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HYERS–ULAM STABILITY OF
VOLTERRA INTEGRAL EQUATION

M. GACHPAZAN1 AND O. BAGHANI2∗

Abstract. We will apply the successive approximation method for proving the
Hyers–Ulam stability of a linear integral equation of the second kind.

1. Introduction

We say a functional equation is stable if for every approximate solution, there
exists an exact solution near it. In 1940 Ulam [13] posed the following problem
concerning the stability of functional equations: We are given a group G and a
metric group G

′
with metric ρ(., .). Given ε > 0, does there exist a δ > 0 such that

if f : G → G
′
satisfies

ρ(f(xy), f(x)f(y)) < δ,

for all x, y ∈ G, then a homomorphism h : G → G
′

exists with ρ(f(x), h(x)) < ε
for all x ∈ G? The problem for the case of the approximately additive mappings
was solved by Hyers [4], when G and G

′
are Banach space. Since then, the stability

problems of functional equations have been extensively investigated by several math-
ematicians (cf. [15, 7, 8, 12, 10]). The interested reader can also find further details
in the book of Kuczma ([9], chapter XVII). In this paper, we study the Hyers–Ulam
stability for the linear Volterra integral equation of second kind. Jung was the au-
thor who investigated the Hyers–Ulam stability of Volterra integral equation on any
compact interval. In 2007, he proved in [7] the following:

Given a ∈ R and r > 0, let I(a; r) denoted a closed interval {x ∈ R | a − r ≤
x ≤ a + r} and let f : I(a; r) × C → C be a continuous function which satisfies a
Lipschitz condition |f(x, y) − f(x, z)| ≤ L|y − z| for all x ∈ I(a; r) and y, z ∈ C,
where L is a constant with 0 < Lr < 1. If a continuous function y : I(a; r) → C
satisfies

|y(x)− b−
∫ x

a

f(x, t, u(t))dt| ≤ ε,

Date: Received: April 2010; Revised: May 2010.
1991 Mathematics Subject Classification. Primary 58E30; Secondary 58E07.
Key words and phrases. Hyers–Ulam stability, Banach’s fixed point theorem, Volterra integral

equation, Successive approximation method.
∗: Corresponding author.

19



20 M. GACHPAZAN AND O. BAGHANI

for all x ∈ I(a; r) and for some ε ≥ 0, where b is a complex number, then there
exists a unique continuous function u : I(a; r) → C such that

y(x) = b +

∫ x

a

f(x, t, u(t))dt, |u(x)− y(x)| ≤ ε

1− Lr
,

for all x ∈ I(a; r). Recently, Y. Li and L. Hua [10] proved the stability of Banach’s
fixed point theorem.

The purpose of the this work is to discuss the Hyers–Ulam stability of the non
homogeneous linear Volterra integral equation (2.1), where x ∈ I = [a, b], −∞ ≤
a < b ≤ ∞. We will use the successive approximation method, to prove that
equation (2.1) has the Hyers–Ulam stability under some appropriate conditions.
The method of this work is distinctive. It is simpler and clearer than the previous
work.

2. Basic Concepts

Consider the following Volterra integral equation of the second kind,

u(x) = f(x) + λ

∫ x

a

k(x, t)u(t)dt ≡ T (u). (2.1)

We assume that f is a continuous function on the interval [a, b], and also k is
continuous on the triangular D = {(x, t) : x ∈ [a, b] , t ∈ [a, x]}. We work with the
complete metric space X = C[a, b] of continuous functions that its metric d(x, y) is

d(f, g) = max
x∈[a,b]

|f(x)− g(x)|, f, g ∈ C[a, b].

Definition 2.1. (cf. [15, 7]). We say that equation (2.1) has the Hyers–Ulam
stability if there exists a constant K ≥ 0 with the following property: for every
ε ≥ 0, y ∈ C[a, b], if

|y(x)− f(x)− λ

∫ x

a

k(x, t)u(t)dt| ≤ ε,

then there exists some u ∈ C[a, b] satisfying u(x) = f(x) + λ
∫ x

a
k(x, t)u(t)dt such

that

|u(x)− y(x)| ≤ Kε.

We call such K a Hyers–Ulam stability constant for equation (2.1).

3. A Contractive Mapping for the Volterra Equation

We will show here that T n of (2.1) is contractive when n is large.

Theorem 3.1. The mapping T n is contractive when n is sufficiently large.
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Proof: We write

T (u) = f(x) + λ

∫ x

a

k(x, ζ)u(ζ)dζ,

T 2(u) = f(x) + λ

∫ x

a

k(x, ζ)[f(ζ) + λ

∫ ζ

a

k(ζ, t)u(t)dt]dζ

= f(x) + λ

∫ x

a

k(x, ζ)f(ζ)dζ + λ2

∫ x

a

∫ ζ

a

k(x, ζ)k(ζ, t)u(t)dtdζ

= f(x) + λ

∫ x

a

k(x, ζ)f(ζ)dζ + λ2

∫ x

a

k2(x, ζ)u(ζ)dζ,

where k2(x, ζ) =
∫ x

ζ
k(x, t)k(t, ζ)dt.

If we repeat this successive process to T n(u), we have

T n(u) = f(x) + λ

∫ x

a

k1(x, ζ)f(ζ)dζ + λ2

∫ x

a

k2(x, ζ)f(ζ)dζ

+ · · ·+ λn−1

∫ x

a

kn−1(x, ζ)f(ζ)dζ + λn

∫ x

a

kn(x, ζ)u(ζ)dζ,

where kn+1(x, ζ) =
∫ x

ζ
k(x, t)kn(t, ζ)dt, k1(x, ζ) = k(x, ζ).

T n(u) = f(x) + λ

∫ x

a

k1(x, ζ)f(ζ)dζ + λ2

∫ x

a

k2(x, ζ)f(ζ)dζ

+ · · ·+ λn−1

∫ x

a

kn−1(x, ζ)f(ζ)dζ + λn

∫ x

a

kn(x, ζ)u(ζ)dζ,

where kn+1(x, ζ) =
∫ x

ζ
k(x, t)kn(t, ζ)dt, k1(x, ζ) = k(x, ζ).

Clearly, we have

|T n(u)− T n(v)| ≤ |λ|n
∫ x

a

|kn(x, ζ)||u(ζ)− v((ζ)|dζ, (3.1)

since k1(x, ζ) = k(x, ζ) is assumed continuous on domain D, we can conclude that
k1(x, ζ) is bounded by some positive number M , |k1(x, ζ)| ≤ M . In the other hand,
we can show the following bound for the iterated kernel kn(x, ζ):

|kn(x, ζ)| ≤ Mn

(n− 1)!
(x− ζ)n−1, a ≤ ζ ≤ x. (3.2)

With this result (3.2) and the result (3.1), we write
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d(T n(u), T n(v)) = max
x
|T n(u)− T n(v)|

= max
x
|λn||

∫ x

a

kn(x, ζ)[u(ζ)− v(ζ)]dζ|

≤ |λ|n max
x

∫ x

a

|kn(x, ζ)||u(ζ)− v(ζ)|dζ

≤ |λ|n max
x

∫ x

a

Mn

(n− 1)!
(x− ζ)n−1|u(ζ)− v(ζ)|dζ

≤ |λ|nMn max
x
{|u(ζ)− v(ζ)|

∫ x

a

(x− ζ)n−1

(n− 1)!
dζ}

≤ |λ|nMn (b− a)n

n!
d(u, v).

d(T n(u), T n(v)) ≤ αd(u, v),

where α = |λ|nMn (b−a)n

n!
. Clearly, for sufficiently large n, α < 1. Hence T n is a

contractive operator. �

4. Main Results

Theorem 4.1. The mapping T : X → X defined in (2.1), has a unique fixed point,
u, and {T n(x)}∞1 converges to u for each x ∈ X.

Proof: By theorem (3.1) for enough large n, T n is a contractive mapping. Let
T n ≡ S. Hence the equation Sx = x has a unique fixed point u. This means
that with the initial estimation of ξ, we have the sequence uk+1 = S(uk) = Sk(ξ)
converging to u, that is,

u = lim
k→∞

uk+1 = lim
k→∞

Sk(ξ) = lim
k→∞

(T n)k(ξ) = lim
k→∞

T nk(ξ). (4.1)

In (4.1), ξ is arbitrary, so we may choose it to be ξ = T (u),

u = lim
k→∞

T nk(ξ) = lim
k→∞

T nk(T (u)) = lim
k→∞

T [T nk(u)] = T [ lim
k→∞

T nk(u)] = T (u).

(4.2)
Hence (4.2) concludes the existence of the solution u to T (u) = u. To prove that u is
unique, let γ, β, be two different solution to equation T (x) = x [i.e., γ = T (γ), β =
T (β)]. But since γ = T (γ), then

T n(γ) = T n−1(T (γ)) = T n−1(γ) = · · · = T (γ) = γ.

The same can be shown for β,

T n(β) = β.

But since T n is known to be contractive, it must have a unique solution which forces
γ = β. Hence the equation T (x) = x has a unique solution. �

Theorem 4.2. The equation (T − I)x = 0, defined by (2.1), has the Hyers–Ulam
stability, that is for ε ≥ 0, if

d(Tξ, ξ) ≤ ε,
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then there exists an unique u ∈ X satisfying

Tu− u = 0,

with
d(ξ, u) ≤ Kε,

for some K ≥ 0.

Proof: In first, we consider the iterative integral equation

un+1(x) = f(x) + λ

∫ x

a

k(x, t)un(t)dt ≡ T (un), n = 1, 2, · · · .

Hence

|un+1(x)− un(x)| = |λ
∫ x

a

k(x, t)(un(t)− un−1(t))dt|

≤ |λ|
∫ x

a

|k(x, t)||un(t)− un−1(t)|dt

≤ |λ|M
∫ x

a

|un(t)− un−1(t)|dt

For n = 2, we have

|u3(x)− u2(x)| ≤ |λ|M
∫ x

a

|u2(t)− u1(t)|dt

≤ |λ|M d(Tu, u)

∫ x

a

dt

≤ |λ|M(x− a) d(Tu, u).

d(T 2u, Tu) = d(u3, u2) ≤ |λ|M(b− a) d(Tu, u).

If we repeat this process, we have

d(T nu, T n−1u) ≤ (|λ|M(b− a))n−1

(n− 1)!
d(Tu, u)

=
(L)n−1

(n− 1)!
d(Tu, u),

where L = |λ|M(b − a). Now by using theorem (4.1), T has a unique fixed point
u ∈ X, and {T n(x)}∞1 converges to u for each x ∈ X. Hence the equation Tx = x
has a unique solution on X. If ε ≥ 0 is given and d(Tξ, ξ) ≤ ε, then there is a integer
number n such that d(T nξ, u) ≤ ε. Thus

d(ξ, u) ≤ d(ξ, T nξ) + d(T nξ, u)

≤ d(ξ, T ξ) + d(Tξ, T 2ξ) + d(T 2ξ, T 3ξ) + ... + d(T n−1ξ, T nξ) + d(T nξ, u)

≤ d(ξ, T ξ) +
L

1!
d(ξ, T ξ) +

L2

2!
d(ξ, T ξ) + · · ·+ Ln−1

(n− 1)!
d(ξ, T ξ) + d(T nξ, u)

≤ d(ξ, T ξ)(1 +
L

1!
+

L2

2!
+ · · ·+ Ln−1

(n− 1)!
) + ε

≤ ε(eL) + ε = (1 + eL)ε = Kε.

which completes the proof. �
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Corollary 4.3. For infinite interval, the theorem (4.2), is not true necessarily. For
example, the exact solution of the integral Equation. u(x) = 1 +

∫ x

a
u(t)dt ≡ T (u),

x ∈ [0,∞), is u(x) = ex. By choosing ε = 1 and ξ(x) = 0, T (ξ) = 1 is obtained,
so d(T (ξ), ξ) ≤ ε = 1, d(ξ, u) = ∞. Hence, there exists no Hyers–Ulam stability
constant K ≥ 0 such that the relation d(ξ, u) ≤ Kε be true.

Corollary 4.4. The theorem (4.2) holds for every finite interval [a, b], [a, b), (a, b]
and (a, b), when −∞ < a < b < ∞.

Corollary 4.5. If we apply the successive approximation method for solving (2.1)
and ui(x) = ui+1(x) for some i = 1, 2, · · · , then u(x) = ui(x), such that u(x) is the
exact solution of (2.1).

5. conclusion

Let I = [a, b] be a finite interval, X = C[a, b] and y = Ty be an integral equation
which T : X → X is a linear integral map. In this paper, we showed that T has
the Hyers–Ulam stability by means that, if y◦ be an approximate solution of the
integral equation and d(y◦, T y◦) ≤ ε for all t ∈ I and ε ≥ 0, then d(y∗, y◦) ≤ Kε,
which y∗ is the exact solution and K is positive constant.

6. Ideas

We extend (2.1) into

u(x) = f(x) + ϕ(

∫ x

a

F (x, t, u(t))dt), (6.1)

where ϕ : X = C[a, b] → X = C[a, b] is a map. It is an open problem that ” What
we can say about the Hyers–Ulam stability of the general nonlinear Volterra integral
equation (6.1)?”

References

1. D. W. Boyd and J. S. Wong, On nonlinear contractions, Proc. Amer. Math. Soc. 20 (1969),
458-464.

2. P. Enflo and M. S. Moslehian, An interview with Themistocles M. Rassias, Banach J. Math.
Anal. 1 (2007) 252-260.

3. G.-L. Forti, H yers–Ulam stability of functional equation in several variables, Aequationes
Math. 50 (1995) 143-190.

4. D. H. Hyers, On the stability of the linear functional equation , Proc. Nat. Acad. Sci. U.S.A.
27 (1941) 222-224.

5. D. H. Hyers, G. Isac and Th. M. Rassias, S tability of Functional Equations in Several variables,
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