
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

A comparative study of DWT, CWT and DCT transformations in ECG
arrhythmias classification

Hamid Khorrami *, Majid Moavenian
Department of Mechanical Engineering, Ferdowsi University of Mashhad, Iran

a r t i c l e i n f o

Keywords:
MLP
SVM
ECG
DWT
CWT
DCT

a b s t r a c t

In this study we have proposed and compared use of CWT (Continues Wavelet Transform) with two pow-
erful data transformation techniques DWT (Discrete Wavelet Transform), and DCT (Discrete Cosine
Transform) which have already been in use, in order to improve the capability of two pattern classifiers
in ECG arrhythmias classification. The classifiers under examination are MLP (Multi-Layered Perceptron, a
conventional neural network) and SVM (Support Vector Machine). The training or learning algorithms
used in MLP and SVM are BackPropagation (BP) and Kernel–Adatron (K–A), respectively. The ECG signals
taken from MIT-BIH arrhythmia database are used to classify four different arrhythmias together with
normal ECG. The output of MLP and SVM classifiers in terms of training performance, testing performance
or generalization ability and training time are compared. MLP and SVM training and testing stages have
been carried out twice. At first, only one lead (II) is used, and then a second ECG lead (V1) has been added
to the training and testing datasets. Three feature extraction techniques are applied separately to datasets
before classification. The results show that selection of the best feature extraction method will depend on
the substantial value considered for training time, training and testing performance. This is stated
because when applying MLP or SVM, addition of CWT and DCT will show the advantage only when train-
ing performance and testing performance are important, respectively. Generally speaking only testing
performance with single lead for MLP shows superiority over SVM.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The electrocardiogram (ECG) is the electrical activity signal of
the heart which is very important in heart disease diagnosing
because every arrhythmia in ECG signals can be relevant to a
heart disease. The main problem in heart disease diagnose using
ECG is that the normal ECG may differ for each person and
sometimes one disease has dissimilar signs on different patient’s
ECG signals. Also, two distinct diseases may have approximately
identical effects on normal ECG signals. These problems compli-
cate the heart disease diagnose. So, utilization of pattern classi-
fier techniques can improve the new patients ECG arrhythmia
diagnoses.

ANN (artificial neural network) is a conventional classifier
used for ECG arrhythmias classification. MLP is introduced to
be able to recognize and classify ECG signals more accurately
than other ANN methods. However, MLP with (BP) training algo-
rithm suffers from slow convergence to local and global minima

and from random settings of weights, initial values (Özbay,
Ceylan, & Karlik, 2006). Improvement of ANN’s performance have
been the subject of new researches on ECG arrhythmias classifi-
cation by application of various feature extraction techniques.
Discrete wavelet transform is used to improve the performance
of MLP with (BP) training algorithm and also compared with
other feature extraction and data reduction methods (Ceylan &
Ozbay, 2007). Addition of DWT has improved the accuracy of
MLP neural network (Froese, Hadjiloucas, Galvão, Becerra, &
José Coelho, 2006). Also an ECG beat classification system based
on DWT and probabilistic neural network (PNN) is proposed to
discriminate six ECG beat types (Yu & Chen, 2007). The ECG
recordings were processed using CWT and DWT in an effort to
predict the maintenance of sinus rhythm after cardioversion in
patients with persistent atrial fibrillation (Cervigón, Sánchez,
Castells, Blas, & Millet, 2007). Use of DWT in analysis of electro-
cardiographic changes in partial epileptic patient (Ubeyli, 2008).

Survey on SVM classifiers shows that numerous research
works have been carried out. It is pointed out that SVM classifiers
do not trap in local minima points and need less training input
therefore they are faster than ANN (Abe, 2005). Classification of
SVM for ECG signals assisted by feature extraction methods car-
ried out by Acir (2006). He introduced a novel SVM classification
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based on a perturbation method for ECG arrhythmias classifica-
tion and improved SVM performance by employing DCT and
DWT. It’s experimental results show that DCT–SVM structure
has better accuracy than DWT–SVM structure. Heart valve disease
diagnosis is carried out using SVM and ANN (artificial neural net-
work) together with DWT (Comak, Arslan, & Turkoglu, 2007). A
novel classifier proposed by the authors is SVM classifier with
(K–A) training algorithm.

In this paper we have constructed eight different structures for
ECG signals classification. These structures are MLP, DWT-MLP,
CWT-MLP, DCT-MLP, SVM, DWT-SVM, CWT-SVM and DCT-SVM,
(Fig. 1). For training and testing structures, first a one lead ECG sig-
nal (II) was used which contained four different arrhythmias
accompanied by normal ECG signal. Then two lead ECG signals (II
and V1) were used as the second type of ECG dataset for MLP
and SVM training.

2. Materials and preprocessing

The ECG signals for training and testing datasets are taken
from MIT-BIH arrhythmia database (mitdb). This contains two
lead ECG signals of 48 patients. The selected Arrhythmias are
LBBB (Left Bundle Branch Block), RBBB (Right Bundle Branch
Block), PAB (Premature Atrial Beat) and PVB (Premature Ventric-
ular Beat). Ninety beats were chosen for each arrhythmia and
normal ECG divided into three groups of training, testing and val-
idation (see Table 1). Each ECG beat is a matrix (334�1) when
one ECG lead is used (II) and a matrix (668�1) when two ECG
leads are used (II andV1). Every ECG signal has five distinct points
( P, Q, R, S and T) used for the interpretation of the ECG (Fig. 2).
Every R–R interval duration was considered as a beat in the study.
Because no-fixed ECG base line exists for each individual patient
every beat was located in zero to one vertical scale for better
arrhythmias classification.

2.1. Multi-Layered Perceptron

In our study, a three-layered feed-forward neural network was
trained, using (BP) algorithm. The (BP) training algorithm with
generalized delta learning rule is an iterative gradient algorithm

designed to minimize the mean square error between the actual
output of a multilayered feed-forward neural network and a de-
sired output. Each layer is fully connected to the previous layer,
and there exist no any other connection.

2.2. Backpropagation algorithm (summary)

Given a finite length input patterns x1ðkÞ; x2ðkÞ; . . . ; xnðkÞ 2 R;

ð1 6 k 6 KÞ and the desired patterns x1ðkÞ; x2ðkÞ; . . . ; xmðkÞ 2 R,

Step 1: Select the total number of layers M, the number
ni(i = 1,2, . . .,M � 1) of the neurons in each hidden layer,
and an error tolerance parameter e > 0.

Step 2: Randomly select the initial values of the weight vectors
wðiÞaj for i = 1,2, . . .,ni.

Step 3: Initialization:

wðiÞaj  wðiÞaj ð0Þ; E 0; k 1

Fig. 1. Schematic of structures.

Table 1
Number of training, testing and validation data in first and second types of datasets.

LBBB RBBB Normal PVC PAB Total

Number of training data beats 50 50 50 50 50 250
Number of validation data

beats
For MLP 30 30 30 30 30 150
For
SVM

0 0 0 0 0 0

Number of testing data beats 10 10 10 10 10 50
MIT-BIH data file 111-207-214-

109
118-207-212-
231

101-105-209-
234

107-108-109-119-200-203-
207-223-233

118-200-201-202-
207-209-

Fig. 2. Standard ECG beat.
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Step 4: Calculate the neural outputs

sðiÞj ¼ ðw
ðiÞ
aj Þ

T xði�1Þ
a

xðiÞj ¼ r sðiÞj

� �
8<
: ð1Þ

For i = 1,2, . . .,M and j = 1,2, . . .,ni.

Step 5: Calculate the output error

ej ¼ dj � xðMÞj ð2Þ

for j = 1,2, . . .,m.
Step 6: Calculate the output deltas

dðMÞj ¼ ejr0 sðMÞj

� �
ð3Þ

Step 7: Recursively calculate the propagation errors of the hid-
den neurons

eðiÞj ¼
Xniþ1

l¼1

dðiþ1Þ
l wðiþ1Þ

lj ð4Þ

From the layer M � 1, M � 2, . . ., to layer 1.

Step 8: Recursively calculate the hidden neural delta values:

dðiÞj ¼ ejr0 sðiÞj

� �
ð5Þ

Step 9: Update weight vectors

wðiÞaj ¼ wðiÞaj þ gdðiÞj xði�1Þ
a ð6Þ

Step 10: calculate the error function

E ¼ Eþ 1
k

Xm

j¼1

e2
j ð7Þ

Step 11: if k = K then go to step 12; otherwise, k kþ 1 and go to
step 4.

Step 12: if E 6 e then go to step 13; otherwise go to step 3.
Step 13: learning is completed. Output the weights (Gupta, Jin, &

Homma, 2003).

After completing the training procedure of the neural network,
the weights of MLP are frozen and MLP is made ready for testing
stage. MATLAB software is employed to run structures using MLP
with BP algorithm.

2.3. Support vector machines

A special form of ANNs are SVMs, introduced by Boser in
1992. The SVM performs classification by non-linearly mapping
their n-dimensional input into a high dimensional feature space.
In this high dimensional feature space a linear classifier is con-
structed. Doing the explicit mapping would be computationally
unreasonable, and the algorithm avoids that by introducing the
kernel, which is possible since the algorithm only uses the scalar
product of the inputs. From this the classification problem is
translated into a convex quadratic optimization problem, which
due to its convexity has a unique solution.

The simplest version of a SVM is the so-called Maximal Margin
Classifier. It is applicable only when data are linearly separable. It
is a good start for understanding the basic ideas behind more
sophisticated SVMs. Consider a linearly separable dataset
fðXi; diÞg, where Xi is the input pattern for the i:th example and
di is the corresponding desired output f�1;1g. The assumption,
‘‘the dataset is linearly separable”, means there exist a hyperplane
working as the decision surface. We can write:

WT Xi þ b P 0; then di ¼ þ1

WT Xi þ b 6 0; then di ¼ �1
ð8Þ

where WT X þ b is the output function. The distance from the hyper-
plane to the closest point is called the geometric margin. The idea is,
to have a good machine, so the geometric margin needs to be max-
imized. To get that, we first introduce the marginal function
WT X þ b. Because the dataset is linearly separable we can rewrite
Eq. (8) as follow:

WT Xþ þ b ¼ þ1

WT X� þ b ¼ �1
ð9Þ

where XþðX�Þ is the closest data point on the positive (negative)
side of the hyperplane. Now it is straight forward to compute the
geometric margin

c ¼ 1
2

WT Xþ þ b
jwj �WT X� þ b

jwj

 !

¼ 1
2jwj ðW

T Xþ þ b�WT X� � bÞ ¼ 1
2jwj ð1� ð�1ÞÞ ¼ 1

jwj ð10Þ

Hence, equivalent to maximize the geometric margin is fixing
the functional margin to one and minimizing the norm of the
weight vector,jwj. This can be formulated as a quadratic ðwwTÞ
problem with inequality constraints diðwT xi þ bÞP 1.

min :
1
2

WT W ðquadratic-problemÞ

subject to : di wT xi þ b
� �

P 1
ð11Þ

By the use of Lagrange multipliers ai P 0 the original problem is
transformed into the dual problem. From the Kuhan–Tuker theory
we have the following condition

ai di WT xi þ b
� �

� 1
h i

¼ 0 ð12Þ

which means only the points with functional margin unity con-
tributes to the output function. These points are called the Sup-
port Vectors. Since they are supporting, the separating
hyperplane. For more information about SVM classifying, non-
separable datasets and classifying more than two classes, see
(Abe, 2005).

2.4. Kernel–Adatron algorithm (summary)

Support vector machines work by mapping training data for
classification tasks into a high dimensional feature space. In the
feature space they then find a maximal margin hyperplane which
separates the data. This hyperplane is usually found using a qua-
dratic programming routine which is computationally intensive
and non trivial to implement. In this section we briefly explain
the (K–A) algorithm for SVM classification. The algorithm is simple
and can find rapid solution for SVM classification with an exponen-
tially fast rate of convergence (in the number of iterations) towards
the optimal solution as follows:

Step 1: Initialize Lagrangian parameters ai ¼ 1.
Step 2: Starting from pattern i = 1, for labeled points fðxi; yiÞg

calculates

zi ¼ yi

Xp

j¼1

aiyiKðxi; xjÞ ð13Þ

Step 3: For all patterns i calculate

ci ¼ yizi ð14Þ

and execute steps 4–5 below.
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Step 4: Let

dai ¼ gð1� ciÞ ð15Þ

Be the proposed change to the multipliers ai.
Step 5.1: If ðai þ daiÞ 6 0 then the proposed change to

the multipliers would result in a negative ai.
Consequently to avoid this problem we set
ai ¼ 0.

Step 5.2: If ðai þ daiÞ > 0 then the multipliers are updated through
the addition of the daii.e. ai  ai þ dai.

Step 6: Calculate the bias b from

b ¼ 1
2
ðminðzþi Þ þmaxðz�i ÞÞ ð16Þ

where zþi are those patterns i with class label +1 and z�i are
those with class label �1.

Step 7: If a maximum number of presentations of the pattern set
has been exceeded then stop, otherwise return to step 2.
The kernel Kðx; x0Þ can be any function satisfying Mercer’s
condition; in particular it is possible to use RBF or poly-
nomial kernels (Abe, 2005). Some conventional kernels
are introduced in Table 2.

3. Wavelet transform

In 1982, Jean Morlet, a French geophysical engineer, discovered
the idea of the wavelet transform. Morlet first introduced the idea
of wavelets as a family of functions constructed from translations
and dilatations of a single function called the ‘‘mother wavelet”.
Many of researchers (Grossmann, Meyer, Mallat, Daubechies,
etc.) developed and enhanced this new signal-processing tool to
make it the most efficient and used technique in the structural
health-monitoring field. The wavelet transform can be thought of
as an extension of classic Fourier transform, except that, instead
of working on single scale (time or frequency), it works on a mul-
ti-scale basis. The wavelet transform can be classified as continu-
ous or discrete.

3.1. Continues wavelet transform

The wavelet analysis has been introduced as a windowing tech-
nique with variable-sized regions. Wavelet decomposition intro-
duces the notion of scale as an alternative to frequency, and

maps a signal into a time-scale plane as shown in the (Fig. 3). This
is equivalent to the time-frequency plane used in the STFT (short
time Fourier transform). Each scale in the time-scale plane corre-
sponds to a certain range of frequencies in the time-frequency
plane. The term wavelet means a small wave. A wavelet is a wave-
form of limited duration. Wavelets are localized waves that extend
for a finite time duration compare to sine waves which extend
from minus to plus infinity. The comparison with the Fourier anal-
ysis is now clear. The wavelet analysis is the decomposition of a
signal into shifted and scaled versions of the original wavelet
whereas the Fourier analysis is the decomposition of a signal into
sine waves of different frequencies.

Mathematically, the continuous wavelet transform of a function
f ðtÞ is defined as the integral transform of f ðtÞ with a family of
wavelet functions, wa;bðtÞ:

CWTða; bÞ ¼ 1ffiffiffi
a
p

Z þ1

�1
f ðtÞ � w

t � b
a

� �
dt

a 2 Rþ � f0g; b 2 R
ð17Þ

In other words, the continuous wavelet transform (CWT) is de-
fined as the sum of the signal multiplied by scaled and shifted ver-
sions of the wavelet function w:

CWTðscale; positionÞ ¼
Z þ1

�1
f ðtÞ � wðscale; position; tÞdt ð18Þ

The function wðtÞ is commonly called the mother wavelet and
the family of functions wa;bðtÞ is called daughter wavelets. The
daughter wavelets are derived from scaling and shifting the
mother wavelet. The scale factor a represents the scaling of the
function wðtÞ, and the shift factor b represents the temporal trans-
lation of the function. The results of the CWT are number of special
wavelet coefficients located in matrix C (function of scale and po-
sition). For more information see Mallet (1999). It is important to
know that determination of CWT scale parameter and mother
wavelet are very significant in ECG feature extraction.

3.2. Discrete wavelet transform

Calculating wavelet coefficients at every possible scale is a fair
amount of work, and it generates an awful lot of data. What if
we choose only a subset of scales and positions at which to make
our calculations? It turns out, rather remarkably, that if we choose
scales and positions based on powers of two, so-called dyadic
scales and positions. We obtain such an analysis from the discrete
wavelet transform (DWT). DWT works like a bandpass filter and
we can do DWT for a signal several levels. Each level decompose
the input signal into approximations (low frequency part of initial
signal) and details (high frequency part of initial signal). The next
level of DWT is done upon approximations. It is also essential to
notice that determination of DWT level and mother wavelet are
very important in ECG feature extraction.

Table 2
Some conventional kernels.

Kernel function Type of classifier

Kðx; xiÞ ¼ expð�ckx� xik2Þ Gaussian radial basis function (RBF)

Kðx; xiÞ ¼ ðxT xi þ 1Þd Polynomial of degree d

Kðx; xiÞ ¼ tanhðxT xi � hÞ Multi-Layer Perceptron

Fig. 3. Wavelet transform domain.
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DWTða; bÞ ¼ 1ffiffiffi
a
p

Z þ1

�1
f ðtÞ � w

t � b
a

� �
dt

a ¼ 2j; b ¼ k2j; ðk; jÞ 2 Z2

ð19Þ

In this study the best results of ECG signals classification were
obtained for DWT–MLP and CWT–MLP structures by examining
different already most used mother wavelets to select the best
for DWT and CWT techniques, Also, optimal scale parameter in
CWT and optimal decomposition level parameter in DWT were
specified empirically. Further we compared DWT–MLP and CWT–
MLP also DWT–SVM and CWT–SVM structural performances, by
employing the selected optimal parameters found for DWT and
CWT.

4. Discrete cosine transform

One of the main reasons for employing DCT in ECG signals clas-
sification is the ability to compress signals. Compression means
that you can restore signal information in a restrict number of
DCT coefficients. The most common DCT definition of a one-dime-
tional (1D) sequence of length N is

CðuÞ ¼ aðuÞ
XN�1

x¼0

f ðxÞ cos
pð2xþ 1Þu

2N

	 

ð20Þ

for u = 0,1,2, . . . ,N � 1. Similarly, the inverse transformation is de-
fined as

f ðxÞ ¼
XN�1

u¼0

aðuÞCðuÞ cos
pð2xþ 1Þu

2N

	 

ð21Þ

for x = 0,1 ,2, . . .,N � 1 . In both Eqs. (20) and (21) a(u) is defined as

aðuÞ ¼
ffiffiffiffiffiffiffiffiffi
1=N

p
;u ¼ 0

&

aðuÞ ¼
ffiffiffiffiffiffiffiffiffi
2=N

p
;u – 0

ð22Þ

It is clear from (20) that for Cðu ¼ 0Þ ¼
ffiffiffiffiffiffiffiffiffi
1=N

p PN�1
x¼0 f ðxÞ;u ¼ 0.

Thus, the first transform coefficient is the average value of the sam-
ple sequence. To fix ideas, ignore the f ðxÞ and aðuÞ component in
(20). The plot of

PN�1
x¼0 cos pð2xþ1Þu

2N

h i
for N = 8 and varying values of

u is shown in (Fig. 4). In accordance with our previous observation,
the first the top-left waveform (u = 0 ) renders a constant (DC) va-
lue, whereas, all other waveforms (u = 1,2, . . .,7 ) give waveforms at
progressively increasing frequencies (Pennebaker & Mitchell,
1993).

If the input sequence has more than N sample points then it can
be divided into sub-sequences of length N and DCT can be applied
to these chunks independently. Here, a very important point to
note is that in each such computation the values of the basis func-
tion points will not change. Only the values of f(x) will change in
each sub-sequence. This is a very important property, since it
shows that the basis functions can be pre-computed offline and
then multiplied with the sub-sequences. This reduces the number
of mathematical operations (i.e., multiplications and additions)
thereby rendering computation efficiency. MATLAB software is
used to calculated DCT coefficients in this paper.

5. Structure

In this study, eight different structures were formed for classifi-
cation of ECG arrhythmias. In structures one to four MLP classifier
with (BP) training algorithm has been trained and tested. CWT,
DWT and DCT are added to form structures two to four, respec-
tively. Training and testing performance (Tr.P and Te.P) plus train-
ing time (Tr.T) are selected as base for evaluation of these
structures to candidate the best. See Table 3. In training MLP clas-
sifier, usually we try to maximize classification performance of the
training data. But if the classifier is too fit for the training data, the
classification ability for test data, i.e., the generalization ability is
degraded. This phenomenon is called overfitting. To solve the over-
fitting problem during learning of MLP we had a random selection

Fig. 4. Eight DCT components.
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of ECG beats validation data which is used to prevent overfitting in
training stage.

Learning or training of MLP and SVM has been done with two
types of datasets according to Table 1. The first type of dataset is
obtained from one lead ECG signals (II) and the second one from
two lead ECG signals (II and V1). In these structures MLP classifier
with three layers containing 34, 50 and 5 neurons, respectively,
gives the best performance results in training and testing stages.

In the next for structures we have utilized SVM classifier with
RBF kernel function used by (K–A) algorithm. RBF mapes datasets
into a high-dimensional feature space. Since five classes (arrhyth-
mias) are involved in classification and they are more than two,
one-against-all method is used for SVM see (Abe, 2005). Also, in
(K–A) algorithm SVMs are motivated by the concept of training
and using only those inputs that are near to the decision surface.
These inputs provide the main information for classification.
CWT, DWT and DCT are added to the SVM structure in order to im-
prove the results. See Table 4.

6. Calculation of training and test performances

Training and test performances are calculated and presented in
Tables 3 and 4 using Eq. (23)

MSE ¼
PP

j¼1

PN
i¼1ðdij � yijÞ

2

NP

 !
ð23Þ

where P = number of sample points in each beat, N = number of
beats in input matrix, dij = desired output of classifier for jth sample
point and ith beat, yij = real output of classifier for jth sample point
and ith beat. MSE = mean square error.

7. Organization and manipulation of the results

The results of experiments carried out in this research are pre-
sented in Tables 3 and 4. Table 3, only deals with application of
MLP structure, when feature extractions are active with single lead.
Table 4 is designed so that while it is dealing with application of
SVM it compares the results obtained by SVM and MLP together.
This is done by dividing each row of Table 4 related to special
structure in two rows (In the first row Tr.P and Te.P of Table 3
for each row is kept constant and Tr.T and number of iterations
are found when SVM is active. In the second row Tr.T of Table 3
for each row is kept constant then Tr.P, number of iterations and
Te.P are found when SVM is active.

8. Conclusion

Classification of ECG arrhythmias taken from different and
numerous patients are common tools for prediction of the exis-
tence of arrhythmia in ECG signal. In this research, a comparison
of two classifiers, MLP and SVM, using three feature extraction
methods is done. Eight constructed structures explained in section
one have been under consideration with respect to Tr.P, Te.P and
Tr.T.

Analysis of the results shown in Table 3, shows that, when fea-
ture extractions are active with single lead, Tr.P is reduced for CWT
and DWT and Tr.T is reduced for DWT and DCT. It should be noted
that Te.P is only reduced for DWT. When the second lead is added
the Tr.P has improved nearly two times for all feature extraction
methods where as Tr.T increases no more than 30%, while Te.P
shows an increase of at least 2.5 times except for DCT.

Table 3
Tr.P, Te.P and Tr.T for structures one to four.

Structure Dataset type Training performance Training time (min:s) Number of iterations Testing performance

MLP 1 0.0406339 03:28 5000 0.0516
CWT-MLP 1 0.0182962 03:50 5000 0.0552
DWT-MLP 1 0.0349334 02:47 5000 0.0438
DCT-MLP 1 0.0572522 03:03 5000 0.0668
MLP 2 0.0213711 05:54 5000 0.1305
CWT-MLP 2 0.0056344 04:58 5000 0.1048
DWT-MLP 2 0.0228386 03:03 5000 0.1422
DCT-MLP 2 0.0293947 03:18 5000 0.0865

Table 4
Tr.P, Te.P and Tr.T for structures five to eight.

Structure Dataset type Training performance Training time (min:s) Number of iterations Testing performance

SVM 1 0.0406339a 00:25 39 0.0516a

0.0100045 03:28a 334 0.0651

CWT-SVM 1 0.0182962a 00:28 56 0.0552a

0.01267129 03:50a 306 0.0984

DWT-SVM 1 0.0349334a 00:09 49 0.0438a

0.0095859 02:47a 389 0.0680

DCT-SVM 1 0.0572522a 00:05 29 0.0668a

0.015230 03:03a 544 0.0555

SVM 2 0.0213711a 01:52 72 0.1305a

0.0091081 05:54a 325 0.1086

CWT-SVM 2 0.00563444a – – 0.1048a

0.011462188 04:58a 306 0.1189

DWT-SVM 2 0.0228386a 00:42 62 0.1422a

0.010039938 03:03a 259 0.1110

DCT-SVM 2 0.0293947a 00:19 59 0.0865*

0.0099505 03:18a 488 0.1031

a Indicates the reference value used from Table 3 in Table 4.
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Similar analysis of Table 4 shows that for SVM structure, when
feature extractions are active with single lead, Tr.P is reduced not
considerably for all feature extraction methods but Tr.T shows a
noticeable reduction down to one fifth for DWT and DCT but Te.P
is only increased for CWT. When the second lead is added there
are not noticeable changes in Tr.P but Tr.T and Te.P are showing
noticeable changes.

Comparison of MLP and SVM based on the results reported in
Tables 3 and 4 shows that SVM classifier with (K–A) training algo-
rithm has improved Tr.P at least four times. Also the time spent to
reach the same Tr.P as for MLP, is reduced 3:03 min:s.

Implementation of the selected and proposed classification
structures shows that selection of the best feature extraction
method will depend on the substantial value considered for train-
ing time, training and testing performance.
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