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On nondiscreteness of a higher topological

homotopy group and its cardinality

H. Ghane – Z. Hamed

Abstract

Here, we are going to extend Mycielski’s conjecture to higher homotopy
groups. Also, for an (n − 1)-connected locally (n − 1)-connected compact

metric space X, we assert that π
top
n (X) is discrete if and only if πn(X) is

finitely generated. Moreover, π
top
n (X) is not discrete if and only if it has the

power of the continuum.

1 Introduction

In 1998, J. Pawlicowski [5] presented a forcing free proof of a conjecture of My-
cielski [4] that the fundamental group of a connected locally connected compact
metric space is either finitely generated or has the power of the continuum. In
[1], Biss equipped the loop space of X with the compact open topology. Then
he put a canonical topology on the fundamental group of X as a quotient of
Hom((S1, 1), (X, x)) which is invariant under the homotopy type of X and de-

noted it by π
top
1 (X, x). He proved among the other things that π

top
1 (X, x) is a

topological group which is independent of the base point. Recently, P. Fabel [2]
using the Mycielski’s conjecture, showed that if X is a peano continuum, then
either X has a finitely generated discrete topological fundamental group, or it
has a non-discrete topological fundamental group, having the power of the con-
tinuum. In [3], we et al. introduced a topology on higher homotopy groups of
a pointed space (X, x) as a quotient of Hom((In, İn), (X, x)) equipped with the
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compact-open topology and denoted it by π
top
n (X, x). We proved that π

top
n (X, x)

is a topological group. Also, we found necessary and sufficient conditions for
which the topology is discrete. In this note, we are going to extend Mycielski’s
conjecture to higher homotopy groups. At the end, we generalize Fabel’s results
for topological higher homotopy groups: Suppose X is an (n − 1)-connected lo-

cally (n − 1)-connected compact metric space. Then π
top
n (X) is discrete if and

only if πn(X) is finitely generated. Moreover, π
top
n (X) is not discrete if and only

if πn(X) has the power of the continuum.

2 Main results

We recall a topological space X is called n-semilocally simply connected at a point
x if there exists an open neighborhood U of x for which any n-loop in U is null-
homotopic in X. Moreover, X is said to be n-semilocally simply connected if it is
n-semilocally simply connected at each point (see [3]). A space X is called n-
connected for n ≥ 0 if it is path connected and πk(X, x) is trivial for every base
point x ∈ X and 1 ≤ k ≤ n. X is called locally n-connected if for each x ∈ X and
each neighborhood U of x, there is a neighborhood V ⊆ U ⊆ X containing x so
that πk(V) −→ πk(U) is zero map for all 0 ≤ k ≤ n and for all basepoint in V
(see [6]).

Lemma 2.1. Suppose X is an (n − 1)-connected, locally (n − 1)-connected compact
metric space and πn(X) is not finitely generated. Then there exists x ∈ X such that for
each positive integer m, there exists an n-loop fm at x with diameter < 2−m which is not
nullhomotopic. In particular, X is not n-semilocally simply connected at x.

Proof. For simplicity, we prove the assertion for n = 2. Similar argument gives
the result in general case. Suppose otherwise. Then for each x ∈ X, there exists

m(x) ∈ N such that every 2-loop at x which has diameter less than 2−m(x) is
homotopic to the constant loop at x. Let Ux be an open ball containing x. By
local 1-connectivity of X, for each x ∈ X there is a path connected neighborhood
Vx containing x, so that Vx ⊆ Ux and π1(Vx) −→ π1(Ux) is zero map. Suppose
m(x) is sufficiently big and by shrinking Vx, if it is necessary, we may assume

that Vx has diameter 2−(m(x)+1). Therefore each k-loop, k = 1, 2, contained in Vx

is nullhomotopic in Ux. Suppose that Wx is a path connected neighborhood of x

with diameter less than 2−(m(x)+3). Now by compactness of X, there is a finite
cover of X by subsets Wi’s, containing xi, i ≤ N0, with the above property. If
it is necessary, we can omit some Wi’s such that the number of remainders is at
least to cover X. For each i, j with Wi

⋂
Wj 6= φ, fix a path hij in Wi

⋃
Wj going

from xi to xj. Note that any path g from xi to xj which is contained in Wi
⋃

Wj is

homotopic to hij in X. Indeed, suppose m(xi) ≤ m(xj). Then g ∗ (hij)
−1 is a 1-loop

at xi with diameter < 2−(m(xi)+1) contained in Vi, so g ∗ (hij)
−1 is homotopic to

constant loop at xi in Ui. This homotopy gives a homotopy from g to hij in Ui.

If m(xi) > m(xj), consider (hij)
−1 ∗ g, an 1-loop at xj (similar argument used in

[5] for n = 1). Each four of these paths {hij, hjk, hkl , hli} with common vertices

{xi, xj, xk, xl} induce an inessential 1-loop f : S1 −→ X. Indeed, suppose that
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m(xi) ≤ min{m(xj), m(xk), m(xl)} (the argument for other cases is similar). We

show that the diam( f ) < 2−(m(xi)+1), where diam( f ) is the diameter of f (S1). For,
we have

diam( f ) ≤ diam(Wi) + diam(Wj) + diam(Wk) + diam(Wl)

< 2−(m(xi)+3) + 2−(m(xj)+3) + 2−(m(xk)+3) + 2−(m(xl)+3)

≤ 4(2−(m(xi)+3)) = 2−(m(xi)+1)

So, f is contained in Vi and this implies that f is nullhomotopic in Ui. By 1-
connectivity of X, f has a continuous extension over E2. We denote the 2-cube
f (E2) by Yijkl if the family {hij, hjk, hkl , hli} of paths bound this cube. Note that any

2-cube ´Yijkl obtained by g : E2 −→ X which is contained in Wi
⋃

Wj
⋃

Wk
⋃

Wl is
homotopic to Yijkl . Indeed, suppose

m(xi) 6 min{m(xj), m(xk), m(xl)}. Then the 2-loop induced by Yijkl and ´Yijkl is

a 2-loop at xi with diameter less than 2−m(xi+1), and so it is homotopic to the
constant loop at xi in X. An elementary manipulation of this homotopy gives
a homotopy from f to g. Now, connect each point xi ∈ Wi to x0 by path gi.
Let sij be a side of a cube with vertices xi and xj. Then the paths hij , gi and gj

induce 1-loop λij : S1 −→ X. Again, by 1-connectivity of X, λij has a continuous

extension over E2. We denote the cube λij(E2) by Zij. Each Y-cube together with
associated Z-cubes induce an 2-loop. The 1-connectivity of X implies that these
2-loops are uniquely determined up to homotopy. So we have a finite number of
homotopy classes of these 2-loops and we denote them by α1, ..., αN. Moreover,
corresponding to each Y-cube there is a homotopy class αi which has the Y-cube
as a side. Now, to get a contradiction, we show that π2(X) is generated by αi’s,
i = 1, ..., N. For this, suppose that an 2-loop η : (I2, İ2) −→ (X, x0) is given.
Let δ > 0 be the Lebesgue’s number of the covering {Wi : i = 1, ..., N0}. We
divide the cube I2 to small subcubes I1, ..., Il such that each η(Ij) has diameter
< δ , j = 1, ..., l ; and so it is contained in some Wij

. We denote η(Ij) by Xj and

its corners by vjk , k = 1, ..., 4. Now, connect each vertex vjk to x0 by a path tjk .
By 1-connectivity of X, the triangles with vertices vjk , vjk+1

and x0 and with sides
tjk , tjk+1

and a side of Xj induce a sequence of 1-loops which are homotopic to
constant loop at x0. We can fill inside them by homotopy. These filled triangles
with the cube Xj induce an 2-loop at x0 which we denote its homotopy class by
β j. By 1-connectivity of X, β j is uniquely determined up to homotopy. So we
can write [η] = β1 ∗ ... ∗ βl . We show that each β j is homotopic to one of αi’s,
i = 1, ..., N. Indeed, corresponds to Corresponds to each vjk , there is an index
ik ∈ 1, ..., N0 such that vjk ∈ Wij

⋂
Wik

. We connect each vik
to xik

by a path θik
and

then we fill inside the 1-loops induced by paths hikik+1
θik

, θik+1
and a side of Xj by

homotopy. In this manner, we obtain an inessential 2-loop γj which has the cube

Yi1,i2,i3,i4 as a side. (Note that γj has diameter less than 2
−(m(xij

)+1)
for some ij and

so it is nullhomotopic.) Let αij
be the homotopy class corresponding to the cube

Yi1,i2,i3,i4 . Since γj is nullhomotopic, then αij
= β j. So, we have

[η] = β1 ∗ ... ∗ βl = αi1 ∗ ... ∗ αil

Therefore, π2(X) is generated by αi’s and this is a contradiction.
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Suppose that the nthhomotopy group of X is not finitely generated. Similar
to [5], we define an equivalence relation {0, 1}N via homotopic n-loops such as
follows:
First, take a point x ∈ X and a sequence { fm}m∈N of n-loops as claimed in Lemma
2.1. For each α ∈ {0, 1}N, let f α

m be the constant n-loop at x, if α(m) = 0, otherwise
let f α

m = fm. Define an n-loop fα at x as f α
0 ∗ f α

1 ∗ ... . Write α ≈ β if fα ∼ fβ.
Clearly ≈ is an equivalence relation and argument used in [5] , shows that it has
continuum many equivalence classes; that is, there is a set of size of continuum
of mutually non-homotopic n-loops. Therefore, we have the following theorem
which is the extension of Mycielski’s conjecture to higher homotopy groups.

Theorem 2.2. Suppose X is a compact metric space, which is (n − 1)-connected, lo-
cally (n − 1)-connected. Then πn(X) is either finitely generated or has the power of the
continuum.

In [3], we et al. clarified a relationship between the cardinality of πn(X, x) and

discreteness of π
top
n (X, x). We asserted that if X is a connected separable metric

space such that π
top
n (X, x) is discrete, then πn(X, x) is countable, and as a result

we showed that if X is a connected locally n-connected separable metric space,
then πn(X, x) is countable. First, we recall the following theorem from [3].

Theorem 2.3. Suppose X is a locally (n − 1)-connected metrizable space and x ∈ X.

Then the following are equivalent: (1) π
top
n (X, x) is discrete. (2) X is n-semilocally

simply connected at x.

Now, we show that the cardinality of πn(X, x) and discreteness of π
top
n (X, x)

are relevant.

Theorem 2.4. Suppose X is an (n − 1)-connected locally (n − 1)-connected compact

metric space. Then π
top
n (X) is discrete if and only if πn(X) is finitely generated. More-

over, π
top
n (X) is not discrete if and only if πn(X) has the power of the continuum.

Proof. The assertions follow immediately by Lemma 2.1 and Theorems 2.2 and
2.3.

Example 2.5. Let X = ∪n∈NSn, where Sn = {(x, y, z)|(x − 1
n )2 + y2 + z2 = 1

n2},

be a subspace of R
3. It is easy to see that X is 1-connected and locally 1-connected.

However, the sequence {[Sn]} is convergent to identity element of π
top
2 (X, 0), implying

that π
top
2 (X, 0) is not discrete and has the power of continuum.
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