con-
straints and singularities. Compared with serial robots,
relatively little research discusses the dynamics of par-
allel manipulators. A survey of the literature and var-
ious formulations of dynamics for parallel manipula-
tor can be found in [16]. The development of a dy-
namical model is important in several different ways.
First, a dynamical model can be used for a computer
simulation of a robotic system. Various manufactur-
ing tasks can be examined without the need of a real
system. Second, it can be used for the development of
suitable control strategies. Third, the dynamic analy-
sis reveals all the joint reaction forces and moments
necessary for sizing the links, bearings and actuators.
Dynamic analysis plays an important role in predict-
ing the behavior of mechanical systems and achiev-
ing their best performances. There are two types of
dynamical problems: (i) The direct dynamics problem
aims to find the response of a robot arm corresponding
to given applied moments and/or forces. That is, given
the vector of joint moments or forces, it computes the
resulting motion of the manipulator as a function of
time. (ii) The inverse dynamics problem aims to find
the actuator moments and/or forces required to gener-
ate a desired trajectory of the manipulator.

Due to the closed-loop structure and kinematic con-
straints of parallel manipulators, the derivation of dy-
namic equations is quite complicated. There are three
main methods of formulation of the dynamical equa-
tions: Newton–Euler laws, the Lagrangian formulation
and the principle of virtual work. The Newton–Euler
formulation requires the motion equations to be writ-
ten for each body of a manipulator. Several researchers
[17–20] have successfully applied this method for the
dynamical analysis of parallel manipulators. Tsai [17]
mentions that this approach leads to a large number of
equations, and therefore it has poor computational ef-
ficiency. Dasgupta and Mruthyunjaya [19] address the

question of dynamic formulation of a 6-DOF parallel
manipulator. The authors solve the dynamic equations
in closed form and show the advantages of its applica-
tion in the case of parallel robots. The benefits of this
approach are evident because the forces of the actua-
tors and the reactions in the joints are determined from
the relatively simple equilibrium equations of the leg
and the platform. This approach together with the La-
grangian formulation is also used by Khalil and Gue-
gan [21].

The Lagrangian formulation allows the elimina-
tion of all reaction forces and moments at the begin-
ning. Nevertheless, due to the numerous constraints
imposed by the closed loops of a parallel manipulator,
it is a difficult task to derive the equations of motion
in terms of a set of independent generalized coordi-
nates. To simplify the problem, additional coordinates
with a set of Lagrangian multipliers must be intro-
duced. The application of this principle for a general
robot was considered by several researchers [22–25].
Lee and Shah [26] present a dynamic analysis of a 3-
DOF parallel manipulator with a R–P–S joint struc-
ture. The equations of motion have been formulated
using the Lagrangian approach. The lengths of the legs
are chosen to be the independent generalized coordi-
nates while the tilt angles of the legs are the depen-
dent ones. Their solution contains redundant gener-
alized coordinates which increase the computational
burden; the lengths of the links are chosen as the gen-
eralized coordinates which do not provide the required
solution for the motion of the end-effector since the
closed-form solution of the direct kinematics task is
not known. In practice, it is desirable to define the mo-
tion with regard to the coordinates of the end-effector.

The principle of virtual work is the most efficient
method for the dynamic analysis of parallel manipu-
lators [17]. Different researchers [27–30] present the
dynamic analysis of parallel manipulators based on
this principle. Wang and Gosselin [29] illustrate the
approach for the dynamics analysis of a spatial six-
degree-of-freedom parallel manipulator with prismatic
actuators (Gough–Stewart platform). This method al-
lows eliminating the constraint forces and moments at
the joints from the motion equations. Moreover, one
can derive the equations of motions in terms of a set of
independent generalized coordinates.

Tsai solved the inverse dynamics of a Stewart–
Gough manipulator using the principle of virtual work.
He presented a systematic methodology based on the
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principle of virtual work and the concept of link Ja-
cobian matrices. He showed that the dynamics of the
manipulator can be reduced to solving a system of six
linear equations with six unknowns. He also simulated
several trajectories of the moving platform and ob-
tained required torques for the desired trajectory of the
moving platform [31].

Staicu and Zhang [32] introduced recursive ma-
trix method to study kinematic and dynamic analysis
of a 3-DOF parallel mechanism. The parallel mech-
anism have three legs with RUS (revolute-prismatic-
spherical) joints and a passive leg located in the cen-
ter to improve the stiffness. The active links of the
mechanism are actuated by three electric motors and
have three independent motions. Finally, they solved
inverse dynamic problem of the manipulator using
the principle of virtual work and determined required
torques for the desired trajectory of the moving plat-
form.

The need for a mechanism capable of orienting a
device is apparent. For example, in the case of satellite
antenna tracking, the orienting system must be accu-
rate and be able to carry a rather large payload. This
has motivated us to design the SST manipulator that
offers certain advantages [1, 2]. To control and further
improve the SST manipulator, dynamics of the manip-
ulator must be determined. In this paper, the principle
of virtual work is employed for solving the inverse dy-
namics of a general model of SST manipulator, which
is a 3-RRP type spherical parallel manipulator. The
general model allows the fixed base to be of any spher-
ical triangular shape and the arcs making the moving
spherical star (MSS), the end-effector, to have any an-
gles between them. The concept of link Jacobian ma-
trices is used to relate motion between MSS and mo-
tion of all passive and active joints. The method leads
to a more compact form of the dynamical equations of
motion. In what follows, first the geometry of a star-
triangle spherical parallel manipulator is described.
Next, the inverse kinematics is analyzed, the link Jaco-
bian matrices are defined and the dynamics equations
of motion are formulated. A computational algorithm
for solving the inverse dynamics of the manipulator
is developed. Two examples with different trajectories
for the moving spherical platform are simulated and
required actuators torque are calculated. A commer-
cial dynamics modeling package is used to create a
physical model and dynamic simulation of the manip-
ulator. Finally, results of the derived analytical model
are verified with the commercial dynamic package.

2 Spherical star-triangle (SST) parallel
manipulator

The spherical star triangle (SST) parallel manipula-
tor consists of a fixed spherical triangular base, P ,
and a moving platform which is shaped like a spher-
ical star, S. The fixed base and the moving platform
are connected via three legs. Each of the three mov-
ing legs is made of PRP (curved prismatic-revolute-
curved prismatic) joints. We use the term curved pris-
matic to denote a motion that slides on a curved path.
An example of this joint used in industry is CURVI-
LINE which is a curved linear bearing [33]. The three
branches of the spherical star and the three moving
legs are each assumed to be identical, resulting in a
symmetrical geometry for the SST manipulator. The
general model of this manipulator is depicted in Fig. 1.
The first curved prismatic joint which is also the mo-
torized joint moves along circular arc, PkPk+1, located
on the surface of the sphere. In practice, it is diffi-
cult to manufacture an actuated curved prismatic joint
which moves on a circular arc. However, by closer in-
spection, one can see that each of the motorized joints
can also be viewed as a revolute joint with its axis
passing through the origin of the sphere. See Figs. 2
and 3. In other words, each of the three legs can also be
thought of being RRP (revolute-revolute-curved pris-
matic) joints. Therefore, to physically construct this
manipulator, we will build its legs with RRP joints.
The physical model of this manipulator is depicted in
Fig. 2. To develop the mathematical model of the ma-

Fig. 1 General model of SST
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Fig. 2 Physical model of the SST manipulator with motors

Fig. 3 Parameters’ description of the kth leg

nipulator, first a sphere with center at O and a fixed
spherical triangle, P1P2P3, on its surface is consid-
ered. The unit vector vk is defined along OPk . Actua-
tor’s strokes which can travel along the arc PkPk+1 are
defined by the angle γk . See Figs. 1 and 3. The moving
spherical star (MSS), S, is considered next. The star is
made of three arcs that are located on a surface of a
second sphere. The first and the second sphere have
the same center but the radius of the second sphere is
slightly larger due to intermediate revolute joint. This
difference should be minimized in order to increase
the structural stiffness of the manipulator. The three

arcs of MSS intersect at point E. The angle between
these arcs, α1, α2 and α3, can be manually selected by
the robot designer to obtain the desired performance.
The position of point E defines the end-effector posi-
tion. The unit vector s is defined along OE. See Figs. 1
and 3. The arcs of the base triangle, PkPk+1, cross over
the corresponding arcs of the moveable star platform
ERk at the point Rk . The angular positions of the ac-
tuators are defined by the unit vector rk . The direction
of this unit vector is defined along ORk . Furthermore,
Rk is a joint which allows rotation about the rk axis
as well as a rotation about the axis that passes through
center of the sphere, O , and is perpendicular to the
OERk plane. See Fig. 3.

3 Notation and coordinate frame description

The following conventions are used for notations in
this paper

• There are three legs, represented by k = 1,2,3.
• The trailing subscript of a vector, coordinate frame,

matrix or a scalar quantity describes the correspond-
ing number of leg. For example, rk , describes angu-
lar position of the kth actuator.

• The leading superscript describes a vector, an axis,
or a matrix with respect to a coordinate frame. For
example, Ark , describes angular position of the kth
actuator with respect to coordinate frame {A}.
◦ Description of a vector without leading super-

script means the vector is described in the fixed
base coordinate frame {B}. For example, rk ,
means, Brk .

• The A
BRk notation is a rotation matrix that describes

rotation of coordinate frame {B} with respect to co-
ordinate frame {A}.

Next, we define coordinate frames that are required to
solve inverse kinematics problem and link Jacobian
matrices. These frames are used to show the relation
between individual joints and the moving platform.
For this purpose, we need to define a total of eleven
coordinate frames which are made up:

• A fixed base coordinate frame, {B}, attached to
fixed base.

• A moving coordinate frame, {E}, attached to end
effector.

• A fixed, nonmoving coordinate frame for each leg,
{0k}, for k = 1,2,3.
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Fig. 4 The moving and base coordinate frames

• A moving coordinate frame for each leg, {1k}, for
k = 1,2,3, attached to actuated joint.

• A moving coordinate frame for each leg, {2k}, for
k = 1,2,3, attached to passive revolute joint.

For example, ikrk where i = 0,1,2 and k = 1,2,3 is a
unit vector which describes the angular position of the
kth actuator with respect to the coordinate frame {ik}.

Before we can define above coordinate frames, we
need to define two unit vectors wk and tk . As stated
before, the motion of the curved prismatic actuator can
also be viewed as a revolution (revolute joint) with an
axis that passes through origin of the sphere. This axis
is defined by a unit vector, wk (Fig. 3). This unit vector
is perpendicular to the plane OPkPk+1. Therefore,

wk = vk × vk+1

‖vk × vk+1‖ or wk = vk × rk

‖vk × rk‖ . (1)

The motion of the passive curved prismatic joint can
also be viewed as a revolute joint with an axis that
passes through the origin of the sphere. This axis is
defined by a unit vector, tk (Fig. 3). This unit vector is
perpendicular to the plane OERk and passes through
the origin. Therefore,

tk = s × rk

‖s × rk‖ . (2)

We can now define the 11 coordinate frames based on
the unit vectors vk , s, wk , and tk . Note that the origins
of all 11 coordinate frames are located at the center of
the sphere.

Fig. 5 Coordinate frame description of the kth leg

Fig. 6 All coordinate frames

• The first coordinate frame B(x, y, z) is attached to
the fixed based and is called the fixed base coor-
dinate frame. The x and z axes of this frame are
chosen along the unit vectors v1 and w1, respec-
tively. The y axis is chosen by the right hand rule.
See Fig. 4.

• The second coordinate frame E(u,v,w) is attached
to the moving spherical star (MSS). The w and v

axes of this frame are chosen along s and t1, respec-
tively. The v axis is chosen by the right hand rule.
See Fig. 4.

• The fixed, nonmoving coordinate frame for each
leg, {0k} = (0kx, 0ky, 0kz), is attached to the fixed
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base. The 0kx and 0kz axes of these coordinate
frames are chosen along the unit vectors vk and
wk , respectively. The 0ky axis is chosen by the right
hand rule. See Fig. 5.

• The moving coordinate frames {1k} =
(1kx, 1ky, 1kz) are attached to the actuated links,
motors shaft. The 1kx and 1kz axes of these coor-
dinate frames are chosen along the unit vectors rk

and wk , respectively. The 1ky axis is chosen by the
right hand rule. See Fig. 5.

• The moving coordinate frames {2k} =
(2kx, 2ky, 2kz) are attached to the revolute passive
joints. To simplify mathematics, the 2kx axis is cho-
sen to be along the rotation axis. Therefore, the 2kx

and 2kz axes of these coordinate frames are chosen

along the unit vectors rk and tk , respectively. The
2ky axis is chosen by the right hand rule. See Fig. 5.

All 11 coordinate frames are shown in Fig. 6.

4 Kinematics analysis

As stated before, the first coordinate frame B(x, y, z)

is attached to the fixed based and the second coordi-
nate frame E(u,v,w) is attached to the MSS. These
coordinate frames as well as unit vectors defined in
Sect. 3 will now allow us to describe the MSS orien-
tation with respect to the fixed base. Using the Z-Y -Z
Euler angles, the rotation matrix is defined as

B
ER = R(z, θ)R

(
y′, ϕ

)
R

(
z′′,ψ

)

=
⎡

⎣
cos θ cosϕ cosψ − sin θ sinψ − cos θ cosϕ sinψ − sin θ cosψ cos θ sinϕ

sin θ cosϕ cosψ + cos θ sinψ − sin θ cosϕ sinψ + cos θ cosψ sin θ sinϕ

− sinϕ cosψ sinϕ sinψ cosϕ

⎤

⎦ , (3)

where

R(z, θ) =
⎡

⎣
cos θ − sin θ 0
sin θ cos θ 0

0 0 1

⎤

⎦ , (4)

R
(
y′, ϕ

) =
⎡

⎣
cosϕ 0 sinϕ

0 1 0
− sinϕ 0 cosϕ

⎤

⎦ , (5)

R
(
z′′,ψ

) =
⎡

⎣
cosψ − sinψ 0
sinψ cosψ 0

0 0 1

⎤

⎦ , (6)

and where the angles θ , ϕ and ψ specify the orien-
tation of MSS. The angle θ is rotation about z axis,
angle ϕ is rotation about y′ axis and angle ψ is rota-
tion about z′′ axis. These rotations are shown in Fig. 7.
Note that the moving coordinate frame E(u,v,w) is
coincident to the coordinate frame (x′′′, y′′′, z′′′).

4.1 Inverse kinematics analysis

A solution to the inverse kinematics problem is re-
quired for velocity, acceleration and inverse dynamic

analysis. Therefore, the inverse kinematics problem of
the SST manipulator is the subject of this section. As
shown in Figs. 5 and 7d, the orientation of the MSS
can be defined by the unit vector s as well as angle ψ

(rotation angle about the unit vector s). The unit vec-
tor s is defined by the angles θ and ϕ. Therefore, the
orientation analysis (inverse kinematics problem) can
be defined as: given an orientation of the MSS (unit
vector s and angle ψ ) and other kinematics parame-
ters, obtain the actuator rotations, γk . For inverse kine-
matics analysis, we use an equivalent angle-axis rep-
resentation [34]. The equivalent angle-axis representa-
tion is defined by

Q(e, η) = cosηI3×3 + (1 − cosη)eeT

+ sinη

⎡

⎣
0 −ez ey

ez 0 −ex

−ey ex 0

⎤

⎦ , (7)

where the unit vector e is the axis of rotation, η is the
angle of rotation about the unit vector e and ex, ey, ez

are the Cartesian components of the unit vector e. The
step-by-step procedure for solving the inverse kine-
matics problem of the SST manipulator is as follows:
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Fig. 7 Rotation angles of
MSS with respect to the
base coordinate frame:
(a) reference (home)
orientation of MSS;
(b) rotation about z axis by
θ angle; (c) rotation about
y′ axis by ϕ angle;
(d) rotation about z′′ axis
by ψ angle

Step 1 Given a rotation matrix MSS with respect to
the base frame, B

ER, calculate the unit vectors s
and t1.

As stated before, the w and v axes of the moving co-
ordinate frame {E} are along the unit vectors s and t1,
respectively. See Fig. 4. Therefore, we can write s and
t1 in the base coordinate frame as follows

s = B
EREw = B

ER

⎡

⎣
0
0
1

⎤

⎦ =
⎡

⎣
cos θ sinϕ

sin θ sinϕ

cosϕ

⎤

⎦ , (8)

t1 = B
EREv = B

ER

⎡

⎣
0
1
0

⎤

⎦

=
⎡

⎣
− cos θ cosϕ sinψ − sin θ cosψ

− sin θ cosϕ sinψ + cos θ cosψ

sinϕ sinψ

⎤

⎦ . (9)

Step 2 Using an equivalent axis-angle representation,
calculate the unit vectors t2 and t3.

The structure of the moveable star can be used in or-
der to find the unit vectors t2 and t3. Consider Figs. 1
and 3. The unit vector, tk , is perpendicular to the plane

that contains the corresponding arc, ERk , of the move-
able star. We previously obtained t1 in Step 1. Now,
using (7), the unit vectors t2 and t3 can be obtained by
rotating t1 about s by α3 and −α2, respectively:

t2 = Q(s, α3)t1 = cosα3I3×3t1 + (1 − cosα3)ssTt1

+ sinα3(s × t1), (10)

t3 = Q(s,−α2)t1 = cosα2I3×3t1 + (1 − cosα2)ssTt1

− sinα2(s × t1). (11)

The unit vector tk is perpendicular to the unit vector s.
Therefore, (10) and (11) can be simplified as

t2 = cosα3t1 + sinα3(s × t1), (12)

t3 = cosα2t1 + sinα2(s × t1), (13)

Step 3 Obtain the unit vectors rk as a function of γk

for k = 1,2,3.

Consider Figs. 1 and 3. The three actuated curved pris-
matic joints move along the arc PkPk+1. This motion
can be viewed as revolution about an axis that passes
through the origin of the sphere. This axis is defined
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by the unit vector wk . This unit vector is perpendic-
ular to the plane OPkPk+1. In the inverse kinematics
problem, the positions of the actuators are unknown.
These positions are described by the unit vectors rk .
This unit vector can be defined by rotation of the unit
vector vk about the unit vector wk in positive direction
by the angle γk . Therefore, the unit vector rk can be
written as

rk = Q(wk, γk)vk = cosγkI3×3vk

+ (1 − cosγk)wkwk
Tvk + sinγk(wk × vk). (14)

Since vk is perpendicular to wk , the above equation
can be simplified as

rk = cosγkvk + sinγk(wk × vk) for k = 1,2,3. (15)

Therefore, the unit vector rk is defined as a function
of the unknown angle γk . This unit vector describes
position of the actuators.

Step 4 Obtain the rotation angle of actuators, γk .

To obtain the unknown angles γk , three independent
trigonometric equations are formulated by noting that
tk is perpendicular to rk according to (1):

rT
k tk = 0 for k = 1,2,3 (16)

Equations (9), (12), (13), and (15) can be substituted
into (16), which results in

cosγkvT
k tk + sinγk(wk × vk)

Ttk = 0

for k = 1,2,3. (17)

Therefore, the closed form solution of the inverse kine-
matics problem is given by

γk = A tan 2
[−vT

k tk, (wk × vk)
Ttk

]

for k = 1,2,3. (18)

Note that the terms (vT
k tk) and ((wk × vk)

Ttk) both
have known numerical values. This completes the so-
lution of the inverse kinematics problem. Next, with
the known vk and wk from robot structure and calcu-
lated γk from the inverse kinematics problem, we can
obtain the unit vectors rk using (15). These unit vec-
tors, rk , are needed to obtain the velocity and acceler-
ation Jacobian matrices.

4.2 Angular velocity and angular acceleration
of MSS

The angular velocity and angular acceleration of the
MSS are needed for computing velocity and acceler-
ation of actuators. Therefore, in this subsection, we
compute the angular velocity and angular acceleration
of the MSS with respect to θ , ϕ and ψ angles (which
specify orientation of the MSS) and their time deriva-
tives. According to Figs. 4 and 7, the angular velocity
of the MSS can be written as

ω = θ̇k + ϕ̇j ′ + ψ̇s

= θ̇k + ϕ̇R(z, θ)
[

0 1 0
]T + ψ̇s

=
⎡

⎣
ψ̇sx − ϕ̇ sin θ

ψ̇sy + ϕ̇ cos θ

θ̇ + ψ̇sz

⎤

⎦ , (19)

where

sx = sinϕ cos θ, (20)

sy = sinϕ sin θ, (21)

sz = cosϕ. (22)

Note that the unit vector s = [sx sy sz]T was previously
defined in (8). The angular acceleration of the MSS
can be obtained by taking the derivative of (19) as

ω̇ = θ̈k + ϕ̈j ′ + θ̇ ϕ̇
(
k × j ′) + ψ̈s

+ ψ̇
(
θ̇k + ϕ̇j ′) × s

= θ̈k + ϕ̈R(z, θ)[0 1 0]T

+ θ̇ ϕ̇
(
k × R(z, θ)[0 1 0]T) + ψ̈s

+ ψ̇
(
θ̇k + ϕ̇R(z, θ)[0 1 0]T) × s. (23)

Therefore, we have

ω̇ =
⎡

⎣
−ϕ̈ sin θ − θ̇ ϕ̇ cos θ + ψ̈sx
ϕ̈ cos θ + θ̇ ϕ̇ sin θ + ψ̈sy

θ̈ + ψ̈sz

⎤

⎦ +
⎡

⎣
−ψ̇ϕ̇ sin θ

ψ̇ϕ̇ cos θ

ψ̇θ̇

⎤

⎦

×
⎡

⎣
sx
sy
sz

⎤

⎦ . (24)

Having obtained the angular velocity and angular ac-
celeration of the end-effector, we will proceed to cal-
culate the angular velocity and angular acceleration of
the actuators.
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4.3 Velocity analysis

The differential kinematics relations pertaining to par-
allel manipulators take on the form

Jγ̇ + Kω = 0, (25)

where J and K are the two Jacobian matrices for the
manipulator at hand. Moreover, γ̇ is the vector of the
actuator rates and ω is the angular velocity of the MSS
in the base coordinate frame. Referring to Fig. 3, the
angular velocity ω of the end-effector defined in the
base coordinate frame can be written as

wkγ̇k − rkμ̇k − tkβ̇k = ω for k = 1,2,3 (26)

where β̇k is the equivalent angular velocity for the pas-
sive curved prismatic joint and μ̇k is the angular ve-
locity of the passive revolute joint. See Fig. 3. The
terms γ̇k , μ̇k and β̇k have scalar values, and the three
unit vectors wk , rk , tk represent their respective direc-
tion. Also note that μk is the angle between the planes
OERk and OPkPk+1, while βk is the angle between
s and rk . The inner product of both sides of (26) with
(rk × tk) leads to an equation free of passive joints
rates, which simplifies to

(rk × tk)Twkγ̇k − (rk × tk)Tω = 0. (27)

Equations (27) for k = 1,2,3 can be assembled and
expressed in vector form as (25). Therefore, we can
define J and K as follows:

J =
⎡

⎣
c1 0 0
0 c2 0
0 0 c3

⎤

⎦ , (28)

K =
⎡

⎣
−(r1 × t1)

T

−(r2 × t2)
T

−(r3 × t3)
T

⎤

⎦ (29)

in which

ck = (rk × tk)Twk for k = 1,2,3. (30)

Therefore, we can write

γ̇ = −J−1Kω. (31)

4.4 Acceleration analysis

In this subsection, we relate the angular acceleration of
the MSS to the angular acceleration of actuators. From

Figs. 1 and 3 and using (26), the angular acceleration
of the MSS can be written for the kth leg as

wkγ̈k − rkμ̈k − γ̇kμ̇k(wk × rk) − tkβ̈k

− β̇k(ω × tk) = ω̇ for k = 1,2,3, (32)

where γ̈k is the angular acceleration of the actuators,
μ̈k is the angular acceleration of the passive revolute
joint, β̈k is the equivalent angular acceleration for the
passive curved prismatic joint, and ω̇ is the angular
acceleration of the MSS in the coordinate frame {B}
that is defined in (24).

Upon multiplication of two sides of (32) by
(rk × tk)T and eliminating angular acceleration of the
passive joints μ̈k and β̈k , (32) can be rewritten as

(rk × tk)Twkγ̈k − (rk × tk)Tω̇

− γ̇kμ̇k(rk × tk)T(wk × rk)

− β̇k(rk × tk)T(ω × tk) = 0. (33)

Using (26), we can obtain the angular velocity of the
passive joints μ̇k and β̇k . For this purpose, we multiply
the two sides of (26) by rT

k and tT
k , respectively. Since

the unit vector rk is perpendicular to both unit vectors
wk and tk , we can obtain μ̇k and β̇k as follows

μ̇k = −rT
k ω, (34)

β̇k = γ̇ktT
k wk − tT

k ω. (35)

Substituting these values into (33) and simplifying will
lead to

ckγ̈k − (rk × tk)Tω̇ − 2γ̇k

(
rT
k ω

)(
tT
k wk

)

+ (
rT
k ω

)(
tT
k ω

) = 0. (36)

For k = 1,2,3, the above equation can be written in
the matrix form as

Jγ̈ + Kω̇ + Mγ̇ + N = 0, (37)

in which matrices J and K were defined by (28)
and (29), respectively. The matrix M and the vector N
are defined as

M =
⎡

⎣
d1 0 0
0 d2 0
0 0 d3

⎤

⎦ , (38)

N =
⎡

⎣
f1

f2

f3

⎤

⎦ , (39)
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where

dk = −(
rT
k ω

)(
tT
k wk

)
, (40)

fk = −(
rT
k ω

)(
tT
k ω

)
. (41)

Therefore, the angular acceleration of the actuators
can be obtained as follows

γ̈ = −J−1(Kω̇ + Mγ̇ + N). (42)

4.5 Link Jacobian matrices

The link Jacobian matrices are used to relate the mo-
tion between MSS and the motion of all passive and
active joints. They offer an advantage of leading to a
more compact form of the dynamical equations of mo-
tion. The link Jacobian matrices have already been in-
troduced and applied to the Stewart-platform [31]. In
this paper, we apply this concept to the SST spher-
ical parallel manipulator. The SST manipulator has
three actuated links, three intermediate passive links
and one MSS. Finding relations between the motion
of MSS and the motion of all passive and active links
is the subject of this subsection. These relations will
be used when solving the inverse dynamics prob-
lem utilizing the virtual work method. For this pur-
pose, we can use the coordinate frames described in
Sect. 3. We previously defined the fixed coordinate
frames for each leg as {0k}. Therefore, the rotation
matrix defining these coordinate frames with respect
to the base frame, {B}, can be defined by writing the
axes of the frames {0k} in the base coordinate frame
as

B
0kR =

[
vk

wk × vk

‖wk × vk‖ wk

]

for k = 1,2,3. (43)

We previously defined the coordinate frames {1k}
that were attached to the actuated joints. For each
leg, a rotation matrix can describe the orientation
of the frame {1k} with respect to the frame {0k}
as

0k
1kR = Rot

(0kz, γk

) = Rot
(0kwk, γk

)

for k = 1,2,3. (44)

The coordinate frames {2k} are attached to the passive
revolute joints. Therefore, the rotation matrix describ-
ing the orientation of these coordinate frames with

respect to the coordinate frames {1k} can be written
as

1k
2kR = Rot

(1kx,−μk

) = Rot
(1krk,−μk

)

for k = 1,2,3. (45)

Next, we will define angular velocity of the kth actua-
tor, 1kωa , as

1kωa = γ̇ 1k
k wk for k = 1,2,3. (46)

To find the relationship between the angular veloc-
ity of the kth actuator and the angular velocity of the
MSS, we can multiply both sides of (26) by 1k

B R and
simplify to

1k
B Rwkγ̇k − 1k

B Rrkμ̇k − 1k
B Rtkβ̇k = 1k

B Rω

for k = 1,2,3, (47)

1kwkγ̇k − 1krkμ̇k − 1ktkβ̇k = 1k
B Rω

for k = 1,2,3, (48)

where

1k
B R = (0k

1kR
)T(

B
0kR

)T for k = 1,2,3. (49)

The inner product of both sides of (48) by
(1krk × 1ktk)T leads to an equation free of passive
joints rates, which simplifies to

(1krk × 1ktk
)T1kwkγ̇k = (1krk × 1ktk

)T1k
B Rω

for k = 1,2,3. (50)

Therefore,

γ̇k = (1krk × 1ktk)T1k
B R

(1krk × 1ktk)T1kwk

ω for k = 1,2,3. (51)

Substituting above equation into (46) leads to

1kωa = 1kJaω for k = 1,2,3, (52)

where

1kJa =
1kwk(

1krk × 1ktk)T1k
B R

(1krk × 1ktk)T1kwk

for k = 1,2,3 (53)

is a 3 × 3 matrix called the link Jacobian matrix of
the kth actuator. These three matrices transform the
angular velocity of the MSS to the angular velocity of
the individual motors. Next, we can write the angular
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velocity of the kth intermediate passive link (ipl) as
follows

2kωipl = 2k
1kR1kωa + μ̇k

2krk for k = 1,2,3. (54)

Substituting (46) into the above equation leads to

2kωipl = γ̇k
2kwk + μ̇k

2krk for k = 1,2,3, (55)

where 2kwk = 2k
1kR1kwk .

To find the relationship between the angular veloc-
ity of the kth intermediate passive link and the angu-
lar velocity of the MSS, we can multiply both sides
of (26) by 2k

B R:

2k
B Rwkγ̇k − 2k

B Rrkμ̇k − 2k
B Rtkβ̇k = 2k

B Rω

for k = 1,2,3, (56)

2kwkγ̇k − 2krkμ̇k − 2ktkβ̇k = 2k
B Rω

for k = 1,2,3, (57)

where

2k
B R = (1k

2kR
)T(0k

1kR
)T(

B
0kR

)T for k = 1,2,3. (58)

The inner product of both sides of (57) with
(2kwk × 2ktk)T leads to

−(2kwk × 2ktk
)T2krkμ̇k = (2kwk × 2ktk

)T2k
B Rω

for k = 1,2,3. (59)

Therefore, we can write the angular velocity of the kth
passive revolute joint as

μ̇k = − (2kwk × 2ktk)T2k
B R

(2kwk × 2ktk)T2krk

ω for k = 1,2,3. (60)

By substituting (51) and (60) into (55), we can
write

2kωipl = 2kJiplω for k = 1,2,3, (61)

where

2kJipl =
2kwk(

1krk × 1ktk)T1k
B R

(1krk × 1ktk)T1kwk

−
2krk(

2kwk × 2ktk)T2k
B R

(2kwk × 2ktk)T2krk

for k = 1,2,3

(62)

is a 3 × 3 matrix called the link Jacobian matrix of
the kth intermediate passive link. These three matri-
ces transform the angular velocity of the MSS to the
angular velocity of the individual intermediate passive
links.

5 Dynamics

For the inverse dynamics problem, a desired trajec-
tory of the MSS is given, and the problem is to de-
termine the input torques required to produce the de-
sired motion. For simplicity, we will assume that fric-
tional forces at the joints are negligible. There are
three main methods that may be utilized in order to
compute the actuated torques. The first one is to use
the Newton–Euler classic procedure, the second uses
the Lagrange’s equations, and the third approach is
based on the principle of virtual work.

Unlike serial manipulators, parallel manipulators
always contain passive joints. Among these methods,
virtual work allows elimination of constraint forces
and moments at the passive joints from motion equa-
tions. Therefore, the virtual work method can offer
certain advantages. The principle of virtual work states
that a mechanism is under dynamic equilibrium if and
only if the virtual work developed by all external, in-
ternal and inertia forces vanish during any virtual dis-
placement that is compatible with the kinematics con-
straints. In this section, the dynamical equations of
motion are formulated using the principle of virtual
work.

5.1 Applied torques and inertia

The resultant applied moment exerted at the mass cen-
ter of MSS in the base coordinate frame is as follows

ne = next − Isω̇ − ω × (Isω), (63)

where next is the external moment exerted at the mass
center of MSS (point E) and Is is the inertia matrix of
MSS with respect to the base coordinate frame, {B},
and is defined as

Is = B
EREIs

E
BR, (64)

where EIs is the inertia matrix of the MSS with re-
spect to moving coordinate frame, {E}, attached to
MSS. The external moment applied to the mass center
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of MSS will produce motion in the MSS and therefore
motion in both passive and active links. The inertia,
as a result of motion of the actuated and passive links,
will produce a moment that can be expressed as fol-
lows:

1kna = −1kIa
1kω̇a − 1kωa × (1kIa

1kωa

)

for k = 1,2,3, (65)

2knipl = −2kIipl
2kω̇ipl − 2kωipl ×

(2kIipl
2kωipl

)

for k = 1,2,3, (66)

where

1kω̇a = γ̈k
1kwk for k = 1,2,3, (67)

2kω̇ipl = 2k
1kR1kω̇a + (2k

1kR1kωa

) × (
μ̇k

2krk

) + μ̈k
2krk

for k = 1,2,3, (68)

and 1kIa is the inertia matrix of the kth actuated link,
expressed in the coordinate frame {1k}, attached to the
kth actuated joint. Also, 2kIipl is the inertia matrix of
the intermediate passive link that is expressed in the
coordinate frame {2k}, attached to the passive revolute
joint.

5.2 Equation of motions

The equation of motion using the principle of virtual
work can be stated as

(δγ )Tτ + (δλs)
Tne

+
3∑

k=1

((
δ1kλa

)T1kna + (
δ2kλipl

)T2knipl
) = 0, (69)

where δγ and δλs are the virtual rotation vectors of the
actuators and the MSS in the base coordinate frame
{B}, respectively. Also, δ1kλa and δ2kλipl are the vir-
tual rotation vectors of the kth actuator link and the
kth intermediate passive link with respect to the coor-
dinate frame that is attached to them, respectively, and
τ is a vector that represents the three actuated torques.
Clearly, the axis of each actuator torque is defined in
the frame which is attached to it, namely frame {1k}.
The z-axis of this moving frame will always remain
in line with the unit vector wk which itself is defined
in the base coordinate frame, {B}, see Fig. 5. There-
fore, the directions of the three actuator torques are
pre-defined in the base frame and will not need any
transformations.

The virtual rotations in the equation of motion (69)
must be compatible with the kinematics constraints
imposed by both active and passive joints. Therefore,
it is necessary to relate the above virtual displacements
to a set of independent generalized virtual displace-
ments. Using (31), (52) and (61), we can write

λ̇s = ω
(31)⇒ δγ = −J−1Kδλs , (70)

1kλ̇a = 1kωa
(52)⇒ δ1kλa = 1kJaδλs , (71)

2kλ̇ipl = 2kωipl
(61)⇒ δ2kλipl = 2kJiplδλs . (72)

Substituting above equations into (69) yields

(δλs)
T

(
(−J−1K

)T
τ + ne +

3∑

k=1

((1kJa

)T1kna

+ (2kJipl
)T2knipl

)
)

= 0. (73)

Since (73) is valid for any δλs , it follows that

(−J−1K
)T

τ + ne +
3∑

k=1

((1kJa

)T1kna

+ (2kJipl
)T2knipl

) = 0. (74)

Equation (74) provides the dynamical equations of the
SST manipulator. This equation shows that the dynam-
ics of the SST manipulator can be reduced to solv-
ing a system of three linear equations with three un-
known actuator torques. Therefore, we can obtain in-
put torques required to produce the desired trajectory
of MSS as follows

τ = (
K−1J

)T

(

ne +
3∑

k=1

((1kJa

)T1kna

+ (2kJipl
)T2knipl

)
)

. (75)

6 Computational algorithm

In this section, a computational algorithm for solv-
ing the inverse dynamics of the manipulator is devel-
oped. For the inverse dynamics problem, the orienta-
tion of the MSS (angles θ , ϕ and ψ ) as a function of
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time is supplied. Then, the angular velocity and angu-
lar acceleration of the MSS are calculated using (19)
and (24). Therefore, with the known orientation, the
angular velocity and angular acceleration of the MSS,
input torques required to produce the desired motion
can be calculated by the following steps:

Step 1. Solve the inverse kinematics problem. Obtain
γ1, γ2 and γ3.

(a) Compute s and t1 from (8) and (9), respectively.
(b) Compute t1 and t2 from (10) and (11), respec-

tively.
(c) Compute wk from (1), for k = 1,2,3.
(d) Compute γk from (18), for k = 1,2,3.

Step 2. Velocity and acceleration analysis. Obtain γ̇

and γ̈ .

(a) Compute the angular velocity of the MSS, ω,
from (19).

(b) Compute the angular acceleration of the MSS, ω̇,
from (24).

(c) Compute the unit vector rk from (15), for k =
1,2,3.

(d) Compute the Jacobian matrices J and K from
(28) and (29), respectively.

(e) Compute the angular velocity vector of actuators,
γ̇ , from (31).

(f) Compute the matrices M and N from (38)
and (39), respectively.

(g) Compute angular acceleration vector of actua-
tors, γ̈ , from (42).

Step 3. Formulate the link Jacobian matrices. Obtain
1kJa and 1kJipl for k = 1,2,3.

(a) Compute the rotation matrices B
0kR, 0k

1kR and 1k
2kR

for k = 1,2,3 from (43), (44) and (45), respec-
tively.

(b) Compute the link Jacobian matrices 1kJa and
2kJipl for k = 1,2,3 from (53) and (62), respec-
tively.

Step 4. Inverse dynamics. Obtain τ = [τ1 τ2 τ3]T.

(a) Compute 1kωa , 2kωipl, 1kω̇a , 2kω̇ipl for k =
1,2,3 from (52), (61), (67), and (68), respec-
tively.

(b) Compute EIs , 1kIa and 2kIipl.
(c) Compute Is and ne from (64) and (63), respec-

tively.
(d) Compute 1kna and 1knipl from (65) and (66), re-

spectively.
(e) Compute the required actuator torques from (75).

7 Numerical examples

As stated before, the solution outlined in this paper
applies to a general model of the SST manipulator.
For simplicity and ease of illustration, we choose the
isotropic design of the SST manipulator [1]. Based on
the algorithm outlined in the previous section, a com-
puter program is developed using MATLAB software.
Two different trajectories for the MSS are supplied and
required motor torques are calculated. Results are ver-
ified with a dynamics modeling commercial software.

7.1 Specification of the SST manipulator

(a) Architecture parameters—fixed base. Assume that
the radius is 0.35 m and that the planes OP1P2,
OP2P3 and OP3P1 of the SST manipulator are
located in the x-y, y-z and z-x planes of the base
coordinate frame, respectively. See Fig. 1. There-
fore,

v1 = [1 0 0]T, v2 = [0 1 0]T,

v3 = [0 0 1]T.

(b) Architecture parameters—MSS. Assume that the
radius is 0.4 m and that the angle between the
planes OERk and OERk+1 is 120◦. See Figs. 1
and 3. Therefore,

α1 = α2 = α3 = 120◦.

(c) Mass properties of MSS.

ms = 2.6 kg,

EIs =
⎡

⎣
0.224 0 0

0 0.224 0
0 0 0.150

⎤

⎦ kg m2.

(d) Equal mass properties for each actuator link, k =
1,2,3.

ma = 3 kg,

1kIa =
⎡

⎣
0.0001 0 −0.0001

0 0.0008 0
−0.0001 0 0.008

⎤

⎦ kg m2.

(e) Equal mass properties for each intermediate pas-
sive link, k = 1,2,3.

mipl = 0.06 kg,
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2kIipl =
⎡

⎣
0.00001 0 0

0 0.005 0
0 0 0.005

⎤

⎦ kg m2.

7.2 Trajectory of MSS

7.2.1 First trajectory

For the first simulation, the trajectory of MSS is spec-
ified as follows

θ = π/4,

ϕ = cos−1(√3/3
)
,

ψ = (1/12) sin(12t),

where 0 ≤ t ≤ π/6. Using the specified angles, the
unit vector s can be calculated by (20)–(22) as

s = [sx sy sz]T =
[√

3

3

√
3

3

√
3

3

]T

.

This implies that the position of point E, defining the
end-effector position, remains fixed in the center of the
base spherical triangle, while the MSS rotates about
the unit vector s in a sinusoidal fashion. Also note that
in parts (a) and (b) of this example, we intentionally
choose parameters that resulted in a symmetrical base
and symmetrical MSS. Next, we choose the values for
θ and ϕ that place the MSS in the center of the base
spherical triangle. Therefore, any selected trajectory
for the angle ψ should result in equal torques for all
three motors.

Using steps outlined in Sect. 6, the input torques
are calculated as functions of time and are plotted in
Fig. 8. As expected values of the three motor torques
remain equal during simulation.

To further verify our analytical model, the trajec-
tory is simulated using a dynamics modeling commer-
cial software. Results of this simulation and our ana-
lytical model are plotted in Fig. 9. It shows that the
two results are indistinguishable. These results verify
the correctness of our mathematical model.

7.2.2 Second trajectory

For the second simulation, the position of the point E

moves along a circular path on the surface of the spher-
ical triangle, while the MSS does not rotate about the
unit vector s. See Fig. 10. The trajectory of the MSS is

Fig. 8 Actuated torques for the analytical model

Fig. 9 Comparison of the analytical model and commercial
software

Fig. 10 Circular path followed by a point on MSS
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Fig. 11 Comparison of the analytical model and commercial
software for a circular path

given as

θ = tan−1(sy/sx),

ϕ = cos−1 sz,

ψ = 0,

where

sx = 1

71

(
4
√

6 cos(12t)−12
√

2 sin(12t)+
√

13395

3

)
,

sy = 1

71

(
4
√

6 cos(12t)+12
√

2 sin(12t)+
√

13395

3

)
,

sz = 1

71

(
−8

√
6 cos(12t) +

√
13395

3

)
,

and 0 ≤ t ≤ π/6. The three motor torques are calcu-
lated as functions of time. Additionally, this trajectory
is simulated using a dynamics modeling commercial
software. Results of these simulations are plotted in
Fig. 11. As shown, the results of the analytical and
commercial software are indistinguishable. These re-
sults verify the correctness of our mathematical model.

8 Conclusion

Based on the principle of virtual work, a methodology
for solving the inverse dynamics of a general model
SST manipulator is developed. Using the principle of
virtual work, the constraint forces are eliminated at the
outset. This allows us to reduce the inverse dynamics
of the SST manipulator to solving a system of three

linear equations. The methodology involves four ba-
sic steps. First, the inverse kinematics problem utiliz-
ing angle-axis representation is solved. Next, veloc-
ity and acceleration analysis using invariant form is
performed. In the third step, the link Jacobian matri-
ces using invariant form are formulated which offers
an advantage of leading to a more compact form of
the dynamical equations of motion. In the fourth step,
dynamics analysis is carried out. To demonstrate the
methodology, two numerical examples are presented.
The methodology has been implemented in a MAT-
LAB program. Two trajectories for MSS are consid-
ered and motor torques are obtained through simula-
tion. Results are verified using a dynamics modeling
commercial package. Although no attempt has been
made to estimate the computational efficiency of the
algorithm, the proposed method is believed to be more
efficient than the Lagrangian method and the Newton–
Euler formulation. One shortcoming of the presented
method is that the reaction forces can not be deter-
mined.

The study presented in this paper provides a frame-
work for future research in the areas of manipulator
control, motion planning and optimization for the SST
manipulator.
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