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Nonprismatic beam modeling is an important issue in structural engineering, not only for versatile
applicability the tapered beams do have in engineering structures, but also for their unique potential to
simulate different kinds of material or geometrical variations such as crack appearing or spreading of
plasticity along the beam. In this paper, a new procedure is proposed to find the exact shape functions
and stiffness matrices of nonprismatic beam elements for the Euler—Bernoulli and Timoshenko
formulations. The variations dealt with here include both tapering and abrupt jumps in section
parameters along the beam element. The proposed procedure has found a simple structure, due to two
special approaches: The separation of rigid body motions, which do not store strain energy, from other
strain states, which store strain energy, and finding strain interpolating functions rather than the shape
functions which suffer complex representation. Strain interpolating functions involve low-order poly-
nomials and can suitably track the variations along the beam element. The proposed procedure is
implemented to model nonprismatic Euler—Bernoulli and Timoshenko beam elements, and is verified by
different numerical examples.
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1. Introduction

Nonprismatic beams have been used in various structures
including buildings and bridges since the first decades of the previous
century, with an increasing application as the structural engineering
techniques were improving. With the beams being tapered, the
architects would be able to create and implement novel aesthetic
architectural designations, as well as the structural engineers who
could seek for optimum low weight - high strength systems through
a redistribution of materials along the structural members.

Along with the new improvements in the structural engi-
neering, much interest and attempt was drawn toward finding
better formulations to model nonprismatic beam elements. This
was not only a consequence of versatile applications the non-
prismatic beams found in different engineering structures; but the
researches have now recognized that these beams may compe-
tently be applied for modeling and simulating some structural
phenomena or cases as inelastic behaviors, crack appearance, and
different material adoption.
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Much research has yet been focused on the issue of nonprismatic
beams, all of which may be categorized in the two general branches:

1. Accurate, simple and applicable modeling of nonprismatic
beams, and providing suitable differential equations to
consider various effects for different analysis types, and

2. Finding simple and applicable methods to solve these differ-
ential equations.

This research paper is dealing with the latter.

The governing differential equations were initially been solved
by means of exact classical procedures. With the different
approximate numerical methods being invented, much research
focused on finding solutions for the governing equations based on
numerical approaches. Among different methods proposed, finite
element method drew much interest, while few attempts consid-
ered other approximate techniques such as boundary element
method (Al-Gahtani and Khan, 1998).

At the first steps to implement FEM for the analysis of non-
prismatic beams, several uniform beam elements were used to
discretize the nonprismatic member. Obviously, this technique will
not give the exact stiffness matrix for a tapered member, as the real
member is substituted by an alternative member composed of
several discrete uniform beam elements with different attributes.
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The analysis will then suffer discretization errors, especially for
tapering with sharp gradients. Fine discretization is thus inevitable
so that the response does not violate the acceptable tolerance. This
will increase analysis expense and time consumption.

Much research has examined different methods to retrieve the
stiffness matrix for the nonprismatic beam element. These methods
involve direct integration of the governing differential equations
(Just, 1977; Karabalis and Beskos, 1983; Biondi and Caddemi, 2007),
modifying stiffness methods to consider tapering (Portland Cement
Association (PCA), 1958; El-Mezaini et al., 1991; Balkaya, 2001),
establishing the flexibility matrix and inversing it (Eisenberger,
1985; Vu-Quoc and Léger, 1992; Frieman and Kosmatka, 1992;
Frieman and Kosmatka, 1993; Tena-Colunga, 1996), and applying
transfer matrices (Luo et al, 2007; Luo et al., 2006). All these
methods may suffer the following deficiencies:

1. Some of these methods will recover the stiffness matrix for
some special simple cases of tapering such as linear or parabolic
depth variation along rectangular or I-shaped beams; while for
other cases, they will be frustrated due to complex representa-
tion of shape functions and stiffness matrices (Karabalis and
Beskos, 1983; Brown, 1984; Banerjee and Williams, 1986).

2. Some of these methods, such as establishing the flexibility
matrix and inversing it, will only retrieve the stiffness matrix,
and are unable to recover the shape functions, which might be
necessary for the analysis procedure based on stiffness
formulation (Eisenberger, 1985; Tena-Colunga, 1996).

This research presents a simple general procedure to establish
the stiffness matrix and shape functions of the complex non-
prismatic beam elements for the two Euler—Bernoulli and Timo-
shenko beam formulations. The procedure is based on the
separation of rigid body motions from strain states and finding
interpolating strain fields rather than deflection (and rotation) field
(s) of the beam element. It will give the exact stiffness matrix and
interpolating functions for the strain fields of the nonprismatic
beam element, apart from the error introduced by numerical
integration. Based on these functions, the exact shape functions can
be retrieved if they are required for the analysis procedure.

2. Formulation of the procedure

In the following formulation, a finite element with linear elastic
behavior is considered in the field of Q ={(x,y,z) e R> under arbi-
trary static loading. The finite element has n. degrees of freedom, n;
rigid body motions, and ng = ne — n; strain states.

The procedure is established based on the stiffness formulation.
According to this formulation, degrees of freedom are successively
given a unit displacement, while all others are restrained against
any movement. The reactions corresponding to the degrees of
freedom will then be determined to recover one column of the
stiffness matrix of the finite element. As a mathematical point of
view, this corresponds to establishing canonical (standard) basis for
the vector space of the element displacement. Surely the canonical
basis is not the only ensemble of vectors which may be considered
for the element displacement space; An infinite number of basis
can be selected to span this vector space. The only criterion each
basis should qualify is that its vectors be linearly independent.

In the present formulation, canonical basis is not any longer
considered to establish the stiffness matrix of the finite element.
Rather, basis vectors are selected so that they can be categorized
into two partitions, corresponding to the rigid body motions and
strain states of the finite element:

®, = [qbql.:lgrgnr bgs : e + 1 gsgne] = [®gr|®qs]. (1)

@4 is a columnar arrangement of ne arbitrary linearly independent
basis vectors, which will be addressed as basis matrix henceforth.
The submatrix @ includes n; basis vectors ¢q, corresponding to
the rigid body motions, while in the submatrix @, ns basis vectors
¢qs, corresponding to the arbitrary strain states are arranged.

The first step for the present formulation is the selection of basis
vectors for the displacement space, so that they can be divided into
two partitions according to Eq. (1). An appropriate choice for the
basis vectors may help simplify the procedure to find the stiffness
matrix and shape functions. This is briefly discussed in Section 5.

When the basis vectors are selected, they will successively be
applied to the element. The strain fields for each basis vector will
then be obtained. This will be done using the principle of virtual
forces. Assuming a compatible situation between the nodal
displacements in the basis vector ¢qx and the corresponding strain
fields, variations of virtual equilibrated forces and stresses are
applied, and the internal and external virtual works are set as equal:

6P£¢qk = /60'3;8de (2)
Q

Here, & is the strain field appeared in the domain when ¢g is
applied to the finite element. The virtual stress field doy is in
equilibrium with an applied virtual load 6Py, or in a more general
statement, the virtual stress field is such that divéey vanishes in the
whole domain, and deoyn equilibrates the virtual traction load on
the whole boundary, where n denotes outward unit normal vector
on the boundary.

The nodal force vector, Py, is composed of the two following parts:

P, = {Pg Py}’ 3)

Py is an arbitrary part of nodal force vector with a dimension equal
to the degree of static determinacy of the finite element. Pjx
involves the rest of vector entries. Py and Py are related to each
other according to the following equation:

Py = SPyy (4)

S is the transformation matrix for the inclusion of rigid body modes.
Based on the static equilibrium equations, the internal stress field
can be obtained from the nodal forces Pqy:

oy = bPyy (5)
The constitutive law is described by the following relation:

& = Coy (6)
Eq. (5) and Eq. (6) will give the following equation:

& = ChPgyy (7)
By substituting Eqgs. (5), (6) and (7) in Eq. (2), the following

system of equations is obtained:

/ bTChdQ-Py, = S b (8)
Q

This system of equation represents the flexibility relation at the
element level corresponding to the basis vector ¢qx, and may be
rewritten as below:

T
FPy = S ¢qx (9)

Here, F is the flexibility matrix of the finite element. Solving the
system of equations will give Pgy:

Pdk = F_15T¢ql< (10)
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Replacing Pgy in Eq. (7), the strain fields corresponding to the basis
vector @qy, &k, will be obtained. The vector &, comprises one column
of the By matrix which relates the strain and displacement fields in
the generalized basis, @:

qu =& = CbF71ST¢qk (11)

Eq. (11) plays a fundamental role for the proposed procedure.
When the above process is accomplished for all basis vectors, Bg
will then be obtained:

By = [qungkgne} (12)

The matrix By can be divided as below, according to the parti-
tioning introduced in Eq. (1):

By = [Bgr:1<71<mngBgs:nr+1<s<ne] = [Byr|Bgs] (13)

As no strain will be recovered when basis vectors corresponding to
the rigid body motions are applied to the finite element, The sub-
matrix B, is zero. Bq can then be rewritten as following:

By = [On,

Bgs] (14)

Therefore, there is no need to perform the process for the rigid body
motions. Using By, the stiffness matrix in the basis of @4 can easily
be obtained:

Kq = /BgC’]Bqu (15)
Q
This stiffness matrix will have the following representation:
On XN on xn
K, = e s 16
. [onsxnr Kass | pon, (16)

The submatrix Kgss is of dimension ns x ns, and has a nonzero
constant representation when linear elastic behavior is only con-
cerned (Khajavi, 2004).

The matrix of shape functions in the basis of ®q, Ny, can be
obtained from Bg, based on the compatibility relations between
displacement and strain fields, by some integration process. When
there is no need to the shape functions during the analysis proce-
dure, e.g. if dynamics or distributed loads are not considered, this
step can be skipped.

When By, Nq, and K are obtained for the basis @, their coun-
terparts in the canonical basis B, N, and K can easily be obtained
through the following transformations:

B = B¢, (17)
N = Ng.®,' (18)
K=3%"o, (19)

When these matrices are obtained, they can be employed in the
well-known linear elastic analysis procedures.

3. Procedure for straight nonprismatic Euler—Bernoulli beam
element

In this section, the elastic linear beam element with linear
geometrical behavior is considered on the domain Q ={(x,y,z)e
Rixe[0L] = QL. C R, (yz)e QaC R*} and under arbitrary static
loading. In the present formulation, 24 may not be constant along
@ =[0,L], and might vary arbitrarily unless formulation assump-
tions are disturbed. It is assumed that the neutral axis is straight, so

that arching action, as described by El-Mezaini et al. (1991), may not
develop along element. The independent displacement field for this
formulation is deflection w(x), from which other fields can be derived
based on compatibility relations and constitutive law. The beam
element has two nodes at the two ends, with two degrees of freedom
of deflection and rotation for each node. The well-known governing
differential equation for the two-dimensional Euler—Bernoulli beam
is as below:

M(x) = EL;(X)0xxW(X) (20)

Here, 0xx() represents second differentiation with respect to x. M, E,
and [, are internal moment, elastic modulus, and second moment of
inertia around z respectively.

Based on the above assumptions, the basis vector ¢qx and the
nodal force vector Py will have the following representations:

¢qk = {WOk = wy(0) 601( = 01((0) Wy = Wy (L) 0Lk = 01((L) }T
(21)

Py = { Vo = Vi(0) Moy = My(0) Vig = V(L) My = Mi(L)}'
(22)

w, 6, V and M denote deflection, rotation, shear force and moment,
respectively. Subscripts 0 and L represent the beginning and end
nodes of the nonprismatic beam element respectively, and k is an
index for the number of strain state.

In the Euler—Bernoulli formulation, the fields oy and &g
respectively represent internal moment and curvature along the
beam element:

0 =My (x) (23)

€k EKI((X) (24)

Choosing Pgi as the nodal moments at the two ends of the
element, the static matrix S is obtained as below (Vu-Quoc and
Léger, 1992):

1.1 1o
T
s—[L1 0 1 1} (25)

=

When ¢ is applied to the element, the resulted moment field is
related to Pqi by the following linear interpolation:

M
_ — _X X Ok
M) = ba = (1§ 1){ o | (26)
In the Euler—Bernoulli formulation for the nonprismatic beam
element, sectional flexibility C, which relates the moment and
curvature fields, is simply defined as:

1
C=fix) = El(x) (27)
With the known matrices C and b, the element flexibility matrix F
can be obtained. The matrices b, C, and F are independent of the
selected basis, and are computed once during the procedure. By the
use of Eq. (11) for all basis vectors corresponding to the strain states,
By is obtained. The stiffness matrix in the basis @4 can then be
established through Eq. (15). Shape functions can be derived by the
following equation:

Nye(x) = / ( / Byie(tr)dlu + 0Ok> ds + Wy (28)
0 0

Here, u and s are integrating variables. When Ng, By, and K are
obtained, N, B, and K are attained by the application of Egs. (17)—(19).
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It is notable that axial and torsional stiffness calculations may
also be included and treated in a same way. The virtual work
expression should then involve terms to account for axial and
torsional strain energy as well. Bending, axial and torsional
behavior are mostly regarded as uncoupled (Eisenberger, 1991);
however, coupling may simply be introduced in the constitutive
relation (Somashekar, 1983). For the proposed formulation,
coupling might be included in the off-diagonal entries of sectional
flexibility matrix, C. It is noticed that warping torsion is frequently
excluded from formulation, as it is a secondary effect in beams of
building frames (Takabatake, 1990).

4. Procedure for straight nonprismatic Timoshenko beam
element

The assumptions made here are the same as the previous
section, except that in the Timoshenko beam formulation, deflec-
tion and rotation fields are defined independent of each other. The
governing equations for the Timoshenko beam are as below:

M(x) = EL(x)k(x) (29)
V(x) = GAs(x)7(x) (30)
K(X) = 0xB(x) (31)
Y(x) = 0(x) — Hw(x) (32)

Here, 9x() represents first differentiation with respect to x. V, G, and
v are the internal shear, shear modulus, and shear strain respec-
tively. As is the shear area which equals the section area multiplied
by the shape factor for shear, ks, and might not be constant along
the element as is the case for I,:

As(x) = ksA(x) (33)

In the Timoshenko formulation, o represents the vector of internal
moment and shear, and ¢, denotes the vector of curvature and
shear strain along the beam element:

={4)

v={5) o)

When ¢q is applied to the element, the resulted moment and
shear fields are related to Pgx by the following interpolation:

Mk(x)} b [1—% %HMOI }

— bP,, = S 36

{ V(%) dk _% % My (36)
In the Timoshenko formulation for the nonprismatic beam

element, sectional flexibility C is defined as:

_ [ fs11(0) fez(x)
€= [fm(x) fszz(x)] (37)

Sectional flexibility matrix is usually assumed as being diagonal for
most Timoshenko formulations; however, it is verified that it does
have a non-diagonal representation when nonprismatic beam
modeling is concerned (Vu-Quoc and Léger, 1992).

Similar to the procedure performed for the Euler—Bernoulli
formulation, the element flexibility matrix F is obtained from the
matrices b and C, and Bg, will then be found using Eq. (11). This
matrix has the following representation:

BKl
Bac = [ 7] (38)
q

Here, Bqi" and Bqi” respectively represent the interpolating func-
tions for the curvature and shear strain fields corresponding to ¢qx.
Finding all these functions for the basis vectors representing strain
states, Bq is obtained:

0;.2|Bgs B,
By = [03.5|Bgs] = [+l | = | o0 (39)
q [ ! qs} |:01><2Bgs le’

The stiffness matrix in the basis @ is derived by the application of
Eq. (15). Based on the compatibility relation in Egs. (31) and (32),
the shape functions can be obtained by the following equation:

X

Nee(x) = / ' ( /;ng(u)du + 00k) ds /X B, (w)du+we,  (40)
0 0

With Ng, B, and K being known, N, B, and K will be found by the
transformations introduced in Egs. (17)—(19).

5. Basis selection

Basis vectors representing the strain states can arbitrarily be
selected. The only requirement is that they must be linearly inde-
pendent to be able to span the vector space. Some bases might be
preferred to the others, as they will offer simpler representations for
the stiffness matrix and shape functions. However, when the stiff-
ness matrix for the element is determined, it has to be transformed
to the conventional canonical basis to become ready for the super-
position step. Clearly, the canonical basis is the only suitable basis for
implementing inter-element compatibility requirements, since it
offers nodal displacements and rotations as its vector coefficients.

As mentioned in Section 2, it is strongly recommended to
include rigid body motions in the selected basis. This will signifi-
cantly simplify the procedure to find the stiffness matrix and shape
functions, and will reduce computational effort as well. The reason
refers to the fact that the element does not store strain energy
under rigid body movements. The stiffness matrix is also decoupled
for the rigid body motions and deformation states, as implied by Eq.
(16). However, this is not the case when geometric stiffness matrix
is concerened (Yang and Chiou, 1987).

Basis vectors for representing deformations may arbitrarily be
selected according to the analysis requirements. It is noticeable that
some bases offer physical implications, and may efficiently be
employed for desirable inference. A well-known basis is the one
which introduces those basis vectors representing the deformation
states the same as the canonical basis vectors corresponding to the
rotational degrees of freedom for the beam element:

1 -L/2|0 O
0 1 |1 0

?q = [‘qu}d,qs} = |1 L/2 |0 0 (41)
0 1 |0 1

This basis is suitable for most applications, and is the one implicitly
considered for the flexibility-based formulations.

Another useful basis might be adopted from the strain gradient
notation (Dow, 1999), with the following matrix representation:

1 -L/2]1%/8 —L23/48
0o 1 |-

?q = [(I)qr}q)qs} =11 L/2 LZL//82 L[é/488 (42)
0 1 |-L/2 1%/8
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This basis might be valuable as it provides well-defined strain
states. The basis vectors for deformation states represent constant
and linear curvature. They can thus be efficiently applied when
different effects, such as shear deformations, are investigated for
single and double-curvature modes (Vu-Quoc and Léger, 1992). It
also offers diagonal stiffness matrix for symmetrical nonprismatic
beam elements. The basis in Eq. (42) may also be introduced by
Legendre polynomials (Felippa, 2001).

6. Approximate vibration and stability analysis procedures

The formulation introduced in Section 2, may easily be extended
to the stability and vibration analysis procedures. It presents the
geometric stiffness matrix and the mass matrix which might be used
to determine the natural frequencies and buckling loads for plane
frame structures, respectively. For the case of simplicity and as the
vibration and stability analysis procedures are not the major concern
in this research, the formulation is implemented for Euler—Bernoulli
theory, and shear and torsion deformations are neglected.

6.1. Vibration analysis

While many authors have employed analytical approaches like
Rayleigh—Ritz method to find closed-form solutions for natural
frequencies of non-uniform beams (e.g.: Wang, 1967; Auciello and
Ercolano, 2004), some others have examined numerical proce-
dures like finite difference (Rissoné and Williams, 1965) and finite
element methods.

Lindberg (1963), Gallagher and Lee (1970), To (1981), and
Eisenberger and Reich (1989) employed the well-known cubic
polynomials to construct the consistent mass matrix for tapered
beams. Thomas and Dokumaci (1973) and To (1979) applied higher
order polynomials for the vibration analysis. Rutledge and Beskos
(1981) and Karabalis and Beskos (1983), though were successful
to obtain exact closed-form representations for the stiffness matrix,
they failed to do the same for the consistent mass matrix. They
alternatively derived the mass matrix from cubic polynomials to
perform vibration analysis. The same problem arises when flexi-
bility-based methods are involved.

In this research, mass matrix in the basis of @4 is obtained by the
following equation:

L
M, = / NI (0)Nq(x)A(X)dx (43)
0

where p is density, and A(x) is the cross section area. Nq(x) incor-
porates all functions Nqi(x) for strain states k, introduced in Eq. (28).
When Mg is obtained, it is transformed to the canonical basis. The
mass matrices for the non-uniform elements are then assembled to
give the global mass matrix of the structure, M.

To perform vibration analysis by finite element method, the
following eigenproblem is solved:

(I(S + wi2M5>Dsi -0 (44)

where wj is the natural frequency for mode i, with the mode shape
described by eigenvector Dgj, and Kj is the global stiffness matrix.
The solution will give the natural frequencies for the specified
number of modes.

It is notable that the mass matrix introduced by Eq. (43) is not
dynamically consistent, since the shape functions Ng are derived from
static, rather than dynamic, equilibrium equations, as described by Eq.
(2). This will give rise to some errors in deriving natural frequencies,

especially for higher vibrational modes (Cleghorn and Tabarrok,
1992). The vibration analysis will thus be approximate.

6.2. Stability analysis

Many previous studies examined the elastic stability of non-
prismatic columns. cubic polynomial shape functions (Kruchoski
and Leonard, 1981;Bradford and Cuk, 1988), Bessel functions
(Gere and Carter, 1962; Banerjee and Williams, 1986; Saucha and
Antunac-Majcen, 2002), Chebyshev polynomials (Li and Li, 2004),
power series(Dube and Dumir, 1996; Al-Sadder, 2004) and direct
integration of the differential equations (Karabalis and Beskos,
1983; Bazeos and Karabalis, 2006) are generally employed to
determine the geometric stiffness matrix for the stability analysis.

In the proposed procedure, approximate geometric stiffness
matrix is obtained by the following equation:

L
Keg = P / 1} (0Qq(dx (45)

where P denotes the axial force, and Qq(x) is determined from Bg(x),
by the following equation for each strain state k:

Q%) = / Ba(s)ds + By (46)
0

By is previously introduced in Eq. (11), and 6oy is adopted from Eq.
(21). Once Kgq is obtained, Eq. (19) is applied to give the geometric
stiffness matrix in the canonical basis. The elastic and geometric
stiffness matrices for all members of the structure are then
assembled and employed to determine the critical load through the
following eigenproblem:

(Ks + PerKgs)Ds = 0 (47)

K and K are the global elastic and geometric stiffness matrices of
the structure, respectively. P is the critical load, with the buckling
mode known by the eigenvector Ds.

A keypoint is that the previous formulations for the stability
analysis try to construct the geometric stiffness matrix through
derivatives of shape functions; however, the proposed procedure
determines this matrix by performing integration. It can then be
easily implemented in finite element codes, as numerical integra-
tion procedures are sufficiently straightforward. As was the case for
the mass matrix, the geometric stiffness matrix Kgq introduced in
Eq. (45) may not be considered exact, since the shape functions Nq
are not obtained from nonlinear static equilibrium equations. The
geometric stiffness mass matrix will then yield an approximate
value for the critical load (Karabalis and Beskos, 1983).

7. Numerical verification
7.1. Nonprismatic cantilever Euler—Bernoulli beam

7.1.1. Static analysis

The nonprismatic beam with three separate segments, shown in
Fig. 1, is considered, and clamped at the left end. This example is
notable as it will illustrate the efficiency of the procedure to deal
with both kinds of discrete and smooth discontinuities simulta-
neously. The first half of the beam is tapered smoothly, with the
depth of the rectangular section varying linearly from 2h to h. At the
midpoint of the second half, section depth drops abruptly from h to
h/2. Euler—Bernoulli assumptions are considered for the beam
formulation.
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h(x)=2h(1- %)

Fig. 1. Sample nonprismatic cantilever beam.

The sample beam with the length L=8 m , depth h=04m,
thickness t =0.1 m , density p = 7850 kg/m’ , and elastic modulus
E =210 GPa, under two types of concentrated load P; = 50 kN at the
free tip, and uniform distributed load p =10 kN/m, is analyzed by
the three following methods:

1. Modeling the cantilever beam as one nonprismatic Euler—
Bernoulli beam element, with the stiffness matrix and shape
functions obtained by the procedure proposed in Section 3.

2. Modeling the cantilever beam by three Euler—Bernoulli beam
elements, corresponding to the three separate sections. The
exact stiffness matrix and shape functions for the tapered
element representing segment (1) are derived according to
Franciosi and Mecca (1998). The same expressions are obtained
if the proposed procedure is applied to this segment.

3. Modeling the cantilever beam by quadrilateral membrane
elements with a maximum dimension of 0.1 m. This is a near-
optimum finite element mesh, with accuracy better than 2.5% for
displacements and rotations. The membrane element is typical
with 4 nodes and 12 degrees of freedom, and employs an iso-
parametric formulation including translational in-plane stiffness
components and a rotational stiffness component in the direction
normal to the plane of the element. The nodes at the clamped end
are restrained against displacement and rotation.

For Method (1) (proposed method), the stiffness matrix and the
interpolating functions are obtained by the application of the basis
in Eq. (41). For the analysis of the beam under the concentrated load
at the tip, shape functions are not required, and computational
effort might then be decreased; however, for the case of distributed
loading, shape functions must inevitably be calculated according to
Egs. (28) and (18). As the interpolating functions Nq benefit simpler
representation than N, integration is recommended to be per-
formed on Ny functions. For this example, exact integrating over N,
to find the equivalent nodal forces, is very difficult to be performed
for the tapered segment, and numerical integration is inevitable.
Rather, by performing exact integration over Ny, equivalent forces
can be obtained in the basis @, and will then be transformed to the
visible degrees of freedom.

The exact shape functions N, obtained by the proposed procedure,
are shown in Fig. 2, and reported in Appendix A. Obviously, they do
not resemble the well-known polynomials usually been used for
nonprismatic beam formulations; rather, they are dependent on the
pattern the moment of inertia is distributed along the beam element.

The number of degrees of freedom used in the analysis by the
proposed method is simply 2, while this is 6 for Method (2). Therefore,
the proposed method is preferred as it will decrease the computa-
tional effort, especially when a great number of complex nonprismatic

members with similar discontinuity pattern are used in the frame
structure. As exact stiffness matrices are employed for Method (2), the
results by the two methods (1) and (2) are close to each other, as
showninTable 1.Itis notable that when static condensation technique
isapplied to the global stiffness matrix assembled from the three exact
beam elements introduced in Method (2), the same stiffness matrix as
the proposed one is obtained. If the exact stiffness matrix for the
tapered segment is not employed in Method (2), a great number of
small uniform elements are required to hold the results in a reason-
able tolerance. This will undoubtedly increase the expense of the
analysis procedure (Karabalis and Beskos, 1983).

As indicated in Table 1, the displacements and rotations
obtained by the proposed method coincide exactly those obtained
by Method (2) for the concentrated loading. This shows that the
proposed method has offered exact interpolating functions.
However, small discrepancies exist between the responses reported
by the two methods (1) and (2) for the points along the beam under
the distributed uniform loading. These discrepancies are caused
due to different values of equivalent nodal forces provided by the
two methods. Obviously, when more elements are used to dis-
cretize the member, equivalent nodal forces will resemble the real
distribution, and the responses for the interior points will be more
accurate. It should be mentioned that the discrepancies observed
between the responses obtained by Method (3) with the two others
are due to the initial assumptions made in the formulations. As
implied by Table 1, the two one-dimensional models (1) and (2)
overestimate the stiffness of the member, resulting in smaller
deflections and rotations. This is relevant to the low-stress areas

2 N2 E
1 N

N3

Fig. 2. Exact shape functions for the nonprismatic Euler—Bernoulli beam element with
the pattern shown in Fig. 1.
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Table 1
Free end displacement obtained by different methods (Euler—Bernoulli beam).
Method x=LJ2 x=3L/4 x=L
Deflection Rotation Deflection Rotation Deflection Rotation
mm rad mm rad mm rad
Point loading
Proposed method 5.51849 0.003571 15.6375 0.006250 37.66135 0.0134
FEM (3 exact EB beam elements) 5.51849 0.003571 15.6375 0.006250 37.66135 0.0134
FEM (membrane elements) 6.26187 0.004838 17.9602 0.007331 41.92648 0.0144
Distributed loading
Proposed method 2.75351 0.00174 7.537147 0.002873 15.5357 0.0038
FEM (3 exact EB beam elements) 3.506889 0.00198 8.479635 0.002814 15.5357 0.0038
FEM (Membrane elements) 4.08552 0.002631 10.00131 0.003358 18.1858 0.0044

around discontinuous sections, ignored in one-dimensional models
as reported by El-Mezaini et al. (1991), and neglecting local taper
effects, as quoted by Hodges et al. (2008).

It is notable that the shear and moment distributions along the
beam are exactly the same for the two methods (1) and (2), since
the structure is statically determinate. It is however noted that the
stress distributions, obtained by the first two models, may not be
regarded accurate around the discontinuous sections (El-Mezaini
et al.,, 1991).

7.1.2. Vibration analysis
Vibration analysis is performed for the sample nonprismatic
cantilever beam by the following three methods:

1. Modeling the cantilever beam as one nonprismatic Euler—
Bernoulli beam element, with the stiffness matrix and shape
functions obtained by the procedure proposed in Section 3.

2. Modeling the cantilever beam by three Euler—Bernoulli beam
elements, corresponding to the three separate sections. The
stiffness matrix and shape functions for the tapered element
representing segment (1) are obtained according to Tang
(1993).

3. Modeling the cantilever beam by uniform Euler—Bernoulli
beam elements. Tapered segment of the beam is substituted by
10 uniform beam elements (Stepped beam modeling).

The first and second frequencies of the non-uniform beam are
derived, and listed in Table 2. Obviously, the proposed method may
not deal with the frequencies beyond the second mode, since the

Table 2
Critical load factor and natural frequencies obtained by different methods
(Euler—Bernoulli beam).

Method e fi (Hz) f2 (Hz)

Proposed method 0.0407 12.2059 70.4928
FEM (3 exact EB beam elements) 0.0389 11.2221 38.3629
FEM (stepped beam modeling) 0.0392 11.6482 38.4468

cantilever beam is modeled by only one nonprismatic element with
two active degrees of freedom. The consistent mass matrix is
derived by the use of shape functions reported in Appendix A.

As shown by Table 2, the values obtained by all three models are
close to each other for the first natural frequency; however, a large
discrepancy is observed for the second frequency, between the
value offered by the proposed method, and those derived by the
other two. It seems that the proposed method is unable to predict
the second frequency accurately. The reason is due to the fact that
the mass matrix introduced by Eq. (43) is statically consistent, as
noted in Section 6.1.

7.1.3. Stability analysis

The three previous methods, applied for vibration analysis, are
used to find the critical load of sample nonprismatic cantilever beam.
The results are shown in Table 2. All derivatives and integrals are
calculated analytically. Acr = (PeL?)/(wElp) is defined as the critical
load factor, where Iy is the moment of inertia for the section at the
clamped end. The values for the three methods are nearly close to
each other. The matrix-form eigenproblem dealt with in the proposed
method is simply of dimension 2, while it is 6 and 24 for the second
and third methods respectively. It is also reminded that no derivatives
are needed to be calculated for the proposed procedure.

7.2. Nonprismatic cantilever Timoshenko beam

The previous example with the same features is remodeled and
analyzed for the Timoshenko formulation; however, the beam
length is set to L = 2 m to intensify shear effects. The shear modulus
and shape factor are assumed to be G=80MPa and ks=5/6
respectively.

The three following methods are applied for the analysis of the
sample structure:

1. Modeling the cantilever beam as one nonprismatic Timo-
shenko beam element, with the stiffness matrix and shape
functions obtained by the procedure proposed in Section 4.

Table 3
Free end displacement obtained by different methods (Timoshenko beam).
Method x=LJ2 x=3L/4 x=L
Deflection Rotation Deflection Rotation Deflection Rotation
mm rad mm rad mm rad
Point loading
Proposed method 0.099223 0.000223 0.265812 0.000391 0.62958 0.000837
FEM (3 exact T beam elements) 0.099223 0.000223 0.266708 0.000391 0.62958 0.000837
FEM (membrane elements) 0.093707 0.000239 0.265289 0.00049 0.67367 0.001038
Distributed loading
Proposed method 0.012066 0.000026 0.03111 0.000043 0.06280 0.000053
FEM (3 exact T beam elements) 0.017449 0.000031 0.03828 0.000044 0.06678 0.000059
FEM (membrane elements) 0.016746 0.000034 0.03843 0.000051 0.070351 0.000066
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Fig. 3. A gable frame with nonprismatic members. (a) Geometry and loading of the structure (All lengths are given in meters). (b) Discontinuity pattern of the members.

2. Modeling the cantilever beam by three Timoshenko beam
elements, corresponding to the three separate segments.

3. Modeling the cantilever beam by quadrilateral membrane
elements with a maximum dimension of 0.025 m.

The results for the two types of loading are reported in Table 3.
As indicated by Table 3, the responses obtained by the proposed
method are duly close to those obtained by the two other methods,
while it has applied just one element to model the beam. Table 3
verifies the results pointed out for Table 1. However, a compar-
ison of the two Tables 1 and 3 shows a decrease in the discrepancies
observed in Table 3 for the interior nodes in the distributed loading,
which is due to the decrease in the length of the beam.

7.3. Gable frame with nonprismatic Euler—Bernoulli members

A gable frame as shown in Fig. 3a is considered. All the members
numbered in Fig. 3a share the same discontinuity pattern as shown
in Fig. 3b. The nonprismatic member consists of two equal
segments. One segment is constant with the moment of inertia
I.=78,465,066 mm?*, and section area A=7038 mm?. The other
segment is tapered with the moment of inertia varying as
I=1J1+3(1 — (2x/L))*]>. Elastic modulus is assumed to be
E =210 GPa, and section area is considered constant for the case of

Table 4
Nodal displacements obtained by different methods (Example 7-3).
Nodes Method 1 (proposed) Method 2
6 Nonprismatic elements 54 Uniform elements
ux Uy Tz ux Uy Tz
mm mm rad mm mm rad
N1 30.8493 0.0194 —-0.0067 29.8439 0.0059 -0.0068
N2 353185 —12.0321 0.0028 34.9545 —13.8315 0.0021
N3 28.3983 6.2884 0.0048 28.4143 3.4261 0.0048
N4 32.7261 18.0104 —0.0007 33.1104 16.1795 —0.0000

N5 25.8938 —0.0279 0.0065 26.9281 —-0.0617 0.0065

simplicity. Any kind of buckling is prevented. It is assumed that the
initial curvature of the tapered segment does not violate the
Euler—Bernoulli assumption, due to the large centroid axis curva-
ture radius-to-depth ratio. Arching action is also supposed to be
negligible (EI-Mezaini et al., 1991). The structure is analyzed under
the loading shown in Fig. 3a by the two following methods:

1. Modeling each frame member as one nonprismatic Euler—
Bernoulli beam element, with the stiffness matrix and shape
functions obtained by the procedure proposed in Section 3.

2. Modeling frame members by stepped Euler—Bernoulli beam
elements. Tapered segment of each member is substituted by 8
different uniform beam elements with cross sections at mid-
length.

As no element loading is applied on the structure, the procedure
to find shape functions can be skipped. Following the steps of the
proposed procedure, the nonzero section of the bending stiffness
matrix in the basis cited in Eq. (41), will be obtained as below:

Table 5

Forces and moments along element 1 obtained by different methods (Example 7-3).
Section z Method 1 (proposed) Method 2
no- Axial Shear Moment  Axial Shear Moment

force force
m kN kN kN m kN kN kN m

10 500 5.73 40.31 —99.53 1.76 34.12 —78.66
9 4.69 —86.93 —67.99
8 4.38 ~74.34 -57.33
7 4.06 -61.74 —46.67
6 3.75 —49.15 —36.00
5 3.44 -36.55 -2534
4 3.13 -23.95 -14.68
3 2.81 -11.36 -4.01
2 2.50 1.24 6.65
1 0 102.00 91.96
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Fig. 4. Moment distribution along element 1 of the gable frame, obtained by the
proposed and stepped models.

Koo — Elc[16.51647 6.31396
4 7 ] 631396 5.55888
This matrix refers to the element with the tapered segment located
at the first half of the element. The diagonal entries must be
interchanged when the second half of the element is tapered.

Nodal displacements and rotations of the structure, obtained by
the two aforesaid methods, are reported in Table 4. Obviously the
results share close consistency with each other. However, it is
notable that for the proposed method, 6 nonprismatic elements
and a total number of 15 degrees of freedom are used, while these
numbers are 54 and 159, respectively, for Method (2). As tapered
segments of the members are discretized by several uniform
elements in Method (2), the results obtained by this method are
approximate. However, the proposed method offers exact
responses, due to the use of exact stiffness matrix for the non-
prismatic element.

In Table 5, axial force, shear and moment values, obtained by the
two methods, are reported at some specified sections along
element 1 (left column). Fig. 4 illustrates moment distribution
along this member. In the absence of distributed loads, moment
distribution is simply linear.

8. Conclusion

This research presents a new procedure to obtain the exact
stiffness matrix and interpolating functions for the displacement
and strain fields of any arbitrary nonprismatic beam element for
Euler—Bernoulli and Timoshenko formulations. The proposed
procedure is verified as being more efficient in comparison with its
rivals:

1. The results obtained by the elements created through the
proposed procedure are adequately exact, apart from the error
introduced by numerical integration. The procedure provides
the exact stiffness matrix and interpolating functions as it is

based on the principle of virtual work and considers disconti-
nuities in moment of inertia and shear area to establish the
interpolating functions. Specially, the shape functions need to
be exact, so that the distributed loads are accurately lumped as
equivalent nodal forces. However, the proposed method
manipulates structures with nodal loads, better than those
with distributed loads. When distributed loads are dealt with,
the responses for the interior points along the element are
approximate.

2. In the proposed procedure, shape functions are derived from
integration performed on the beam element, rather than
integrating the differential equation with variable coefficients.
The latter is adopted by several authors to introduce general
exact expressions for the shape functions, which generally
results in complex integrand expressions, e.g. (Karabalis and
Beskos, 1983; Eisenberger, 1991). Practically, it is easier to
perform integration on the beam element, than to integrate
differential equations.

3. The analysis using the finite elements created by the proposed
procedure requires less computational effort, since complex
discontinuities along each member can be formulated and
wrapped into one element. This will decrease the number of
degrees of freedom dealt with in the analysis, and dividing
a member into several elements to model complex disconti-
nuities will not be any longer needed. Moreover, the interpo-
lating functions in the selected basis might have a simpler
representation, and might be manipulated more easily. This
will help decrease the analysis expense.

4. The proposed procedure has employed some approaches to
reduce computational effort to create finite elements. Sepa-
rating rigid body motions in the formulation, selecting well-
behaved strain states, and searching for strain interpolating
functions rather than the shape functions, are the schemes
adopted to simplify the process of element creation. The
computational effort for the process will notably be reduced if
shape functions are not required during the analysis procedure,
as is the case when distributed loading does not exist, or
dynamic analysis is not concerned. If shape functions are
inevitable, they can simply be retrieved from strain interpo-
lating functions as mentioned in the context.

5. The proposed procedure is general, which is able to model
a combination of various arbitrary discrete and smooth
discontinuities along the finite element. Most methods
proposed in the literature, are limited to the analysis of specific
kinds of tapering such as linear or parabolic variations. Few
authors derived general solutions for arbitrary tapering, and
proposed integral expressions which suffer complicated
representation. To the authors’ knowledge, no previous
method is reported which can deal with both discrete and
smooth discontinuities along the beam element.

6. The procedure may easily be implemented in finite element
codes. The proposed algorithm can automatically develop the
element stiffness matrix and shape functions. An interesting
feature is that the proposed method needs only integration be
computed; this is not the case for other general procedures,
where shape functions are developed first, and strain inter-
polating functions are then obtained through appropriate
derivatives. Numerical or automatic differentiation techniques
are thus required, in addition to numerical integration
schemes, when the stiffness matrix is not to be determined
a priori. The proposed procedure, alternatively, develops strain
interpolating functions first, and may produce shape functions
by integration, if needed. This is more favorable to implement
numerical integration rather than differentiation, especially for
finite element codes.
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7. Due to the generality of the procedure, complicated inte-
grands are likely to arise. Numerical integrations will then be
inevitable, which can be computed by any quadrature rule.
Gaussian quadrature is widely used for engineering appli-
cations, due to its ability to deal with a broad range of
functions including polynomials and smooth functions.
However, it is not suitable for functions with singularities.
Since the proposed procedure deals with elements along
which several discontinuities might exist, care must be taken
to select an appropriate numerical integration scheme. Stoer
and Bulirsch (2002) reported some techniques to deal with
different kinds of singularities by means of Gaussian quad-
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