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Abstract 
This study highlights the efficiency of the promising parametric iteration method (PIM) in determining the time evolution of the reaction. A rational approximate solution is obtained in a straightforward manner.
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1. Introduction
Biochemical reactions in living cells are often catalyzed by enzymes. These enzymes are proteins that bind and subsequently react specifically with other molecules (other proteins, DNA, RNA, or small molecules) defined as substrates. Here, we consider the well-known Michaelis–Menten biochemical reaction model [1], i.e., the single enzyme-substrate reaction scheme[image: image2.png]
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where 
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 is the enzyme, 
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 the substrate, 
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 the intermediate complex and 
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 the product. The time evolution of scheme (1) can be determined from the solution of the system of coupled nonlinear ODEs [2]:
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subject to the initial conditions
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where the parameters 
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 are positive rate constants for each reaction. The system (2) can be reduced to only two equations for 
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 and 
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 and in dimensionless form of concentrations of substrate, 
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, and intermediate complex between enzyme and substrate, 
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, are given by [2]:
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subject to the initial conditions
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where 
[image: image25.wmf]a

, 
[image: image26.wmf]b

 and 
[image: image27.wmf]e

 are dimensionless parameters.
The goal of this work is to simulate accurately the system of coupled nonlinear ODEs (4) using a new algorithm called the piecewise-truncated parametric iteration method, where details can be found in [3,4].
2. The basic idea of PIM
In this section, the main ideas of the PIM and the piecewise-truncated PIM algorithms are proposed for solving the nonlinear system (4). The basic character of PIM is to construct a family of iterative processes for the coupled system of (4) as follows [3,4]:
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where [image: image30.png]ugy(x)
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 are the initial guesses, 
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. The convergence of the iterative relation of (6) was discussed in [4]. It should be emphasized that having the freedom to choose the auxiliary parameter 

, the auxiliary functions 
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 is fundamental to the validity and flexibility of the FIM, as will be shown later in this paper by illustrative example. We can assume that all of them are properly chosen so that solution of (6) exists. Accordingly, the successive approximations [image: image46.png]u,(x),n=0
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 will be readily obtained by selecting the zeroth components. Consequently, the exact solution may be obtained by using [image: image52.png]u(x) =lim, __ u,(x)
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In general, the application of the above PIM to nonlinear problems leads to the calculation of unneeded terms. Also, it gives a good approximation to the exact solution in a small region of 
[image: image55.wmf]t

.To completely cancel these terms in each step and ensure validity of approximations for large [image: image57.png]
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, we apply the version of piecewise truncated of PIM, which is as follows (i.e., we determine the solutions in the subintervals of [image: image60.png]
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, i.e., [image: image63.png]
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where 
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3.  Numerical implementations
To give a clear overview of the content of this study, in this section, the system (4) will be tested by PTP, which will ultimately show the simplicity, efficiency and accuracy of this technique. All the results are calculated by using the symbolic calculus software Maple 11. For the sake of comparative purposes with those obtained in [3], we choose the parameters as 
[image: image81.wmf]375

.

0

=

α

, 
[image: image82.wmf]1

=

β

 and 
[image: image83.wmf]1

.

0

=

ε

.

In order to solve Eqs. (4) by using the PTP algorithm (7), for simplicity, we choose 
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. Fig. 1 show the approximate solution obtained for Eqs. (4) by using the 4th-order PTP algorithm for 
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Fig. 1 The solutions of 
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Fig. 2 The absolute errors of the solutions of 
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In closing our analysis, we mention that the well-known Michaelis–Menten nonlinear reaction system was tested by using the PTP algorithm proposed in this paper, and the obtained results have shown excellent performance.
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