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Abstract—This paper presents a novel approach to cluster 

Fuzzy numbers using hierarchical method to be called (FHCA). 

In this approach a Dendrogram is drawn over fuzzy numbers 

until we could cluster fuzzy numbers using hierarchical cluster 

tree with inconsistency coefficient or other useful measures. All 

the similar previous methods extended FCM (Fuzzy Clustering 

Method) to support fuzzy data. On contrary, the present work 

is based on hierarchical method, i.e., we extended the 

hierarchical clustering algorithm to cluster fuzzy data for the 

first time.  Finally this approach has been compared with some 

of the newly presented methods in the literature. The major 

advantage of the algorithm is its fault tolerance against noisy 

samples. 

 

Index Terms—Fuzzy data, Hierarchical clustering 

algorithm, Fuzzy dendrogram, Dissimilarity measure. 

I. INTRODUCTION 

For a long time, clustering methods has attracted researcher 

in various applications in diverse areas. In many clustering 

methods crisp data can only be used. There are two main 

groups in clustering algorithms:-  

 Clustering algorithm that works on only crisp data  

 Clustering algorithm that can work on fuzzy data as 

well as crisp data  

Here we are concerned with the second group. 

Fuzzy data is a kind of data that is imprecise or with some 

source of uncertainty. This data type has been readily used in 

natural language, social science, knowledge representation, 

etc. Recently some methods have been presented in this field; 

Amir B. Geva presented a new recursive algorithm for 

hierarchical fuzzy partitioning [8]. Miin-Shen   Yang,   et al. 

presented Fuzzy clustering algorithms for mixed feature 

variables [4];  Hathaway et al.   proposed FCM   for fuzzy data 

[12]; Vicenc Torra presented another type of Fuzzy c-means 

[7].  

Some of these papers are concentrated on crisp data 

[5,7,8,13], and some others extended FCM (that is the one of 

the widely used fuzzy clustering models [3,9])  to cluster 
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fuzzy data [4,12,14,17]. In the present work, we focused on 

the hierarchical clustering method for clustering fuzzy data 

(a non-fuzzy algorithm for clustering fuzzy data). In other 

words, an extension for hierarchical clustering algorithm 

that can work on fuzzy data too. Due to the usage of 

hierarchical methods, the proposed algorithm has inherited 

all the benefits of these methods, since it is very illustrative 

and clear that we can guesstimate dispersion of clusters in a 

glance at the dendrogram as well as its fault tolerance against 

noisy data. 

We use the Miin-Shen Yang dissimilarity measures and 

build a dissimilarity matrix based on it. Then we can use 

different linkage algorithms (single-link, complete-link, 

average, median, centroid and weighted average) to create 

hierarchical cluster tree. Due to the usage of fuzzy data, we 

named this algorithm “FHCA”, and the created tree “Fuzzy 

dendrogram”. Finally we cluster data by proper measures 

like inconsistency coefficient [16] or maximum number of 

clusters. 

As an important deficiency, all of similar works cannot 

tolerate noise on samples. We demonstrate our proposed 

method can resolve this defect by discovering noisy samples 

and clustering them into the separate clusters. 

This paper is organized as follows. In the next section we 

review hierarchical clustering method. The proposed method 

is explained in Section 3. Finally, in the last section we 

evaluate the performance of FHCA and compare it to similar 

proposed algorithms. 

II. REVIEW OF HIERARCHICAL CLUSTERING METHOD 

Hierarchical clustering procedures are the most commonly 

used method of summarizing data structure. A hierarchical 

tree is a nested set of partitions represented by a tree diagram 

or dendrogram (see Fig 1). Sectioning a tree at a particular 

level produces a partition into g disjoint groups. If two groups 

are chosen from different partitions (the results of 

partitioning at different levels) then either the groups are 

disjoint or one group wholly contains the other [1]. 

   
Figure 1.  Dendrogram is drawn over six samples. 

The hierarchical algorithm contained the following 

A New Hierarchical Clustering Algorithm on 

Fuzzy Data (FHCA) 

Mohammad GhasemiGol, Hadi Sadoghi Yazdi, Reza Monsefi 



International Journal of Computer and Electrical Engineering, Vol. 2, No. 1, February, 2010 

1793-8163 

135 

 

 

procedure, where c is the desired number of final clusters. If 

c=1 then the dendrogram could be created [2]. 

Algorithm (Agglomerative hierarchical clustering) 

 Begin 

        Initialize },{,, ii xDncc 


 i = 1,…, n 

       Do  1


cc  

       Find nearest clusters, say, Di and Dj 

       Merge Di and Dj 

       Until 


 cc  

       Return c clusters 

  End 

Here c=1. By this technique we will draw cluster’s 

dendrogram and use it to specify clusters. So at first, 

dissimilarity matrix is created. This matrix shows the 

distance between each pair of samples. Suppose that at the 

beginning, every sample is a cluster with one sample. Then 

in each step two clusters that are closer to each other get 

selected and joined as a new cluster. At the end, we have a 

nested set of clusters that can be analyzed.  

In the hierarchical method we use several mechanisms to 

obtain the distance of two clusters. One of which is 

single-link method. In this method the distance between two 

clusters is defined as the distance between their closest 

members of two clusters. In other words the distance between 

two groups, A and B, is defined as: 

 

 

 

Another mechanism is complete-link. In this method the 

distance of two clusters is defined as the distance between 

their furthest members of two clusters, i.e., the distance 

between two groups, A and B, is 

 

 

 

In this method, we make sure that other samples of two 

clusters are closer than the distance between of them. 

III. THE PROPOSED HIERARCHICAL CLUSTERING ALGORITHM 

(FHCA) 

In this section we explain how we can generalize 

hierarchical method for fuzzy data. For this reason first we 

should define fuzzy data and measure to obtain the distance 

between them. We can extend symmetric trapezoidal fuzzy 

numbers (TFNs) to all TFNs by defining its parameterization 

as shown in Fig 2 Parameterization of a trapezoidal fuzzy 

number A  is denoted by ),,,( 4321 aaaamA   where 

4321 ,,, aaaa  are called center, inner diameter, left outer 

radius and right outer radius respectively [4,10,15]. 

 

Figure 2.  Parameterization of trapezoidal fuzzy data. 

The benefit of this representation is that we can easily 

show four kinds of fuzzy data (see Fig 3). According to the 

representation above, A = [a1, 0, 0, 0], B = [b1, b2, b3, b4], C= 

[c1, c2, 0, 0], D= [d1, 0, d3, d4]. 

 
Figure 3.  Four kinds of trapezoidal fuzzy data. 

Let ),,,( 4321 aaaamA  and ),,,( 4321 bbbbmB  be any 

two fuzzy data. Hathaway et al. [12] defined dissimilarity for 

two TFNs A  and B  as follows: 
 

.)()()()(),( 2
44
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2 babababaBAd h   
 

However, they did not consider the left or right shapes of 

numbers (i.e. LR- type TFN). Yang et al. [4] gave a distance 

for two symmetric TFNs A  and B  based on yang and Ko's 

distance definition [15] as follows: 
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             And      )()(2 2211 babag   

For example if ]1,1,0,0[A and ]3,3,0,0[B  then: 
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Now, we explain our proposed algorithm for clustering 

fuzzy data. This algorithm has five steps that will be 

explained in this section. 

The Proposed Hierarchical Clustering Algorithm (FHCA) 

 Begin 

 Initialize


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(n=number of samples, each row of x identifies a 

fuzzy data.) 

 Compute the distance between each pair of fuzzy 

data  

 Create dissimilarity matrix. 

 Create Fuzzy dendrogram. 

 Extract clusters from fuzzy dendrogram.(with 

inconsistency coefficient or max number of clusters) 

 End 

Step1: For each fuzzy data, we need four crisp numbers to 

a1 
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show it. So with x (is an n-by-4 matrix) we can present n 

fuzzy data samples.  

Here we explain the proposed algorithm to cluster fuzzy 

data by a simple example. Suppose that we have six fuzzy 

data (see Fig 4).  

A = [2.5; 2; 0.5; 1], B = [2.5; 0; 1; 1],  

C = [7; 1; 0.5; 1], D = [8; 0; 1; 1],  

E = [8.5; 0; 0.5; 0.5], F = [4.5; 0; 1; 1]. 
 

 
Figure 4.  Six fuzzy data A, B, C, D, E and F. 

 

 So, x matrix is shown as below. 
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



1105.4

5.05.005.8

1108
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1105.2

15.025.2

x  

 

Step2: In this stage, we use Yang distance formula to 

reach the distance between each two fuzzy data samples. (For 

example ),( BAd f
=1.89,  ),( CAd f

= 9.05, …) 

Step3: Now, we can easily create dissimilarity matrix. In 

this matrix each item shows the distance between two fuzzy 

data. This matrix is used for creating fuzzy dendrogram.  
 

 

TABLE.1 Dissimilarity matrix for the samples in 错误！未找到引用源。. 

 A B C D E F 

A 0 1.89 9.05 11.04 12.06 4.31 

B  0 9.17 11.00 12.00 4.00 

C   0 2.08 3.09 5.20 

D    0 1.06 7.00 

E     0 8.01 

F      0 
 

Step4: Here, we should choose a method such as 

single-link, complete-link, median, etc. to create fuzzy 

dendrogram and form our clusters. We discussed two 

methods of them (single-link and complete-link) in section 2. 

Each method has its priority and can be useful in some cases. 

 'single-link '    --- nearest distance 
 

 'complete-link '  --- furthest distance 
 

 'average' --- unweighted average distance (UPGMA) (also 

known as group average) 
 

 'weighted'  --- weighted average distance (WPGMA)  
 

 'centroid'  --- unweighted center of mass distance (UPGMC) 
 

 'median' --- weighted center of mass distance (WPGMC)  
 

 'ward' --- inner squared distance (minimum variance 

algorithm) 
 

If we run single-link method on the dissimilarity matrix, 

we reach these results (see Table 2). 

Table 1: The stages (a, b, c, d) of executing single-link method on 错

误！未找到引用源。. 
 

TABLE 2.a 

 A B C {D,E} F 

A 0 1.89 9.05 11.04 4.31 

B  0 9.17 11.00 4.00 

C   0 2.08 5.20 

{D,E}    0 7.00 

F     0 

TABLE 2.b 

 {A, B} C {D,E} F 

{A,B} 0 9.05 11.00 4.00 

C  0 2.08 5.20 

{D,E}   0 7.00 

F    0 
 

 

TABLE 2.c 

 {A, B} {C,D,E} F 

{A, B} 0 9.05 4.00 

{C,D,E}  0 5.20 

F   0 
 

 

TABLE.2.d 

 {A,B,F} {C,D,E} 

{A,B,F} 0 5.20 

{C,D,E}  0 

You can see the achieved dendrogram in Fig 5. 
 

 
Figure 5.  Fuzzy dendrogram for six fuzzy samples. 

Step5: This is the most important stage in our algorithm. 

Here we should extract the clusters from the fuzzy 

dendrogram. For this purpose there are two ways. One way is 

based on the max number of clusters. For example if we want 

to have two clusters, it is enough to aggregate samples that 

are in each sub tree of dendrogram root, in a new cluster. In 

other words, we can divide dendrogram from the highest 

level into two clusters. This result is deducible from Fig 4. 

The other way is based on the inconsistency coefficient 

[16]. In this way we define a label for each link in our 

dendrogram. This label shows how much two clusters are 

similar. With this measure, we can join clusters if the 

inconsistency value is less than specific threshold. The 

inconsistency coefficient characterizes each link in a cluster 

tree by comparing its length with the average length of other 

links at the same level of the dendrogram. The higher the 

value of this coefficient, the less similar the clusters 

connected by the link. To calculate inconsistency coefficient 

we should define two matrixes. 

Linkage matrix is an (n-1)-by-3 matrix containing cluster 

tree information. Table 3 shows the value of Linkage matrix 

for the samples in Fig 4. 
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TABLE.3 Linkage matrix for the samples in Fig 4. 

D E 1.06 

A B 1.89 

C {D,E} 2.08 

{A,B} F 4.00 

{A,B,F} {C,D,E} 5.20 
 

The other matrix is Inconsistency matrix (Table 4) that is 

an (n-1)-by-4 matrix, formatted as follows. 
 

TABLE.4 Inconsistency matrix properties 
 

Column Description 

1 
Mean of the lengths of all the links 

included in the calculation. 

2 
Standard deviation of all the links 

included in the calculation. 

3 
Number of links included in the 

calculation. 

4 Inconsistency coefficient. 
 
 

 

We used the distance between two clusters, as length of the 

link that connects them to each other. If we name Linkage 

matrix, Z and Inconsistency matrix, W then the 

inconsistency coefficient for each link,   is calculated by 

following formula: 
 

W( k , 4) = ( Z( k , 3 )- W( k , 1) ) / W( k, 2)           (1) 
 

For leaf nodes, nodes that have no further nodes under 

them, the inconsistency coefficient is set to zero. 
 

 

TABLE.5 Inconsistency matrix for the samples in Fig 4. 
 

1.06 0 1 0 

1.89 0 1 0 

1.57 0.72 2 0.71 

2.94 1.49 2 0.71 

2.85 1.70 5 1.38 

To understand this matrix, pay attention to the last row of 

inconsistency matrix which is shown in Table 5. The 

calculation consists of five links, so the value of third column 

is five. Also the mean of used links is: 

85.2
5

20.5408.289.106.1



  

And calculated Standard deviation is 1.70. For computing 

inconsistency coefficient we used formula (1). 
 

W(5 ,4) = ( Z( 5 , 3 )- W( 5 , 1) ) / W( 5, 2)   

= (5.20-2.85) / 1.70 = 1.38 
 

In Fig 6, you can see the inconsistency coefficient related 

to each link. 

 
Figure 6.  Inconsistency coefficient related to each link. 

Now, we can use inconsistency coefficient to form clusters. 

If we define threshold=1, then we have two clusters C1= {A, 

B, F} and C2= {C, D, E}. 

According to Fig 4 this result is perfectly acceptable. 

Therefore, in this method the number of cluster are defined 

via inconsistency coefficient and we do not define it. 

An important benefit of this algorithm is its fault tolerance 

against noisy samples. We have tree structure of clusters and 

by analyzing that exactly, we can discover the noisy samples 

in two cases, low SNR1 and medium SNR.  
 

A. Low SNR 

Indisputably, noisy samples are far from other samples, so 

the inconsistency coefficient between noisy samples and 

normal samples is larger. Thus, we can find noisy samples 

when the inconsistency coefficient grows up suddenly. In 

other words, this algorithm, noisy samples are classified in 

separated clusters. Usually, noisy samples appear in highest 

level of dendrogram. 
 

B. Medium Level of SNR 

FHCA can tolerate the medium domain of noise on some 

samples. For example if we have a little noise on a sample, it 

shouldn’t have any effect on our clustering. In the other 

words, medium level of noise must not effect over clusters or 

clustering procedure must be robust against medium level of 

noise.  

We consider a data set with six triangular fuzzy data (Fig 

7). We cluster them and then put a bit noise on a sample. 

Afterwards we cluster them again and compare the obtained 

results in two stages (Low level of noise on some samples). 

After clustering these samples, we obtained a dendrogram 

that is shown in Fig 8. 
 

  
Figure 7.  Representation of six fuzzy data. 

 

 
Figure 8.  Fuzzy dendrogram for the samples in Fig 7.  

 

 
1
 Signal to Noise Ratio 
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As it can be seen, we have two clusters by applying the 

inconsistency coefficient and supposing threshold between 

1.15 and 1.74 for example mean of them (threshold=1.4450) 

First, suppose that we only have noise on center of a 

sample. For example we received D = [ 9 ; 0; 2; 2] instead 

of D = [9; 0; 2; 2]. We want to find the maximum value of α 

that doesn’t alter our clustering. After executing this 

experiment, α =2.04.  

For example if D = [6.96; 0; 2; 2], we have the following 

dendrogram (see Fig 9). This dendrogram shows the 

maximum noise on the center of sample D that can be 

supported. If the noise is bigger than 2.04 then we have 

different clusters. 
 

 
Figure 9.  Fuzzy dendrogram for Fig 7 samples. (After adding noise to center 

of D) 
 

So, if we suppose threshold=1.4450 and run FHCA on 

these samples, it can tolerate %23 noise on center of D. 错

误！未找到引用源。 shows the rest of the results. 
TABLE.6 Percent of noise tolerance for Fig 7 when we have noise on center 

of samples. 

Samples A B C D E F 

The value of α 1.81 1.78 1.01 2.04 3.06 1.66 

The percent of 

noise tolerance 

for center of 

fuzzy samples 

45 44 13 23 31 15 

We can do this experiment on right, left and length of a 

fuzzy sample instead of its center. 

As it can be seen, we presented a fuzzy data by four crisp data, 

and that is possible to have noise on any of them.  

 
Figure 10.  Representation of Fig 7 samples with noise on center, length, left 

and right of D 
 

Now, suppose that we have noise on center, length, left and 

right of a sample simultaneously (see Fig 10). For example 

we received D = [ 9 ; 0 ; 2 ; 2 ] instead of D 

= [9; 0; 2; 2]. We can’t find the maximum value of α, β, λ and 

γ that do not alter our clustering, because they are mutually 

depend on each other. But we can consider results in a special 

state when we suppose that α=β=λ=γ.  In this way we can find 

out the minimum noise that can be tolerated by this algorithm. 

For example, if according to Fig 10, we received D= [7.5; 1; 

2.5; 2] instead of D= [9; 0; 2; 2] we get the following 

dendrogram (Fig 11). 
 

 
Figure 11.  Fuzzy dendrogram after adding noise on center, length, left and 

right of D. 
 
 

So, we have the same two previous clusters (C1= {A, B}, 

C2={C, D, E, F}) and our clustering remained without any 

change. In Table 7, you can see the minimum noise on fuzzy 

data (used in this Example) that can be tolerated. These 

noises can be added to each part of a fuzzy sample (center, 

length, left and right) without change of clustering. 
 

 

TABLE.7 The minimum noise that can be tolerated for each samples in Fig 7. 
 

Samples A B C D E F 

The value of (α) 1.66 1.06 0.65 1.34 1.40 0.91 

The percent of 

noise tolerance 

for center of  

fuzzy samples 

41 26.5 8.1 14.9 14 8.3 

In Table 7 we suppose that a fuzzy data is shown as 

[ 1a ; 2a ; 3a ; 4a ], that α is the minimum 

noise which can be tolerated by FHCA. In this table, we just 

compute the percent of noise tolerance for center of fuzzy 

samples, because center of fuzzy samples are very 

important to cluster data. We can compute the percent of 

noise tolerance for other part of fuzzy samples (length, left 

and right) similarly. 

According to Table 7, we can tolerate noise on inner 

samples of clusters more than boundary samples. Finally 

consider that the value of noise tolerated is different in any 

example and based on the distance of clusters from each 

other. 

IV. EXPERIMENTAL RESULTS 

We consider a data set G with 20 triangular fuzzy data [11]. 

Intuitively, the number of clusters that is suitable for data set 

G is two (Fig 12).  

10 4 5 6 8 

B 

A 

2 3 7 9 11 12 13 

D C E F 1 
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Figure 12.  Data set G with 20 triangular fuzzy data. 

 

If we run our algorithm on these fuzzy numbers, a 

dendrogram is formed and we can easily extract the clusters 

from that, by removing the highest link of dendrogram or via 

inconsistency coefficient measure by selecting threshold 

between 1.57 and 2.94 (Here we use the mean of them so 

threshold= 2550.22/)94.257.1(  ). In this state FHCA, 

FCM and AFCN give the same results. 

Now, we repeat these algorithms on this data set after 

adding a noisy sample to it. For this reason we add a point 

(100; 0.71; 1.79) to the data set G. The added point is far 

away from the other TFNs so that it can be regarded as an 

outlier. In this case we reach the following dendrogram.  

 
    

Figure 13.  Fuzzy dendrogram for data set G with a noisy sample 

Table 8 shows the clustering results of FHCA, FCM and 

AFCN after adding a noisy sample. So we have three clusters 

C1, C2 and C3 that are distinguished in Fig 13, because the 

inconsistency coefficient of two levels of dendrogram are 

upper than threshold (Note that threshold is 2.2550). Table 8 

shows that FCM cannot tolerate noisy samples, AFCN is 

better than FCM but FHCA is the best because the noisy 

samples are classified in the separate clusters and the noisy 

samples cannot change the other clusters. 
TABLE.8 Clustering results in data set g with a Noisy Sample Using FCM, 

AFCN, FHCA. 
 

No TFNs FCM AFCN FHCA 

1 (7.56, 0.27, 1.00) C1 C1 C1 

2 (8.56, 1.95, 1.93) C1 C1 C1 

3 (9.89, 0.56, 1.17) C1 C1 C1 

4 (10.89, 0.89, 0.88) C1 C1 C1 

5 (11.78, 0.12, 1.21) C1 C1 C1 

6 (12.90, 1.19, 0.41) C1 C1 C1 

7 (13.67, 1.82, 0.90) C1 C1 C1 

8 (14.87, 1.90, 1.85) C1 C1 C1 

9 (15.45, 1.79, 1.95) C1 C1 C1 

10 (15.78, 1.47, 0.42) C1 C1 C1 

11 (20.77, 0.63, 0.47) C1 C2 C2 

12 (21.88, 1.08, 0.66) C1 C2 C2 

13 (22.45, 1.48, 1.26) C1 C2 C2 

14 (23.88, 1.79, 0.16) C1 C2 C2 

15 (24.88, 0.66, 0.64) C1 C2 C2 

16 (25.25, 0.52, 1.71) C1 C2 C2 

17 (25.47, 1.95, 0.15) C1 C2 C2 

18 (26.56, 0.92, 0.63) C1 C2 C2 

19 (27.98, 1.74, 1.69) C1 C2 C2 

20 (28.77, 1.71, 0.79) C1 C2 C2 

21 (100.00, 0.71, 1.79) C2 ? C3 

V. CONCLUSION 

In this paper we have described a new approach for 

clustering fuzzy data. So far several papers have been 

presented methods to cluster fuzzy data that are based on 

fuzzy c-means algorithm. Here we open a new point of view 

to cluster fuzzy data based on hierarchical clustering 

methods. In this method, computing the distance between 

fuzzy data and drawing fuzzy dendrogram, lead to forming 

clusters. The experimental results demonstrated the major 

advantage of the FHCA in comparison with similar methods 

that is its fault tolerance against noisy samples. Furthermore 

the fuzzy dendrogram can present us a general view from the 

relations between fuzzy data which help us to cluster them 

more accurately. Finally, FHCA is a very suitable clustering 

algorithm for fuzzy data because the nature of this algorithm 

is illustrative and clear so that we can guesstimate dispersion 

of clusters, with a glance at the dendrogram. 

REFERENCES 

[1] Andrew R. Webb. "Statistical Pattern Recognition". Wiley, New York, 

2002. 

[2] Richard O. Duda, Peter E. Hart and David G. Stork. "Pattern 

classification", 1997. 

[3] J. C. Bezdek, "Pattern recognition with fuzzy objective function 

algorithms". Plenum press, New York, 1981. 

[4] Miin-Shen Yang, Pei-Yuan Hwang, De-Hua Chen. "Fuzzy clustering 

algorithms for mixed feature variables". Fuzzy Sets and Systems 141, 

pp. 301–317, 2004. 

[5] Shyi-Ming Chen, Liang-Yu Chen. "A Fuzzy hierarchical clustering 

method for clustering documents based on dynamic cluster centers". 

Journal of the Chinese Institute of Engineers, Vol. 30, No. 1, pp. 

169-172, 2007. 

[6] P. Grzegorzewski, "Metrics and orders in space of fuzzy numbers" 

Fuzzy sets and systems.  97, pp. 83-94, 1998. 

[7] Vicenc Torra. "Fuzzy c-means for fuzzy hierarchical clustering". IEEE 

transactions on Fuzzy Systems, Vol. 14, pp. 646-651, 2005. 

[8] Amir B. Geva. "Hierarchical Unsupervised Fuzzy Clustering". IEEE 

transactions on fuzzy systems, Vol. 7, No. 6, pp. 723-733, 1999. 

[9] R. O. Duda, P. E. Hart, "Pattern classification and scene Analysis". 

New York. Wiley, 1973. 

[10] L. Stefaninia, L. Sorinia, M. L. Guerraa, "Parametric representation of 

fuzzy numbers  and application to fuzzy calculus" Fuzzy Sets and 

Systems. 157, pp. 2423-2455, 2006. 

[11] Wen-LiangHung, Miin-Shen Yang. "Fuzzy clustering on LR-type 

fuzzy numbers with an application in Taiwanese tea evaluation", Fuzzy 

Sets and Systems 150, pp. 561–577, 2005. 

[12] R.J. Hathaway, J.C. Bezdek, W. Pedrycz. "A parametric model for 

fusing heterogeneous fuzzy data". IEEE transactions on Fuzzy Systems, 

Vol. 4, No. 3, 1996. 

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=9859


International Journal of Computer and Electrical Engineering, Vol. 2, No. 1, February, 2010 

1793-8163 

140 

[13] Perng-Cherng Wang, Jin-Jang Leou. "New Fuzzy Hierarchical 

Clustering Algorithms". Journal of Information Science and 

Engineering, Vol. 9, No. 3, pp. 461-489, 1993. 

[14] M. Sato, Y. Sato. "Fuzzy clustering model for fuzzy data". IEEE 

transactions on Fuzzy Systems, Vol. 4, pp. 2123 – 2128, 1995. 

[15] Miin-Shen Yang, Chen-Hsiu Ko. "On a class of fuzzy c-numbers 

clustering procedures for fuzzy data". Fuzzy Sets and Systems 84, pp. 

49–60, 1996. 

[16] http://www.mathworks.com/access/helpdesk/help/ toolbox /stats 

/index.html?/access/helpdesk/help /toolbox/stats /inconsistent. html 

[17] Bohdan S. Butkiewicz. "Robust Fuzzy Clustering with Fuzzy Data". 

Springer Berlin / Heidelberg , pp. 76-82, 2005. 

 

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=9859
http://portal.acm.org/author_page.cfm?id=81100500514&coll=GUIDE&dl=GUIDE&trk=0&CFID=77761531&CFTOKEN=61349409
http://www.mathworks.com/access/helpdesk/help/%20toolbox%20/stats%20/index.html?/access/help
http://www.mathworks.com/access/helpdesk/help/%20toolbox%20/stats%20/index.html?/access/help

