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Abstract. In this paper, we describe stochastic Runge–Kutta (SRK) methods with strong order 1.0 for strong
solutions of Stratonovich stochastic differential equations (SDEs) which was first introduced by Burrage and
Burrage in 1996. In particular, three new SRK methods with strong order 1.0 are constructed. They are an
explicit two–stage method, an explicit three–stage method with minimum principal error coefficients and
an implicit three–stage method with minimum principal error coefficients. Numerical results for two test
problems with our methods and Burrage’s method and Platen method will be compared.
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1 Introduction

Physical phenomena of interest in science and technology are very often theoretically simulated by means
of models which correspond to ordinary differential equations (ODEs). These equations are in general non-
linear and, as such, their solution is usually a different task. Moreover, many times some of the parameters
and initial data are not known with complete certainly due to lack of information, uncertainty in the mea-
surements or incomplete knowledge of the the mechanism themselves, and in practice any system undergoes
perturbations from the surrounding ambient and, therefore, the behavior of the system itself is, in several cir-
cumstances, far away from the simple conditions of the ideal deterministic representation. To compensate this
lack of information and to have a more realistic description of the system one introduces stochastic noise in
the equation. This results in SDEs. Some areas where SDEs have been used extensively in modelling include
chemistry, physics, engineering, mathematical biology and finance. Consider the scalar autonomous Itô SDE
given by

dy(t) = g0(y(t)) dt+ g1(y(t)) dW (t) , y(t0) = y0, t ∈ [t0, T ], (1)

where g0 is called the drift coefficient, g1 is called the diffusion coefficient, and W (t) is a standard Wiener
process. In [10] explicit and semi–implicit two–stage SRK methods of strong order 0.5 with minimum prin-
cipal error coefficients, and explicit, semi–implicit two–stage SRK methods of strong order 1 for the SDE (1)
were constructed. Moreover order conditions for coefficients of a class of SRK methods with strong order 1
for the SDE (1) were obtained (see [11]), especially the explicit two–stage and three–stage SRK methods of
this class with minimum principal error coefficients were constructed.

The integral formulation of (1) can be written as

y(t) = y0 +
∫ t

t0

g0(y(s)) ds+
∫ t

t0

g1(y(s)) dW (s), (2)
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where the second integral in (2) is Itô stochastic integral, with respect to the Wiener process W (t) (see [7]).
For the SDE (1) the associated Stratonovich type given by

dy(t) = ḡ0(y(t)) dt+ g1(y(t)) odW (t) , y(t0) = y0, (3)

where
ḡ0(y) = g0(y)−

1
2
g′1(y) g1(y).

In the other words, two different SDE (1) and (3), under different rules of calculus, have the same solution.
There are many different methods to solve these kinds of differential equations (see, for example, [1], [6]).
In this paper, we will present three new classes of methods for solving (3). Numerical methods for SDEs are
recursive methods where trajectories, i.e the sample paths of solution are computed at discrete time step. These
schemes are classified according to their type (strong or weak) and order of convergence (see [8]). In some
applications the solution is required for a given path that is called path–wise or strong solutions. In [9], we have
analyzed an estimate of the absolute error for SDEs by path–wise approximations. The organization of this
paper is as follows: In the next section, we describe Runge–Kutta methods for ODEs. In particular, explicit
and implicit Runge–Kutta methods for ODEs based on the rooted trees theory are introduced (see [3]). In
section three, the rooted tree analysis of strong schemes for SDEs with a scalar Wiener process is introduced
(see [2]). In section four the new classes of explicit and implicit SRK methods for SDEs are constructed. Also
we show that 1–norm of principal error coefficients of our three–stage SRK methods are less than the 1–norm
of principal error coefficients the Platen and the Burrage methods. In continuation, the fixed–point iteration
algorithm be used to improve of our implicit method. Some numerical results which show the efficiency of
our methods will be presented in the last section.

2 Deterministic Runge–Kutta methods

Consider the scalar autonomous ODE

dy(t) = g0(y(t))dt, y(t0) = y0, t ∈ [t0, T ]. (4)

A s–stage Runge–Kutta method for calculating a numerical approximation of the solution of the autonomous
ODE (4) is given by the recursive formula:

Yi = yn + h

s∑
j=1

aij g0(Yj), i = 1, 2, . . . , s

yn+1 = yn + h

s∑
j=1

αj g0(Yj)
(5)

which can be represented by the Butcher tableau:

C A

αT

whereA = (aij)s×s, αT = [α1, α2, . . . , αs], C = Ae, e = (1, . . . , 1)T ∈ Rs. If aij = 0 for all i, j with i ≤ j,
the method is explicit, otherwise we call the method implicit (semi–implicit when aij = 0 for all i, j with i < j
and least one aii , 0). In 1963, Butcher introduced the theory of rooted trees in order to compare the Taylor
series expansion of the exact solution to the Taylor series expansion of the approximation solution over one
step assuming exact initial values. Let τ denote the tree with one vertex and let [t1, . . . , tm] be the tree formed
by joining the trees of ti, i = 1, . . . ,m, to a common root. For each tree t corresponds to an elementary
differential, F (t)(y), is defined recursively by (see [3])

F (t)(y) =

{
g0(y), t = τ,

g0
(m)(F (t1)(y), . . . , F (tm)(y)), t = [t1, . . . , tm].
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Let T denotes the set of all rooted trees and ρ(t) the number of vertices of t, then for any t ∈ T , ρ(t) ≤ p,
the elementary weight ΦD(t) depends only on the method and is defined by ΦD(t) = αTΨ(t) with Ψ defined
recursively by

Ψ(t) =

{
e, t = τ,

(AΨ(t1)) ∗ (AΨ(t2)) ∗ . . . ∗ (AΨ(tm)), t = [t1, . . . , tm].

where e = (1, . . . , 1)T ∈ Rs and ∗ denotes the component–by–component product (see [5]). The function
γ(t) is used to represent the density of t and is defined recursively by

γ(t) =

{
1, t = τ,

ρ(t)γ(t1)γ(t2) . . . γ(tm), t = [t1, . . . , tm].

Furthermore, if we define the symmetry of t by σ(τ) = 1 and σ(t) = m1!m2! . . .mk!, where m1 of
t1, t2, . . . , tm are identical of one kind, m2 of t1, t2, . . . , tm are identical of second kind,. . ., and mk are
identical of the k–th kind, then we have the Taylor series for the exact solution is given by (see [5])

y(t0 + h) = y0 +
∑
t∈T

hρ(t) 1
σ(t)γ(t)

F (t)(y0), (6)

and the corresponding Taylor series numerical solution by (5), is given by (see [3])

y1 = y0 +
∑
t∈T

hρ(t)ΦD(t)
σ(t)

F (t)(y0), (7)

where y1 is the computed approximation to y(t0 + h). The accuracy of a Runge–Kutta method can be inter-
preted in terms of the difference between the exact solution and numerical solution. This is, a Runge–Kutta
method is said to be of order p at the integrated point t1 = t0 + h if y(t0 + h)− y1 = O(hp+1). By comparing
the two series (6) and (7) term by term we can obtain the order of a Runge–Kutta method.

Theorem 1. A Runge–Kutta method is of order p if and only if ΦD(t) =
1
γ(t)

, for all t satisfying ρ(t) ≤ p.

Proof. See [3].

By Theorem 1, a two–stage explicit Runge–Kutta method with order 2 has a one–parameter family in the
following form:

0 0 0
c2 c2 0

1− 1
2c2

1
2c2

which satisfies the conditions αT e = 1 and αTC =
1
2

. One of most well–known this family is the modified
Euler method that is given by the tableau:

0 0 0
1
2

1
2 0
0 1

(8)

For a three–stage explicit Runge–Kutta method of order 3, we must satisfy the following conditions:

αT e = 1, αTC =
1
2
, αTC2 =

1
3
, αTAC =

1
6
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Note that the multiplication of vectors are componentwise. These equations yield to one two–parameter family
and two one–parameter families of solutions (see [4], for further details). One example is given in the following
tableau (see [4]):

0 0 0 0
2
3

2
3

0 0

0 −1 1 0

0
3
4

1
4

(9)

Also for a three–stage implicit Runge–Kutta method of order 4, the order conditions are
αT e = 1, αTC =

1
2
, αTC2 =

1
3
, αTAC =

1
6
, αTC3 =

1
4

αTCAC =
1
8
, αTAC2 =

1
12
, αTA2C =

1
24
.

(10)

One family of methods that satisfying conditions (10) is Lobatto III method. This class of methods in general

have order 2s − 2 such that c1, c2, . . . , cs are the distinct roots of (
d

dx
)s−2xs−1(x− 1)s−1 = 0, with c1 = 0

and cs = 1 (see [4]). One well–known example is given in the following tableau (see [4]):

0 0 0 0
1
2

1
4

1
4

0

1 0 1 0
1
6

2
3

1
6

(11)

3 Stochastic Runge–Kutta methods

Consider the scalar autonomous Stratonovich SDE given by

dy(t) = g0(y(t)) dt+ g1(y(t)) odW (t) , y(t0) = y0, t ∈ [t0, T ]. (12)

General form of s–stage stochastic Runge–Kutta(SRK) methods for solving SDE (12) given by
Yi = yn +

s∑
j=1

Z
(0)
ij g0(Yj) +

s∑
j=1

Z
(1)
ij g1(Yj), i = 1, 2, . . . , s

yn+1 = yn +
s∑

j=1

z
(0)
j g0(Yj) +

s∑
j=1

z
(1)
j g1(Yj),

(13)

which can be represented in tableau form :

Z(0) Z(1)

z(0)T z(1)T
,

where Z(k) = (Z(k)
ij )

s×s
and z(k)T = (z(k)

1 , . . . , z
(k)
s ) for k = 0, 1. This class of methods was introduced by

Burrage and Burrage (see [1]). In fact, they have extended rooted trees theory to the stochastic setting. Let τk
(k = 0, 1) be the tree with one vertex with colour k. Then other trees can be built up recursively by defining
a new tree t which is formed by joining trees t1, . . . , tm to a new root τk as t = [t1, . . . , tm]k. Each tree t
corresponds to an elementary differential F (t)(y), defined by (see [2])
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F (t)(y) =

{
gk(y), t = τk,

gk
(m)(F (t1)(y), . . . , F (tm)(y)), t = [t1, . . . , tm]k.

Let T denote the set of all rooted trees with colour k (k = 0, 1) then for any t ∈ T the J–integral associated
with tree t defined recursively by (see [2])

J(t)(h) =


Wk(h), t = τk,∫ h

0

m∏
j=1

J(tj)(s) odWk(s), t = [t1, . . . , tm]k,

where W0(s) = s. The Stratonovich Taylor expansion for the exact solution of the SDE (12) is (see [2])

y(t) =
∑
t∈T

γ(t)
ρ(t)!

J(t)α(t)F (t)(y0), (14)

where α(t) represents the number of possible different monotonic labellings associated with tree t. Let
a(t) = z(k)Φ(t) where Φ defined recursively by

Φ(t) =

{
e, t = τk,

(Z(k)Φ(t1)) ∗ (Z(k)Φ(t2)) ∗ . . . ∗ (Z(k)Φ(tm)), t = [t1, . . . , tm]k,

where ∗ denote the component–by component product, then the Stratonovich Taylor series expansion of the
numerical method by (13), given by (see [2])

Y (t) =
∑
t∈T

γ(t)
ρ(t)!

a(t)α(t)F (t)(y0). (15)

From (14) and (15) local truncation error over one step with an exact initial value can be written

L1 ≡ y(t)− Y (t) =
∑
t∈T ?

e(t) F (t)(y0),

where for tree t term e(t) =
γ(t)
ρ(t)!

(J(t)− a(t))α(t) is the coefficient of local truncation error. In [1], all

coefficient of local truncation error for all two–coloured trees up to three nodes are listed.

4 SRK methods with strong order 1.0

For solving the Stratonovich SDE (12), a class of SRK methods given by (13) can also be characterized
by

Z(0) = hA, z(0)T = hαT , Z(1) = J1B, z(1)T = J1γ
T , (16)

where A = (aij) and B = (bij) are s× s real matrices and αT = (α1, . . . , αs) and γT = (γ1, γ2, . . . , γs) are
row s–dimensional vectors. If the matrices A and B are strictly lower triangular, then the method (16) is said
to be explicit, otherwise it is implicit. The convergence Theorem in [2] shows that the SRK method of the
form (16) will converge to the exact solution of SDE (12) with strong order 1.0 if the local truncation error
satisfies

(E(y(t)− Y (t))2)
1
2 = O(h1.5), E(y(t)− Y (t)) = O(h2). (17)

Hence a SRK method of the form (16) will satisfy the mean–square condition in (17) if
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E(h− hαT e)2 = 0, E(J1 − J1γ
T e)2 = 0, E(J11 − J1

2γTBe)2 = 0 (18)

Note that conditions (18) arise from trees τ0, τ1 and [τ1]1 (see [1]). These conditions are equivalent to

αT e = 1, γT e = 1, γTBe =
1
2

(19)

On the other hand, the method will satisfy mean condition in (17) if:

E(J10 − J1hα
TBe) = 0

E(J01 − J1hγ
TAe) = 0

E(J111 − J1
3γTB(Be)) = 0

E(J111 −
1
2
J1

3γT (Be)2) = 0.

(20)

Note that conditions (20) arise from trees [τ1]0, [τ0]1, [[τ1]1]1 and [τ1, τ1]1 (see [1] for further details). It can
be shown that the mean conditions (20) are all satisfied and hence a SRK method of the form given in (16)
will be of strong order 1.0 if the order conditions (19) are satisfied. In order to construct a class of explicit
SRK methods of the form (16) with s = 2, we try to find a method with coefficients:

0 0 0 0
ha21 0 J1b21 0
hα1 hα2 J1γ1 J1γ2

(21)

which satisfies with the conditions in (19). We have six unknowns and there are three equations to be satisfied.
We choose the deterministic part coefficients of (21) the Runge–Kutta method given in (8). This ensure that
our method works well in the case of small stochastic influence. From (19) it is seen that we can assume
B = A and γ = α, consequently we have the following method that is called ‘EM1’ and is presented by the
tableau:

0 0 0 0
1
2
h 0

1
2
J1 0

0 h 0 J1

As there are six parameters to be determined, additional conditions can be considered, for example, the con-
ditions for minimum principal error coefficients, namely the terms corresponding to h1.5 have minimum co-
efficients. The mean square of the principal error coefficients are give by

(
1
3
− αTBe+ (αTBe)

2
)h3,

(
1
3
− γTAe+ (γTAe)

2
)h3,

(
1
36
− 1

3
γTB(Be) + (γTB(Be))2)15h3,

(
1
9
− 2

3
γT (Be)2 + (γT (Be)2)2)

15
4
h3,

which can be derived from (20). These principal error coefficients are minimized if (see [1])

αTBe =
1
2
, , γTAe =

1
2
, γTB(Be) =

1
6
, γT (Be)2 =

1
3
, (22)

and so principal error coefficients respectively are given by

1
12
h3,

1
12
h3, 0, 0.

WJMS email for contribution: submit@wjms.org.uk



World Journal of Modelling and Simulation, Vol. 4 (2008) No. 2, pp. 83-93 89

Note that the ‘EM1’ method has principal error coefficients

1
12
h3,

1
12
h3,

5
12
h3,

5
192

h3

and the Burrage method (see [1]) is presented by the tableau:

0 0 0 0
2
3
h 0

2
3
J1 0

1
4
h

3
4
h

1
4
J1

3
4
J1

which has minimum principal error coefficients

1
12
h3,

1
12
h3,

5
12
h3, 0.

Also the Platen method (see [1]) is

0 0 0 0
h 0 J1 0

h 0
1
2
J1

1
2
J1

and has principal error coefficients
1
3
h3,

1
3
h3,

5
12
h3,

1
36
h3.

With the restriction of s = 2, it was seen that γTB(Be) = 0, but if s = 3 then γTB(Be) is not zero and in

order to have the minimum principal error it must take its minimum value which is
1
6

. In order to construct
a class of explicit SRK methods of the form (16) with s = 3, we consider the matrices A and B and the row
vectors αT and γT with the following forms:

A =

 0 0 0
a21 0 0
a31 a32 0

 , B =

 0 0 0
b21 0 0
b31 b32 0

 , αT =
(
α1 , α2 , α3

)
, γT =

(
γ1 , γ2 , γ3

)
.

Hence by equations (19) and (22), we have the following system of seven equations with twelve unknowns:

α1 + α2 + α3 = 1
γ1 + γ2 + γ3 = 1

γ2b21 + γ3(b31 + b32) =
1
2

α2b21 + α3(b31 + b32) =
1
2

γ2a21 + γ3(a31 + a32) =
1
2

γ3b32b21 =
1
6

γ2b21
2 + γ3(b31 + b32)2 =

1
3
.

(23)

In order to reduce the free parameters, we choose the deterministic components of SRK method in (13) the
Runge–Kutta method given in (9). From equations (23) it is seen that we can assume B = A and γ = α, con-
sequently we have the following three–stage explicit SRK method with minimum principal error coefficients,
that is presented by the tableau:
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0 0 0 0 0 0
2
3
h 0 0

2
3
J1 0 0

−h h 0 −J1 J1 0

0
3
4
h

1
4
h 0

3
4
J1

1
4
J1

where is called ‘EM2’, and has principal error coefficients:

1
12
h3,

1
12
h3, 0, 0.

Now we will generalize the above explicit SRK method to implicit method for SDEs. In the implicit case with
s = 3, we will use the matrices:

A =

 a11 0 0
a21 a22 0
a31 a32 a33

 , B =

 b11 0 0
b21 b22 0
b31 b32 b33

 ,

which using conditions (19) and (22). We will have the following system of seven equations with eighteen
unknowns:



α1 + α2 + α3 = 1
γ1 + γ2 + γ3 = 1

γ1b11 + γ2(b21 + b22) + γ3(b31 + b32 + b33) =
1
2

α1b11 + α2(b21 + b22) + α3(b31 + b32 + b33) =
1
2

γ1a11 + γ2(a21 + a22) + γ3(a31 + a32 + a33) =
1
2

γ1b11
2 + γ2(b21b11 + b22(b21 + b22)) + γ3(b31b11 + b32(b21 + b22) + b33(b31 + b32 + b33)) =

1
6

γ1b
2
11 + γ2(b21 + b22)

2 + γ3(b31 + b32 + b33)
2 =

1
3
.

Again we choose the deterministic part coefficients of (13) the Runge–Kutta method given in (11). Con-
sequently with assuming B = A and γ = α a family of three–stage implicit SRK methods with minimum
principal error coefficients can be presented by the tableau:

0 0 0 0 0 0
1
4
h

1
4
h 0

1
4
J1

1
4
J1 0

0 h 0 0 J1 0
1
6
h

2
3
h

1
6
h

1
6
J1

2
3
J1

1
6
J1

where is referred to ‘IM ’, and has principal error coefficients:

1
12
h3,

1
12
h3, 0, 0.

If we use the 1–norm to estimate the contribution of all error terms to the principal error term then Tab. 1
presents these values for methods ‘Platen’ , ‘EM1’ , ‘Burrage’ , ‘EM2’ and ‘IM ’. We observe, in Tab. 1,

Table 1. Norm of Principal Error Coefficients

Platen EM1 Burrage EM2 IM
‖principal error‖1 1.1111 0.6094 0.5833 0.1667 0.1667

WJMS email for contribution: submit@wjms.org.uk



World Journal of Modelling and Simulation, Vol. 4 (2008) No. 2, pp. 83-93 91

that the 1–norm principal error coefficients ‘EM2’ and ‘IM ’ methods are less than the 1–norm of principal
error coefficients ‘Platen’, ‘EM1’ and ‘Burrage’ methods. Also the difference between the 1–norm of
principal error coefficients the ‘EM1’ and ‘Burrage’ methods is very small, and less than the ‘Platen’
method. In order to improve the results of employing the ‘IM ’ method at each step, the stage–variable Y2

will be solved by the fixed–point iteration scheme with starting value for this variable comes from the ‘EM2’
method. Since J1 ∼ N(0, h), so J1 =

√
hRn where Rn ∼ N(0, 1). Hence for the stage–variable Y2 in the

‘IM ’ method let

G(Y2) ≡ yn +
1
4
h(g0(yn) + g0(Y2)) +

1
4

√
hRn(g1(yn) + g1(Y2)),

and therefore the fixed–point iteration for solving Y2 is given by

Y2
[s+1] = G(Y2

[s]), s = 0, 1, 2, . . .

with stopping criteria

|Y [s+1]
2 − Y

[s]
2 | < ε, (24)

where ε is a positive known tolerance number. If h is sufficiently small, the contraction mapping Theorem can
be applied to prove existence and uniqueness of the solution of nonlinear equation G(Y2) = Y2 (see [12]).
Consequently the stage–variable Y3 is given by

Y3 = yn + hg0(Y2
[s+1]) +

√
hRng1(Y2

[s+1]),

such that Y [s+1]
2 satisfy condition (24). Finally yn+1 for the ‘IM ’ method will be evaluated by

yn+1 = yn + h(
1
6
g0(yn) +

2
3
g0(Y2

[s+1]) +
1
6
g0(Y3)) +

√
hRn(

1
6
g1(yn) +

2
3
g1(Y2

[s+1]) +
1
6
g1(Y3)),

where Y [s+1]
2 satisfies condition (24).

5 Numerical results and conclusion

In this section, numerical results from the implementation of five methods are presented. These methods
are ‘Platen’ , ‘EM1’ , ‘Burrage’ , ‘EM2’ and ‘IM ’. The above methods will be implemented in fixed step
size mode on two different problems. In order to simulate the Gaussian variable J1 with distribution N(0, h)
we have taken pseudo–random numbers generated by “randn” in MATLAB 7.0. When these methods are
simulated, the same sequence of random numbers for the Wiener increment J1 are used for the step size under
consideration. For each problem, it is necessary to simulate many trajectories of the Wiener process and we
take, 1000, whereK stands for the number of different realizations of the Wiener process. The implementation
determines the average error for each step size at the end point of the interval [0, T ] is defined by

AE =
1
K

K∑
i=1

| y(i)
N − y(i)(tN ) |,

where y(i)
N is the approximation solution and y(i)(tN ) is the exact solution of SDE at tN = T on the i–th path

of the Wiener process. The results appear in Tab. 2∼ 5. In all tables the column 6 determines the average error
for ‘IM ’ method, while at each step starting value for the stage–variable Y2 come from the ‘EM2’ method
with ε = 0.0001.
Test Problem 1. Consider

{
dy = −a2y(1− y2)dt+ a(1− y2)dW (t) = a(1− y2)odW (t), t ∈ [0, 1]
y(0) = 0.
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The exact solution of this equation is (see [6])

y(t) = tanh(aW (t) + arctanh(y0)).

This problem is purely stochastic and was solved numerically twice, with two choices of parameters a = 2
and a = 1. Test Problem 2. Consider

Table 2. Global errors for test Problem 1, with a = 2, K = 1000 and ε = 0.0001.

h P laten Burrage EM1 EM2 IM
1
25 0.23379 0.17543 0.14732 0.90772e–1 0.49411e–2
1
50 0.11910 0.87367e–1 0.72644e–1 0.27840e–1 0.10981e–2
1

100 0.61476e–1 0.45824e–1 0.38650e–1 0.10742e–1 0.34410e–3
1

200 0.33242e–1 0.25185e–1 0.21597e–1 0.46055e–2 0.11119e–3
1

400 0.15803e–1 0.11847e–1 0.10035e–1 0.19898e–2 0.39186e–4

{
dy = −(α+ β2y)(1− y2)dt+ β(1− y2)dW (t) = −α(1− y2)dt+ β(1− y2)odW (t), t ∈ [0, 1]
y(0) = 0.

For this problem, the solution is known to be (see [6])

y(t) =
(1 + y0) exp(−2αt+ 2βW (t)) + y0 − 1
(1 + y0) exp(−2αt+ 2βW (t)) + 1− y0

.

This problem is solved with two different values of parameters where α = 1 and β = 2, 0.01. In the first case,
one has that the stochastic part is significant, whereas it is much smaller in the second case. For this problem,

Table 3. Global errors for test Problem 1, with a = 1, K = 1000 and ε = 0.0001.

h P laten Burrage EM1 EM2 IM
1
25 0.24542e–1 0.13005e–1 0.95001e–2 0.55887e–2 0.11868e–3
1
50 0.11982e–1 0.64091e–2 0.48965e–2 0.21210e–2 0.31872e–4
1

100 0.63255e–2 0.34932e–2 0.26472e–2 0.96237e–3 0.92418e–5
1

200 0.32726e–2 0.17777e–2 0.13249e–2 0.45166e–3 0.33780e–5
1

400 0.15283e–2 0.81432e–3 0.60395e–3 0.22187e–3 0.32333e–5

the solution is known to be (see [6])

y(t) =
(1 + y0) exp(−2αt+ 2βW (t)) + y0 − 1
(1 + y0) exp(−2αt+ 2βW (t)) + 1− y0

.

This problem be solved with two different values of parameters where α = 1 and β = 2, 0.01. In the first case,
one has that the stochastic part is significant, whereas it is much smaller in the second case. With comparing

Table 4. Global errors for test Problem 2, with α = 1, β = 2, K = 1000 and ε = 0.0001.

h P laten Burrage EM1 EM2 IM
1
25 0.19910 0.15513 0.13032 0.75505e–1 0.40515e–2
1
50 0.10342 0.78391e–1 0.65485e–1 0.24255e–1 0.10537e–2
1

100 0.54342e–1 0.42437e–1 0.36003e–1 0.94268e–2 0.31865e–3
1

200 0.29818e–1 0.23167e–1 0.19813e–1 0.41433e–2 0.98992e–4
1

400 0.13516e–1 0.10575e–1 0.90643e–2 0.17987e–2 0.40232e–4
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Table 5. Global errors for test Problem 2, with α = 1, β = 0.01, K = 1000 and ε = 0.0001.

h P laten Burrage EM1 EM2 IM
1
25 0.73817e–2 0.11148e–3 0.66508e–4 0.23513e–5 0.23346e–6
1
50 0.36668e–2 0.27635e–4 0.16562e–4 0.28906e–6 0.28717e–7
1

100 0.18273e–2 0.69352e–5 0.41577e–5 0.36640e–7 0.36196e–8
1

200 0.91215e–3 0.17761e–5 0.10659e–5 0.48004e–8 0.47420e–9
1

400 0.45571e–3 0.46845e–6 0.28133e–6 0.66410e–9 0.48845e–10

the results in Tab. 2∼ 5, we conclude that the ‘IM ’ and ‘EM2’ methods are more accurate than the ‘Platen’ ,
‘Burrage’ and ‘EM1’ methods, as the error values for ‘IM ’ method is less than ‘EM2’ method. Moreover
for two–stage SRK methods the ‘EM1’ method is more effective ‘Platen’ and ‘Burrage’ methods. On
the other hand for problems in which the deterministic term dominate (test problem 2 with β = 0.01) the
improvement the ‘Burrage’ , ‘EM1’ , ‘EM2’ and ‘IM ’ methods becomes noticeable as the stepsize is
reduced. This is because the deterministic component of the ‘Burrage’ and ‘EM1’ methods are the second
order Runge–Kutta methods, while the deterministic component ‘EM2’ and ‘IM ’ methods are the third and
fourth order Runge–Kutta methods, respectively.
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