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A new method for mesh generation is formulated based on the level set functions, which are solutions of the
standard level set evolution equation with the Cartesian coordinates as initial values (Liao et al. J Comput
Phys 159 (2000), 103–122; Osher and Sethian J Comput Phys 79 (1988), 12; Sethian, Level set methods
and fast marching methods, Cambridge University Press, 1999; Di et al. J Sci Comput 31 (2007), 75–98).
The intersection of the level contours of the evolving functions form a new grid at each time. The velocity
vector in the evolution equation is chosen according to the Geometric Conservation Law (GCL) method
(Cao et al., SIAM J Sci Comput 24 (2002), 118–142.). This method has precise control over the Jacobian
of transformation because of using the GCL method. © 2008 Wiley Periodicals, Inc. Numer Methods Partial
Differential Eq 25: 582–597, 2009
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I. INTRODUCTION

Many partial differential equations (PDEs) arising from science and engineering have a common
feature that they have a small portion of the physical domain where small node separation are
required to resolve large variations of the solution. Examples include problems having boundary
layers, shock waves, the combustion, and heat transfer theory. Numerical solution of these PDEs
using a uniform mesh may be formidable when the systems involve more than two spatial dimen-
sions, since the number of mesh points can become very large. On the other hand, to improve
efficiency and accuracy of the numerical solution it is natural to consider more mesh points in
the region of large variation of solution than the rest of physical domain. With this basic idea of
mesh adaptation, the number of mesh points can be much smaller, thus significant economy can
be gained [1–4]. Essential topic to mesh adaptation is the ability to control the size, shape and
orientation of mesh elements [5]. In the first step, the element information on size, shape and ori-
entation is specified throughout the domain. The specification is often based on an error indicator,
an error estimate, or a physical consideration. In the second step, an algorithm is developed for
generating the needed adaptive mesh according to the specification of element information. In
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this article, we use a general idea of moving grids. We consider a scalar or vector field satisfying

ut(x, t) = L(u), (1)

where L is a differential operator defined on a physical domain � in Rn, n = 1, 2, 3. A continuous
view for mesh adaptation is to consider an adaptive mesh to generate as image of a computa-
tional mesh under a reversible coordinate transformation x = x(ξ) : �c → �, where �c is the
computational mesh domain, [4, 6–8]. Assume that an uniform computational mesh is chosen,
the size, shape and orientation of mesh elements are then completely determined by x = x(ξ , t).
Consequently, the control of elements is equivalent to the control of x = x(ξ , t). We transform
Eq. (1) by x = φ−1(ξ , t) and solve the transformed equation on a fixed grid on the the compu-
tational domain that φ is the level set function. It is notable that variational methods [7, 9, 10],
define this transformation as the solution of a system of PDEs which controls various aspects of
the grid such as orthogonality, smoothness and cell size. The resulting system of PDEs for grid
generation is often nonlinear and its solution requires intensive computation. The moving mesh
methods based on moving mesh partial differential equations are another type of the adaptive
mesh method specially designed for numerical solution of time dependent PDEs. In this method,
the mesh nodes are typically moved by a mesh equation, to adapt to the evolutionary features of
physical solution. Mesh movement strategies are designed in the guidance of the equidistribution
principle. This type of method developed in [3, 10, 11]. Another velocity based moving mesh
methods are deformation method [12] and GCL (Geometric Conservation Law) method [2], we
will describe the last method in the next section.

II. GEOMETRIC CONSERVATION LAW LEVEL SET METHOD

In this section, a new moving grid method is formulated, named the geometric conservation law
level set method or GCLSM. The usual evolution equation for the level set functions (as in Ref.
[13]) in the cartesian coordinates as initial values is solved. The velocity vector in the evolution
equation is chosen according to the GCL method [2]. The intersection points of the level sets of
the evolving solutions will form a new grid at each time.

The focus is on the equidistribution principle

Jρ = σ

|�c| , (2)

where J is the Jacobian of the coordinate transformation x = φ−1(ξ , t) : �c → �, ρ = ρ(x, t)
is a given monitor function, and σ = σ(t) = ∫

�
ρ(x, t)dx. In fact, in this paper, we construct φ

such that J (φ) = ρ|�c |
σ

.
Suppose that the solution of (1) has been computed at time step t = tk−1. we seek a

transformation φ : � → �c such that:

J (φ) = ρ|�c|
σ

,

φ(x, tk−1) = φk−1(x) x in �.

First, we describe the method in one dimension. Without loss of generality, we assume both of x

and ξ lie in interval [0, 1].
Numerical Methods for Partial Differential Equations DOI 10.1002/num
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Suppose that a positive monitor function, ρ(x, t), is given, we want to construct a grid of N +1
nodes in [0, 1] at each time as following:

x0(t) = 0 < x1(t) < x2(t) < · · · < xi(t) < xi+1(t) < · · · < xN(t) = 1

In one dimension, the equidistribution principle is

∂x

∂ξ
= σ

ρ|�c| , (3)

this means,

xi+1 − xi

1
N

= σ

ρ
(as N → ∞). (4)

We seek a level set function φ from [0, 1] to [0, 1] which map xi to ki = i

N
, i = 0, 1, 2, . . . , N on

[0, 1] over the y-axis.
The condition (4) is equivalent to,

1
N

xi+1 − xi

= ρ

σ
, (5)

namely,

φ(xi+1) − φ(xi)

xi+1 − xi

= ρ

σ
, (6)

or

∂φ

∂x
= ρ

σ
. (7)

In 1D, this equation can be solved by direct integration,

φ(x) =
∫ 1

0

ρ(s, t)

σ (t)
ds. (8)

The preimages of the points ki = i

N
under the transformation x → φ(x, t) are the level sets of φ

and they form new nodes. This idea extends to multiple dimensions as follows, the goal is to gen-
erate a nodal mapping � from � → �c such that J (�) = ρ|�c |

σ
. To begin, let us define the basic

concept of modeling a moving front by the level sets. Suppose that there is a moving front with a
velocity field v = (xt , yt , zt ), where x = (x, y, z) is the position of a particle at time t . We intro-
duce a smooth function �(x, y, z, t) with the property that the front is given by the zero level set of
�, i.e. �(x, y, z, t) = 0. By differentiating with respect to t , we get �t +�xxt +�yyt +�zzt = 0,
which can be written as

�t(x, y, z, t) + 〈∇�, v〉 = 0, (9)

and in one dimension converts to

φt(x, t) + vφx = 0. (10)

This is the evolution equation for level set function φ, [14, 15]. In two dimension, we construct
two function φ and ψ by (9) with a suitable vector field v, then the intersections of their level set

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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curves will be the new nodes. Let φ(x, y, t) and ψ(x, y, t) be solutions of the following evolution
equation, {

φt(x, y, z, t) + 〈∇φ, v〉 = 0,
ψt(x, y, z, t) + 〈∇ψ , v〉 = 0.

(11)

The initial conditions are φ(x, y, 0) = x, ψ(x, y, 0) = y, respectively. The boundary conditions
are

φ(0, y, t) = 0, φ(1, y, t) = 1, φ(x, 0, t) = φ(x, 1, t) = x,
ψ(x, 0, t) = 0, ψ(x, 1, t) = 1, ψ(0, y, t) = ψ(1, y, t) = y,

(12)

then let � = (φ, ψ).
In three dimension, we obtain three functions φ1, φ2, φ3 from the following equations

(φi)t + 〈∇φi , v〉 = 0, i = 1, 2, 3 (13)

with the same type of initial and boundary conditions as in 2D. A suitable vector field v can be
determined according to the GCL method. Then the intersections of level sets form the nodes of
the moving grid.

Now, we describe the method of computing v. In the GCL method, the equidistribution
condition is

Jρ = σ

|�c| , (14)

where J be the Jacobian of the coordinate transformation x = x(ξ) : �c → �, ρ = ρ(x, t) is a
given monitor function and σ = σ(t) = ∫

�
ρ(x, t)dx.

Let K(t) be an arbitrary time dependent sub-domain of � and Kc be the corresponding fixed
sub-domain in �c under x = x(ξ). Integrating (14) over Kc yields

∫
K(t)

ρ

σ
dx = |Kc|

|�c| . (15)

By differentiating with respect to time, we have

d

dt

∫
Kt

ρ

σ
dx = 0, (16)

or ∫
Kt

ρ

σ
dx +

∫
∂K(t)

ρ

σ
ẋ nds = 0, (17)

where the mesh speed, ẋ, characterizes the movement of surface ∂K(t) and n is the outward
normal to the surface. Using the Gauss’ theorem, (17) can be written as

∫
Kt

ρ

σ
dx +

∫
K(t)

∇
(ρ

σ
ẋ
)

dx = 0. (18)

It follows from the arbitrariness of K(t) that

∂

∂t

(ρ

σ

)
+ ∇

(ρ

σ
ẋ
)

= 0. (19)
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This is basically the continuity equation in fluid dynamics, with “flow velocity” ẋ and “fluid den-
sity” ρ

σ
. It can be considered as a condition for determining the divergence of mesh speed ẋ. Thus

the equidistribution condition (19) is insufficient to determine the vector field ẋ. The motivation
for finding supplementary conditions is provided by the Helmholtz decomposition theorem for
vectors:

A continuous and differentiable vector field can be decomposed into the orthogonal sum of a
gradient of a scalar field and the curl of a vector field. Therefore, ẋ can be determined by specifying
both its divergence through (19) and its curl. We require ẋ to satisfy

∇ × w(ẋ − vref) = 0, (20)

wherew > 0 is a weight function andvref is a user-specified reference vector field. The requirement
(20) implies that there is a potential function H such that

w(ẋ − vref) = ∇H , (21)

or

ẋ = 1

w
∇H + vref . (22)

Inserting (22) into (19) leads to,

∇
( ρ

wσ
∇H

)
= − ∂

∂t

(ρ

σ

)
− ∇

(ρ

σ
vref

)
in �. (23)

The boundary condition can be obtained by requiring the mesh points not to move out the domain,
i.e., ẋn = 0 where n denotes the outward normal to ∂�. Using (22), we have the boundary
condition

∂H

∂n
= −wvrefn on �. (24)

To summarize, the potential function, H , is determined by the elliptic equation (23) with the
Neumann boundary condition (24).

Now let H is known, the mesh speed ẋ can be obtained by (22).
There are two more obvious choices for the weight function, w = ρ

σ
and w = 1. The choice of

control vector field vref is very dependent to problem. When physical intuition for choosing vref

is not available, the best opinion is simply to choose vref = 0. With w = ρ

σ
, vref = 0 this method

converts to method on [13].

III. ALGORITHM FOR SOLVING TIME-DEPENDENT PDES

In this section, we describe the procedures of using our method for solving time-dependent PDE
(1) which works for any dimension. At first, we describe this algorithm for one-dimensional PDEs
precisely and present a brief explanation for multidimensional cases in section (III.B).

A. Algorithm for One-Dimensional PDEs

Step 1. A monitor function, ρ, is determined by the solution being calculated, (at t = 0 we
determine ρ by using initial condition for u).

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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Step 2. The nodes velocity, v, is determined by v = 1
w

∂H

∂x
+ vref where H satisfies:

∂

∂x

(
ρ

wσ

∂H

∂x

)
= − ∂

∂t

(ρ

σ

)
− ∂

∂x

(ρ

σ
vref

)
,

with the Neumann boundary condition:

∂H

∂x
= −wvref .

Step 3. We update φ from the following equation,

φt(x, t) + φx(x, t).v = 0, (25)

with the initial and boundary condition

φ(x, 0) = x, φ(0, t) = 0, φ(1, t) = 1. (26)

Step 4. Any φ(x, t) = a has appropriate point on x-axis that shows new nodes, in fact for
finding new nodes in advanced time, we must find inverse of φ. Consider

φ(x, t) = a. (27)

Differentiating (27) with respect to t , we get

φt(x, t) + φxẋ = 0, (28)

by comparing (25) and (28), we get

ẋ = v, (29)

namely, the nodes velocity is equal to v.

Step 5. After finding new nodes, the values of u should be computed on this time level, let

U(φ(x, t), t) = u(x, t),

then

Ut = uxẋ + ut ,

where ut = L(u) by (1) and ẋ = v by (29). The derivatives existing in L(u), such as ux and
uxx are also transformed . For example,

Uφ = uxxφ ⇒ ux = Uφ

xφ

= Uφ

σ

ρ|�c |
= ρ|�c|

σ
Uφ ,

Uφφ = uxx(xφ)
2 + uxxφφ ⇒ uxx = Uφφ − uxxφφ

(xφ)2
=

(
ρ|�c|

σ

)2

(Uφφ − uxxφφ).

The higher derivatives can be obtained similarly. The transformed equation for U(φ, t) takes
the form of

Ut = L̃(U), (30)

where L̃ is a differential operator in φ. Finally (30) will be solved on a fixed uniform grid.

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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B. Algorithm for Multidimensional PDEs

The method of solving time dependent PDE(1) for two- and three-dimensional PDEs, are similar
to it’s one-dimensional case, in such a way at any time level, after determining monitor function,
ρ, in setp1, we obtain the nodes velocity, v, by v = 1

w
∇H + vref , where H satisfies (23), with

the Neumann boundary condition (24). Then, in step 3 for updating the level set function �, we
use (11) for 2D problems and (13) for 3D problems with the appropriate initial and boundary
conditions which introduced in section (II). As we told already, the intersection of level contours
of the level set functions form the new nodes. Finally, after finding the new nodes, we obtain the
rates of u by transforming the PDE to it’s Lagrangian form, similar to one-dimensional case. For
example, in two-dimensional case, let

U(φ(x, y, t), ψ(x, y, t), t) = u(x, y, t),

by differentiating respect to t , we have

Ut = uxẋ + uyẏ + ut ,

where ut = L(u) and ẋ = (ẋ, ẏ)T = v. The derivatives existing in L(u), such as ux , uy , uxx , uxy

and uyy are also transformed. For instance, we can obtain ux and uy , from the following equations
uniquely,

Uφ = uxxφ + uyyφ ,

Uψ = uxxψ + uyyψ ,

because, ∣∣∣∣xφ yφ

xψ yψ

∣∣∣∣ = 1

J (�)
�= 0

The higher derivatives can be obtained similarly.

IV. NUMERICAL EXPERIMENTS

In this section, we implement the presented algorithm for one-dimensional problems. For this
purpose, we present two numerical examples. These problems are characterized by moving dis-
continuities, that means the discontinuities move in time, and so the solution at a particular point
in space can change very rapidly. The solution of such these problems on a fixed uniform spatial
mesh, need the very small time step to receive sufficient accuracy, but using the adaptive mesh
for finding the solution of these problems derives improvement on the accuracy and efficiency.
We have used the new adaptive mesh for the mentioned problems with the arclength monitor
function, ρ = √

1 + αu2
x . To obtain an accurate and nonoscillatory solution, it is necessary to

smoothen the mesh trajectories. In [3], a technique be used which smoothens the node concentra-
tion by smoothing the monitor function over all points. They applied a smooth monitor function
as following:

ρ̃i =
∑i+ip

k=i−ip ρk

(
γ

γ+1

)|k−i|

∑i+ip

k=i−ip

(
γ

γ+1

)|k−i| ,

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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FIG. 1. Level set functions for the first example with N = 21 mesh points at time levels t = 0, 0.4, 0.8,
and t = 1.

where ip is a nonnegative integer and γ is a positive constant. In this paper, we select the men-
tioned formula for smoothing monitor function with ip = 1 and γ = 1. Also, in these examples
we choose w = ρ

σ
, vref = 0 in step 2.

Example 1. This example is the well-known inviscous Burger’s equation, where considered
as a test problem in [8, 16].

ut = −
(

u2

2

)
x

, 0 ≤ x ≤ 2π , t > 0

subject to the initial condition,

u(x, 0) = 0.5 + sin(x).

We wish to verify the efficiency of the moving mesh algorithm. For this purpose, we solve this
example up to t = 1 with our GCLSM algorithm.

In Figure 1, φ is plotted along with the nodes of the moving grid by GCLSM with N = 21
mesh pints at different times, t = 0, 0.4, 0.8, and t = 1. Figure 2 shows mesh trajectories up to
t = 1 and the numerical solution at t = 1 with N = 21.

Similarly, in Figure 3, φ is plotted along with the nodes of the moving grid with N = 41 mesh
points at t = 0, 0.4, 0.8, and t = 1, also Figure 4 shows mesh trajectories up to t = 1 and the
computed solution at t = 1 with N = 41.

Example 2. In this example, we implement the present work for the PDE which it’s solution,
u(x, t), is a given function. We consider the following Burger’s equation,

ut + uux − εuxx = 0, 0 ≤ x ≤ 2

Numerical Methods for Partial Differential Equations DOI 10.1002/num



590 SOHEILI AND AMERI

FIG. 2. The mesh trajectories and computed solution with GCLSM of 21 mesh points for Burger’s
equation in first example. [Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]

FIG. 3. Level set functions for the first example with N = 41 mesh points at time levels t = 0, 0.4, 0.8,
and t = 1.

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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FIG. 4. The mesh trajectories and computed solution with GCLSM of 41 mesh points for Burger’s
equation in first example. [Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]

The initial condition is chosen so that the exact solution is given by,

u(x, t) = µ + λ + (µ − λ)e
λ
ε (x−µt)

1 + e
λ
ε (x−µt)

.

In above equation as ε increases, the effect of second derivative, uxx , also increases, subse-
quently its solution becomes smoother. So for comparison we solve this problem for different
values of ε, also we set λ = 0.5 and µ = 0.4 in our numerical experiments.

In Figure 5, the level set function ϕ is plotted along with the nodes of moving grid with N = 21
and Figure 6 shows mesh trajectory and the computed solution of PDE, u, for ε = 0.08. Similarly,
Figures 7–10 show the level set functions, mesh trajectories and the computed solutions of PDE
for ε = 0.04 and ε = 0.01.

We plotted the solution of PDE on a uniform initial mesh (at t = 0) and on a moving mesh
(at t = 0.7) for 21 mesh points in Figures 11, 12, and 13, ε is considered 0.08, 0.04, and 0.01
respectively. These figures show that the discontinuity move in time and also the new adaptive
mesh algorithm has the ability to capture this discontinuity.

In Table I, L∞-error and CPU time are listed for different number of mesh points on fixed mesh
and moving mesh, (ε = 0.08, 0.04, and 0.01). It is observed, in the smoothest case i.e ε = 0.01,
the GCL calculations with 21 grid points are as accurate as for a fixed mesh of 41 mesh points,
in addition the former requires less CPU time. In general, it can be said, the short CPU time in
this method makes it acceptable and efficient.

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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FIG. 5. Level set functions for the second example with N = 21 mesh points at t = 0, 0.25, 0.5, and
t = 0.7 (µ = 0.5, λ = 0.4, ε = 0.08).

FIG. 6. The mesh trajectory and computed solution of the second example for 0 ≤ t ≤ 0.7 with GCLSM
of 21 mesh point (µ = 0.5, λ = 0.4, ε = 0.08). [Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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FIG. 7. Level set functions for the second example with N = 21 mesh points at t = 0, 0.25, 0.5, and
t = 0.7 (µ = 0.5, λ = 0.4, ε = 0.04).

FIG. 8. The mesh trajectory and computed solution of the second example for 0 ≤ t ≤ 0.7 with GCLSM
of 21 mesh point (µ = 0.5, λ = 0.4, ε = 0.04). [Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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FIG. 9. Level set functions for the second example with N = 21 mesh points at t = 0, 0.25, 0.5, and
t = 0.7 (µ = 0.5, λ = 0.4, ε = 0.01).

FIG. 10. The mesh trajectory and computed solution of the second example for 0 ≤ t ≤ 0.7 with GCLSM
of 21 mesh point (µ = 0.5, λ = 0.4, ε = 0.01). [Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]

Numerical Methods for Partial Differential Equations DOI 10.1002/num



ADAPTIVE LEVEL SET METHOD 595

FIG. 11. The computed solution (∗) and exact solution (solid line) at t = 0 on uniform mesh (a) and at
t = 0.7 with GCLSM (b) of 21 mesh point for the second example (µ = 0.5, λ = 0.4, ε = 0.08). [Color
figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

FIG. 12. The computed solution (∗) and exact solution (solid line) at t = 0 on uniform mesh (a) and at
t = 0.7 with GCLSM (b) of 21 mesh point for the second example (µ = 0.5, λ = 0.4, ε = 0.04). [Color
figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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FIG. 13. The computed solution (∗) and exact solution (solid line) at t = 0 on uniform mesh (a) and at
t = 0.7 with GCLSM (b) of 21 mesh point for the second example (µ = 0.5, λ = 0.4, ε = 0.01). [Color
figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

TABLE I. The error and the rate of convergence for GCLSM solution of the second example at t = 0.7,
obtained by the arclength monitor function with α = 0, i.e., uniform mesh and α = 2, i.e., moving mesh for
values of ε = 0.08, 0.04, and 0.01.

Case Description N L∞-error CPU time

ε = 0.08 Fixed mesh 21 0.0057 0.509
µ = 0.5 (α = 0) 31 0.0035 0.908
λ = 0.4 41 0.0026 0.908

Moving mesh 21 0.0023 0.8706
(α = 2) 31 0.0015 0.9844

41 0.0009 1.029

ε = 0.04 Fixed mesh 21 0.0302 0.512
µ = 0.5 (α = 0) 31 0.0168 0.705
λ = 0.4 41 0.0116 0.912

Moving mesh 21 0.0215 0.8743
(α = 2) 31 0.0114 0.9869

41 0.0101 1.029

ε = 0.08 Fixed mesh 21 0.1916 0.521
µ = 0.5 (α = 0) 31 0.0574 0.718
λ = 0.4 41 0.0501 0.916

Moving mesh 21 0.0503 0.8750
(α = 2) 31 0.0391 0.9863

41 0.0346 1.0313

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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V. CONCLUSION

We have introduced a new adaptive mesh method for solving one-dimensional PDEs that is effi-
cient. We have used the level set equation for producing an adaptive mesh, that means for obtaining
a moving mesh in any time level, we propagate the level set function with appropriate velocity
which obtains by the GCL method. Also we have presented a brief explanation of our method to
multidimensional problems, but the most obvious extension of this work is to multidimensional
PDEs that we will develop it in details in our next work.
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