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Abstract 
Various Methods for parametric interpolation for 
NURBS curves have been proposed in the past. 
However, the errors caused by the approximate nature 
of the NURBS interpolator were rarely taken into 
account. This paper proposes an integrated look-ahead 
algorithm for parametric interpolation along NURBS 
curves. The algorithm interpolates the sharp corners on 
the curve with the exact Pythagorean-hodograph (PH) 
interpolation. This will minimize the geometric and 
interpolator approximation errors simultaneously. The 
algorithm consists of three different modules: a sharp 
corner detection module, a jerk-limited module, and a 
dynamics module. Simulations are performed to show 
correctness of the proposed algorithm. It is shown that 
the developed method improves tracking and contour 
accuracies significantly compared to previously 
proposed adaptive-feedrate and curvature-feedrate 
algorithms. 
 
Keywords: Numerical control, high speed machining, 
PH curve 
 
Introduction 
The function of the real-time interpolator in a computer 
numerical control (CNC) machine is to convert 
prescribed tool path and feedrate data into reference 
points for each sampling interval of the servo system. 
The closed-loop position and speed control can be 
achieved through comparing the actual machine 
position, measured by encoders on motor axes, with the 
reference point [1]. 

Parametric curves are extensively being used in a 
wide range of industries such as automotive, aerospace 
and dies/molds. Different representations are available 
for parametric curves, mainly including Bezier, B-
spline, cubic spline and non-uniform rational B-spline 
(NURBS). Among these representations, NURBS have 
gained wide popularity to gradually become the 
industry standard [2]. Modern CNC machines not only 
provide linear/circular interpolations, but also offer 
parametric interpolations. Some researchers have 
shown that utilizing parametric interpolations will 
result in reduced feedrate fluctuations and chord errors 
and shorter machining time in comparison with 
linear/circular interpolations [3]. 

Accurate feedrate performance issues become 
increasingly important in the context of high-speed 
machining, where extreme feed acceleration 
/deceleration rates are required. In addition, tool chatter 
or breakage is a plausible result of the interpolator’s 

inability to properly maintain the commanded feedrates 
[4]. Interpolators for general B-spline/NURBS curves 
are typically obtained based on Taylor series 
expansions. Their main task is to compute parameter 
values of successive reference points. Such schemes 
inevitably incur truncation errors, caused by omission 
of higher-order terms [4]. 

To overcome this problem, the tool path can be 
described in terms of the Pythagorean-hodograph (PH) 
curves [5]. The algebraic structure of PH curves admits 
a closed-form reduction of the interpolation integral, 
yielding real-time CNC interpolator equations for 
constant or variable feedrates with high accuracy, 
robustness and flexibility [6]. 

Many interpolation methods for parametric curves 
have been proposed. Yeh et al. [7] developed a 
parametric curve interpolator using a Taylor series 
expansion algorithm. Farouki et al. [4] derived the 
exact Taylor series coefficients for variable-feedrate 
interpolators up to the cubic terms. Tsai et al. [6] 
proposed an algorithm for parametric interpolation 
with time-dependent feedrates along PH curves. Yeh et 
al. [8] proposed an adaptive-feedrate interpolation 
algorithm. The feedrate was adjusted based on 
confined chord errors. Zhiming et al. [9] suggested a 
strategy of variable feedrate machining based on 
geometric properties of tool path. Tsai et al. [3] 
proposed an integrated look-ahead dynamics-based 
algorithm for interpolation along NURBS curves which 
considered geometric and servo errors simultaneously. 

In this paper, an integrated look-ahead Pythagorean 
hodograph interpolation algorithm for NURBS curves 
is proposed. The algorithm consists of a sharp corner 
detection module, a jerk-limited module, and a 
dynamics module to take into account chord errors, 
feedrate fluctuations, servo errors, and interpolation 
errors on sharp corners simultaneously. With the 
proposed algorithm, planning a higher feedrate profile 
while achieving better contour accuracy and shorter 
machining time is possible. Simulations are performed 
to show effectiveness of the proposed algorithm. 
 
NURBS Interpolator Algorithm 
Suppose )(uC  represents a NURBS curve and is 
given by [10]: 
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where iP  represents the control point,  iW  is the weight 
of iP , 1+n  is the number of the control points, and p  
is the degree of NURBS.  )(, uN pi  is the B-spline basis 
function, and can be calculated using the recursive 
formulas given as follows: 
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where { }20 ,..., ++ pnuu  represents the knot vectors and u  
is the interpolation parameter. 

To implement NURBS interpolation, a second-
order approximation interpolation algorithm is adopted 
here. Using the Taylor series expansion method, the 
curve approximation up to the second derivative is 
given as follows: 
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Substituting the derivatives into the Eq. (4), the 
second-order Taylor expansion can be expressed as [4]: 
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where kV , kA , 
sT  , )( kuC′  and )( kuC ′′  are the feedrate, 

the acceleration, the sampling time, and the first and 
second derivatives of the NURBS curve, respectively. 
The De Boor algorithm can significantly improve the 
computational performance for calculating )( kuC , 

)( kuC′  and )( kuC ′′  compared to the recursive basis 
function [3], thus it has been used for the real-time 
implementation. 
 
Pythagorean-Hodograph Interpolator Algorithm 
A polynomial PH curve ( ))(),()( ξξξ yxr =  is defined 
by its parametric hodograph [6]: 

)()(2)(')()()(' 22 ξξξξξξ vuyvux =−=  (6)

These forms guarantee that )(' ξx  and )(' ξy  are 
elements of a Pythagorean triple of polynomials-they 
satisfy 

)()(')(' 222 ξσξξ =+ yx  (7)

where 

ξ
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d
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is the parametric speed of )(ξr . A PH quintic is 
obtained by substituting Bernstein-form quadratic 
polynomials 
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into Eq. (6) and integrating [6].  
Considering a time-dependent feedrate function 
)(tV  with the indefinite integral )(tF  imposed on the 

PH curve )(ξr , the interpolation equation yields to the 
solution of the relation 

)()( tFs =ξ  (10)
where )(ξs  is the arc length [6]. For a sampling 
interval t∆ , the real-time CNC interpolator must 
compute the parameter values ,..., 21 ξξ  of reference 
points at times ,...2, tt ∆∆ These values are roots of the 
polynomial equations 

,...2,1)()( =∆= ktkFs kξ  (11)
The above equations can be solved to obtain kξ  

using a few Newton-Raphson iterations [6], 
( ) ,...1,0;

)(
)(

)(

)(
)()1( =

∆−
−=+ rtkFs

r
k

r
kr

k
r

k ξσ
ξξξ  (12)

with starting approximation 1
)0(

−= kk ξξ . 
 
The Look-Ahead PH-based Algorithm 
 

1. System architecture 
The look-ahead PH-based algorithm, which acts as a 
CNC controller is described in detail in this section. 
The controller consists of three main programs: a CNC 
interpreter, a reference point generator, and a motion 
controller. The CNC interpreter reads NC commands 
from NC files to generate and store NC blocks in the 
NC FIFO (First-In-First-Out) memory. The reference 
point generator generates consecutive reference points 
based on the proposed algorithm. The motion 
controller will then control the X-Y table based on the 
generated reference points. 

The reference point generator algorithm consists of 
three different modules: a sharp corner detection 
module, a jerk limited feedrate planning module and a 
dynamics module. The sharp corner detection module 
looks ahead NC blocks to identify sharp corners of the 
curve. Then the curve is divided into small segments 
according to sharp corners. The second task of this 
module is to construct PH curves. Here, the region on 
the curve that is found to be a sharp corner will be 
approximated using a PH curve. The length of each 
segment is calculated and stored in the buffer. The 
jerk-limited module plans the feedrate profile of each 
segment based on constraints on chord errors, feedrate, 
acceleration/deceleration, and jerk. The dynamics 
module will further modify the feedrate profile to keep 
the contour errors bounded to their maximum 
commanded value. Finally, the motion controller 
performs real-time control on the X-Y table. 
Algorithms for each module are detailed in the 
following sections. 

 
2. The sharp corner detection module 
2.1. Identifying sharp corners 

The sharp corner detection module plays an important 
role in the look-ahead algorithm. In this study, a sharp 
corner is defined as the feedrate sensitive zone at 
which the feedrate should be reduced to maintain 
contour accuracy. There are two criteria in identifying 
sharp corners. The first criterion is that the derivative 
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of the curvature at a sharp corner is equal to zero; it is 
given as: 

0)(
=

= kuudu
udκ  (13)

where )(uκ  is the curvature given as: 
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The first criterion is not sufficient in determining 
sharp corners as it does not include feedrate effects [3]. 
Therefore, in order to consider feedrate effects in 
identifying sharp corners, a second criterion is utilized. 
Based on this criterion, the curvature at the sharp 
corner zone should exceed the threshold value thκ , 
which is defined as: 

2
max

max

V
A

th =κ  (15)

where maxA  is the maximum acceleration limit and 
maxV  

is the given feedrate in the NC block. In other words, 
the second criterion examines whether the centripetal 
accelerations of local max/min points exceed the 
maximum acceleration limit [3]. The region on the 
curve where this value is exceeded is identified as the 
sharp corner zone, and it should be replaced with a PH 
curve for a better supervision of the feedrate. These 
criterions can be illustrated by the curve shown in 
Figure 1 where segments AB and CD are identified as 
sharp corners. 
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Figure 1: NURBS approximation of a NACA2415 airfoil 

profile 
 

2.2. Constructing PH curve 
Utilizing Taylor series in interpolation along the 
NURBS curve will inherently cause interpolation 
errors and feedrate fluctuations, which will reduce the 
contour accuracy and surface quality. However, PH 
curves admit analytic reduction of the interpolation 
integral, which will result in an exact interpolation 
equation. Therefore, approximating the sharp corner 
regions on the NURBS curve with PH curves will 
decrease feedrate fluctuations. 

In order to approximate an area on the NURBS 
curve by a PH quintic, Hermite data of the segment, 
namely the start and end points and derivatives, should 

be computed. Using the complex representation for a 
planar PH curve [11], 

)()()( ξξξ iyxr +=  (16)
where ξ  is a real parameter, the complex polynomial 

)()()( ξξξ ivuw +=   will be defined so that 

)()(' 2 ξξ wr =  (17)

Considering 0r , 1r , 0d  and 1d  as complex 
representations of the start point, end point, start 
derivative and end derivative, respectively, )(ξw  can 
then be expressed in Bernstein form [11], 
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The PH curve on the sharp corner should be 

constructed in the way that the error between the curve 
and the original NURBS curve is bounded. In order to 
achieve this, the module will calculate the root-mean-
square of error between the two curves. If the 
calculated error exceeds the assigned maximum error, 
the sharp corner zone on the original curve will be 
divided into two segments and a PH curve will be 
constructed on each segment. This procedure will be 
repeated until the desired maximum error is achieved. 
This algorithm is utilized for the airfoil in Figure 1 
with the maximum allowed error me µ1max = . Table 1 
shows the effect of dividing the sharp corner segments 
on the error between the original curve and the 
approximated PH curve.  

 
Table 1: Comparison of error of PH approximation for the 

airfoil with me µ1max =  
Curve segment Root-mean-square of error (µm) 

Without curve division With curve division 
AB 4.9094 0.5205 
CD 4.3893 0.5562 

 
3. The jerk-limited module 

The first task of the jerk-limited module is to obtain the 
feedrate at sharp corners. To achieve this task, the 
proposed algorithm combines the adaptive-feedrate 
interpolation scheme [8] with the curvature-based 
feedrate interpolation algorithm [9]. The algorithm for 
determining the feedrate at sharp corners is given as: 

{ })(),(min)( kcfkafksp uVuVuV =  (22)

where )( kaf uV  and )( kcf uV  are given as follows: 
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Here, afV , 
cfV , maxV  are adaptive-feedrate, curvature-

feedrate, and feedrate commands, respectively.  δ  and 
κ  are the chord tolerance and the curvature of a 
NURBS curve, respectively. κ  maintains the 
derivative continuity of curvature-feedrate in Eq. (24). 

Having obtained the feedrate at sharp corners, the 
second task of the jerk-limited module is to plan the 
feedrate profile of each segment such that the 
constraints on feedrate, acceleration/deceleration, and 
jerk are satisfied. The bell-shape feedrate profile [12] 
will be generated based on the calculated length of 
each segment, feedrates at the corners, maximum 
feedrate, maximum acceleration/deceleration and the 
jerk limit. By applying the sharp corner detection and 
jerk-limited modules, the feedrate profile for the airfoil 
is as shown in Figure 2, where maximum 
acceleration/deceleration and jerk limit are set to 
2450mm/s2 and 50 000 mm/s3. 
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Figure 2: The feedrate profile of the airfoil after application 

of sharp corner and jerk-limited modules 
 

4. The dynamics module 
Application of the first and second modules will not 
guarantee the satisfaction of the constraint on the 
contour error. This is because no contour error 
information in included in these two modules. 

In order to predict the contour errors, the AC servo 
control system for each axis should be modeled and 
simulated. The block diagram shown in Figure 3 is 
used as the dynamic model of the servo control system. 

 

PK

sK VFF

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

sT
K

i
V

11 s/1as
b
+

n

n

s ω
ω
+

 
Figure 3: Block diagram of a servo control system [3] 
 
The closed loop transfer function of the servo 

control system for each axis shown in Figure 3 is given 
by: 
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where the parameters in Eq. (25) is given in Table 2. 
 

Table 2: Paramters of servo cotrol transfer function [3] 
Parameter X-axis Y-axis 

a0 1.938×109 1.904×109

a1 3.538×107 3.496×107 
a2 2.135×105 2.120×105 
a3 6.984×102 6.948×102 
a4 1.00 1.00 
b0 1.938×109 1.904×109 
b1 3.476×107 3.435×107 
b2 1.471×105 1.466×105 

 
Based on Eq. (25), the transfer function between 

the tracking error )( sE and the velocity )( sV  on each 
axis is obtained as: 
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Having developed the tracking error equation, the 
contour error equation can be approximated as [3]: 

ϕϕε cossin yxe EE +−=  (27)

where 
xE  and 

yE  are tracking errors on the x-axis 
and y-axis, respectively. ϕ is the angle between the 
tool path tangent and the x-axis. 

The dynamics module will use Eq. (26) and Eq. 
(27) to calculate the contour error. When the contour 
error 

eε  is greater than the set maximum contour error 

maxε , the computation is stopped and the feedrate 

)( kuV  at the time is recorded. Then the feedrate 
profile will be planned again with the maximum 
feedrate set to )( kuV . This procedure will be repeated 
until the desired constraint on the contour error is 
satisfied. Figure 4 shows the feedrate profile of the 
airfoil curve using the look-ahead PH-based algorithm. 
The maximum feedrate on the BC segment is reduced 
as compared to Figure 2. 
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Figure 4: Feedrate profile of the airfoil using the look-ahead 

PH-based algorithm 
 

Results and Discussions 
In this section, numerical simulations are performed on 
the airfoil curve in three different angles of 0º, -45º and 
45º as shown in Figure 5. Parameters of the 
interpolator for numerical simulations are as listed in 
Table 3. 

Simulations are conducted to compare the 
performance among adaptive-feedrate [8], curvature-
feedrate [9], and the look-ahead PH-based interpolation 
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algorithms. The servo control system as shown in 
Figure 3 is included in the simulation. Performances of 
the three interpolation algorithms are listed in Table 4. 
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Figure 5: The airfoil curve at three different angles for 

numerical simulations 
 

Table 3: Parameters of the interpolator for numerical 
simulations 

Maximum feedrate maxV  min/3500mm  
Maximum acceleration maxA  2/2450 smm  
Maximum jerk maxJ  34 /105 smm×  
Chord error limitation δ  mµ1  
Reference curvature κ  11 −mm  
Contour error limit maxε  mµ15

PH approximation error limit maxe  mµ1  

 
Table 4: Performance comparison of different interpolation 

algorithms 

Interpolation algorithm Adaptive
-feedrate 

Curvature-
feedrate 

Look-
ahead 
PH-

based 

Tracking 
error 
(µm) 

X-axis Max 358.69 195.78 57.97 
RMS 75.65 41.53 20.30 

Y-axis Max 132.56 22.65 13.98 
RMS 27.31 8.39 3.56 

Contour 
error 
(µm) 

Max 142.79 47.02 14.11 
RMS 35.14 12.98 3.84 
Mean 16.780 8.50 2.31 

Time (s) 0.3440 0.4535 0.9455 

 
Figure 6 compares the feedrate profiles of adaptive-

feedrate, curvature-feedrate and the look-ahead PH-
based algorithms. It can be noted that the proposed 
look-ahead PH-based algorithm with its look-ahead 
capability obtains smooth feedrate profile compared to 
the other two approaches. 

Figure 7 shows the contour errors of the above 
mentioned algorithms. The contour errors of the look-
ahead PH-based interpolation are significantly smaller 
than those of the adaptive-feedrate and curvature-
feedrate interpolations. The proposed algorithm 
modifies the feedrate of the segment BC to keep the 
contour errors within their maximum limitation of 

mµ15 .  
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Figure 6: Comparison of feedrate profiles: (a) Adaptive-
feedrate; (b) Curvature feedrate; (c) Look-ahead PH-based 

 
The results of the simulation of the tracking and 

contour errors on the airfoil curve at three different 
angles are reported in Table 5. It can be noted that the 
tracking errors in machining the airfoil profile at three 
angles are different while the contour errors remain 
almost constant. 

 
Table 5: Numerical simulation of the errors on the airfoil 

curve at three different angles 
Airfoil curve angle 45º -45º 0º 

Tracking 
error 
(µm) 

X-axis Max 38.71 43.51 57.97 
RMS 14.19 14.93 20.30 

Y-axis Max 43.66 38.85 13.98 
RMS 14.99 14.24 3.56 

Contour 
error 
(µm) 

Max 14.12 14.12 14.11 
RMS 3.84 3.84 3.84 
Mean 2.31 2.31 2.31 
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Figure 7: Comparison of contour error: (a) Adaptive-feedrate; 

(b) Curvature feedrate; (c) Look-ahead PH-based 
 
Conclusion 
A novel NURBS interpolator was proposed in this 
paper. Sharp corners of the curve are identified not 
only by the derivative of the curvature but also by the 
feedrate criterion. A PH curve is then constructed on 
the corner to reduce feedrate fluctuations. The error 
between the constructed curve and the original NURBS 
curve is bounded to its set maximum value. The curve 
is divided into small segments and a smooth jerk-
limited profile is planned on each segment. The 
dynamics module further modifies the feedrate profile 
to keep the contour errors limited. Simulations were 
performed to validate the proposed algorithm. It is 

shown that the look-ahead PH-based algorithm can 
increase contour accuracy significantly compared with 
adaptive-feedrate and curvature-feedrate interpolation 
algorithms. This research demonstrates the 
effectiveness of the proposed algorithm. 
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