A Family of Predictor-Corrector Methods Based on Weight Combination of Quadratures for Solving Nonlinear Equations

Ali R. Soheili *, S.A. Ahmadian, J. Naghipoor
Department of Mathematics, University of Sistan \& Baluchestan, Zahedan, Iran
(Received 21 July 2007, accepted 18 February 2008)

Abstract

In this paper, we propose and analyze some new predictor-corrector methods for solving nonlinear equations using the weight combination of mid-point, Trapezoidal and Simpson quadrature formulas. We prove that these new methods are better than the newton method. Several examples are given to illustrate the efficiency of the proposed methods.

Keywords: predictor-corrector methods; convergence; quadrature formulas; nonlinear equations; numerical examples

1 Introduction

Finding the roots of non-linear equations are common yet important problem in science and engineering. Analytical methods for solving such equations are difficult or almost non-existent. Therefore it is only possible to obtain approximate solutions by numerical techniques based on iteration procedures [1,5,6]. It is well known that the quadrature formulas[1], play an important and significant rule in the evaluation of the integrals. It has been shown [2] that these quadrature formulas can be used to develop some iterative methods for solving nonlinear equations.we suggest and analyze some new-iterative methods by using the weight combination of the midpoint, Trapezoidal and Simpson quadrature formulas. This method is an implicit-type method. To implement this, we can use the Newton and the Halley methods and some newly developed method by Noor[2,3,4], as predictor method and then use this new method as a corrector method .A comparison between these new methods with that of Newton method is given. Several examples are given to illustrate the efficiency and advantage of these two-step methods.

2 Iterative methods

Suppose that r be the simple zero of a sufficiently differentiable function and consider the numerical solution of equation $f(x)=0$, then

$$
\begin{equation*}
f(x)=f\left(x_{n}\right)+\int_{x_{n}}^{x} f^{\prime}(t) d t . \tag{1}
\end{equation*}
$$

If we approximate $\int_{x_{n}}^{x} f^{\prime}(t) d t$ with average of midpoint and Simpson quadrature formulas then we have

$$
\begin{equation*}
\int_{x_{n}}^{x} f^{\prime}(t) d t=\frac{x-x_{n}}{2} f^{\prime}\left(\frac{x_{n}+x}{2}\right)+\frac{x-x_{n}}{12}\left[f^{\prime}\left(x_{n}\right)+4 f^{\prime}\left(\frac{x_{n}+x}{2}\right)+f^{\prime}(x)\right] . \tag{2}
\end{equation*}
$$

From (2.1) and (2.2), we have

$$
f(x)=f\left(x_{n}\right)+\frac{x-x_{n}}{12}\left[f^{\prime}\left(x_{n}\right)+10 f^{\prime}\left(\frac{x_{n}+x}{2}\right)+f^{\prime}(x)\right] .
$$

[^0]Since $f(x)=0$ then

$$
x=x_{n}-\frac{12 f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)+10 f^{\prime}\left(\frac{x_{n}+x}{2}\right)+f^{\prime}(x)} .
$$

With this fixed point formulation and any iterative method as predictor we will have following implicit iterative method.
Algorithm 1 For a given x_{0}, compute the approximate solution x_{n+1} by iterative scheme.

$$
x_{n+1}=x_{n}-\frac{12 f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)+10 f^{\prime}\left(\frac{x_{n}+x}{2}\right)+f^{\prime}(x)}
$$

Using the predictor type technique, we suggest the following two-step method which is obtained by combining the Halley method.
Algorithm 2 For a given x_{0}, compute the approximate solution x_{n+1} by the iterative scheme.

$$
\begin{gathered}
y_{n}=x_{n}-\frac{2 f\left(x_{n}\right) f^{\prime}\left(x_{n}\right)}{2\left(f^{\prime}\left(x_{n}\right)\right)^{2}-f\left(x_{n}\right) f^{\prime \prime}\left(x_{n}\right)}, \\
x_{n+1}=x_{n}-\frac{12 f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)+10 f^{\prime}\left(\frac{x_{n}+y_{n}}{2}\right)+f^{\prime}\left(y_{n}\right)} .
\end{gathered}
$$

For approximating $\int_{x_{n}}^{x} f^{\prime}(t) d t$, if we combine Trapezoidal and Simpson quadrature formulas with weight factor $\frac{1}{2}$, then we have

$$
\begin{equation*}
\int_{x_{n}}^{x} f^{\prime}(t) d t=\frac{x-x_{n}}{4}\left[f^{\prime}\left(x_{n}\right)+f^{\prime}(x)\right]+\frac{x-x_{n}}{12}\left[f^{\prime}\left(x_{n}\right)+4 f^{\prime}\left(\frac{x_{n}+x}{2}\right)+f^{\prime}(x)\right] \tag{3}
\end{equation*}
$$

So from (2.1) and (2.3) and $f(x)=0$, we can obtain

$$
x=x_{n}-\frac{3 f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)+f^{\prime}\left(\frac{x_{n}+x}{2}\right)+f^{\prime}(x)} .
$$

In similar way we will have following algorithm which our predictor is the well-known Newton method.
Algorithm 3 For a given x_{0}, compute the approximate solution x_{n+1} by the iterative scheme.

$$
\begin{gathered}
y_{n}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \\
x_{n+1}=x_{n}-\frac{3 f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)+f^{\prime}\left(\frac{x_{n}+y_{n}}{2}\right)+f^{\prime}\left(y_{n}\right)}
\end{gathered}
$$

For approximating $\int_{x_{n}}^{x} f^{\prime}(t) d t$, if we combine mid-point, Trapezoidal and Simpson quadrature formulas with $\frac{1}{4}, \frac{1}{4}$ and $\frac{1}{2}$ weight factors respectively, then we will have
$\int_{x_{n}}^{x} f^{\prime}(t) d t=\frac{x-x_{n}}{4} f^{\prime}\left(\frac{x_{n}+x}{2}\right)+\frac{x-x_{n}}{8}\left[f^{\prime}\left(x_{n}\right)+f^{\prime}(x)\right]+\frac{x-x_{n}}{12}\left[f^{\prime}\left(x_{n}\right)+4 f^{\prime}\left(\frac{x_{n}+x}{2}\right)+f^{\prime}(x)\right]$.
Since $f(x)=0$, from (2.1) and (2.4) we obtain following fixed point formulation.

$$
x=x_{n}-\frac{24 f\left(x_{n}\right)}{5 f^{\prime}\left(x_{n}\right)+14 f^{\prime}\left(\frac{x_{n}+x}{2}\right)+5 f^{\prime}(x)}
$$

Same as algorithm 2. with selecting the Halley method as a predictor we will have following algorithm
Algorithm 4 For a given x_{0}, compute the approximate solution x_{n+1} by the iterative scheme.

$$
\begin{gathered}
y_{n}=x_{n}-\frac{2 f\left(x_{n}\right) f^{\prime}\left(x_{n}\right)}{2\left(f^{\prime}\left(x_{n}\right)\right)^{2}-f\left(x_{n}\right) f^{\prime \prime}\left(x_{n}\right)}, \\
x_{n+1}=x_{n}-\frac{24 f\left(x_{n}\right)}{5 f^{\prime}\left(x_{n}\right)+14 f^{\prime}\left(\frac{x_{n}+y_{n}}{2}\right)+5 f^{\prime}\left(y_{n}\right)} .
\end{gathered}
$$

3 Convergence analysis

In this section, we consider the convergence of Algorithm 3. In similar way, one can prove the convergence of other two step algorithms.

Theorem 5 Let $r \in I$ be a sample zero of sufficiently differentiable function $f: I \subseteq R \rightarrow R$ for an open interval I. If x_{0} is sufficiently close to r, then the two step method defined by Algorithm 3 has quadratic convergence and it's asymptotic convergence is $\frac{f^{(2)}(r)}{6 f^{\prime}(r)}$.
Proof. Consider to

$$
\begin{array}{r}
y_{n}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}, \\
x_{n+1}=x_{n}-\frac{3 f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)+f^{\prime}\left(\frac{x_{n}+y_{n}}{2}\right)+f^{\prime}\left(y_{n}\right)} . \tag{6}
\end{array}
$$

Let r be a simple zero of f. Since f is sufficiently differentiable, by expanding $f\left(x_{n}\right)$ and $f^{\prime}\left(x_{n}\right)$ about r, we get

$$
f\left(x_{n}\right)=f(r)+\left(x_{n}-r\right) f^{\prime}(r)+\frac{\left(x_{n}-r\right)^{2}}{2!} f^{(2)}(r)+\frac{\left(x_{n}-r\right)^{3}}{3!} f^{(3)}(r) \frac{\left(x_{n}-r\right)^{4}}{4!} f^{(4)}(r)+\ldots
$$

then

$$
\begin{equation*}
f\left(x_{n}\right)=f^{\prime}(r)\left[e_{n}+c_{2} e_{n}^{2}+c_{3} e_{n}^{3}+c_{4} e_{n}^{4}+\ldots\right], \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
f^{\prime}\left(x_{n}\right)=f^{\prime}(r)\left[1+2 c_{2} e_{n}+3 c_{3} e_{n}^{2}+4 c_{4} e_{n}^{3}+5 c_{5} e_{n}^{4}+\ldots\right] \tag{8}
\end{equation*}
$$

where $c_{k}=\frac{1}{k!} \frac{f^{(k)}(r)}{f^{\prime}(r)}, k=1,2,3, \ldots$ and $e_{n}=x_{n}-r$.
Now, from (3.7) and (3.8), we have

$$
\begin{equation*}
\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=e_{n}-c_{2} e_{n}^{2}+2\left(c_{2}^{2}-c_{3}\right) e_{n}^{3}+\left(-7 c_{2} c_{3}+4 c_{2}^{3}+3 c_{4}\right) e_{n}^{4}+\ldots \tag{9}
\end{equation*}
$$

From (3.5) and (3.9), we get

$$
\begin{equation*}
y_{n}=r+c_{2} e_{n}^{2}+2\left(c_{3}-c_{2}^{2}\right) e_{n}^{3}+\left(-7 c_{2} c_{3}+4 c_{2}^{3}+3 c_{4}\right) e_{n}^{4}+\ldots \tag{10}
\end{equation*}
$$

From (3.10), we get

$$
f\left(y_{n}\right)=f^{\prime}(r)\left[\left(y_{n}-r\right)+c_{2}\left(y_{n}-r\right)^{2}+c_{3}\left(y_{n}-r\right)^{3}+c_{4}\left(y_{n}-r\right)^{4}+\ldots\right]
$$

and

$$
\begin{aligned}
f^{\prime}\left(y_{n}\right)= & f^{\prime}(r)\left[1+2 c_{2}\left(y_{n}-r\right)+3 c_{3}\left(y_{n}-r\right)^{2}+4 c_{4}\left(y_{n}-r\right)^{3}+5 c_{5}\left(y_{n}-r\right)^{4}+\ldots\right] \\
& =f^{\prime}(r)\left[1+2 c_{2}^{2} e_{n}^{2}+4\left(c_{2} c_{3}-c_{2}^{3}\right) e_{n}^{3}+\left(-11 c_{2}^{2} c_{3}+8 c_{2}^{4}+6 c_{2} c_{4}\right) e_{n}^{4}+\ldots\right] .
\end{aligned}
$$

Expanding $f^{\prime}\left(\frac{x_{n}+y_{n}}{2}\right)$ about r, we get

$$
\begin{array}{r}
f^{\prime}\left(\frac{x_{n}+y_{n}}{2}\right)=f^{\prime}(r)\left[1+2 c_{2}\left(\frac{x_{n}+y_{n}}{2}-r\right)+3 c_{3}\left(\frac{x_{n}+y_{n}}{2}-r\right)^{3}+4 c_{4}\left(\frac{x_{n}+y_{n}}{2}-r\right)^{4}+\ldots\right] \\
=f^{\prime}(r)\left[1+2 c_{2} e_{n}+\left(2 c_{2}^{2}+\frac{3}{4} c_{3}+\frac{1}{2} c_{4}\right) e_{n}^{2}+\left(4 c_{2} c_{3}-4 c_{2}^{3}\right) e_{n}^{3}\right. \\
\left.+\left(\frac{-61}{4} c_{2}^{2} c_{3}+8 c_{2}^{4}+6 c_{2} c_{4}\right) e_{n}^{4}+\ldots\right] .
\end{array}
$$

Then

$$
\begin{aligned}
& f^{\prime}\left(x_{n}\right)+f^{\prime}\left(y_{n}\right)+f^{\prime}\left(\frac{x_{n}+y_{n}}{2}\right)=3 f^{\prime}(r)\left[1+\frac{4}{3} c_{2} e_{n}+\frac{1}{3}\left(4 c_{2}^{2}+\frac{15}{4} c_{3}+\frac{1}{2} c_{4}\right) e_{n}^{2}\right. \\
&\left.+\frac{1}{3}\left(4 c_{4}+8 c_{2} c_{3}-8 c_{2}^{3}\right) e_{n}^{3}+\frac{1}{3}\left(\frac{-97}{4} c_{2} c_{3}+5 c_{5}+16 c_{2}^{4}+12 c_{2} c_{4}\right) e_{n}^{4}+\ldots\right]
\end{aligned}
$$

From (3.6), $e_{n+1}=x_{n+1}-r$ and $e_{n}=x_{n}-r$

$$
e_{n+1}=e_{n}-\frac{3 f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)+f^{\prime}\left(\frac{x_{n}+y_{n}}{2}\right)+f^{\prime}\left(y_{n}\right)}
$$

Then we will have

$$
\begin{aligned}
& e_{n+1}=e_{n}-\left[e_{n}+c_{2} e_{n}^{2}+c_{3} e_{n}^{3}+c_{4} e_{n}^{4}+\ldots\right]\left[1-\left(\frac{4}{3} c_{2} e_{n}+\frac{1}{3}\left(4 c_{2}^{2}+\frac{15}{4} c_{3}+\frac{1}{2} c_{4}\right) e_{n}^{2}\right.\right. \\
& \left.\left.+\frac{1}{3}\left(4 c_{4}+8 c_{2} c_{3}-8 c_{2}^{2}\right) e_{n}^{3}+\ldots\right)+\left(\frac{4}{3} c_{2} e_{n}+\frac{1}{3}\left(4 c_{2}^{2}+\frac{15}{4} c_{3}+\frac{1}{2} c_{4}\right) e_{n}^{2}+\ldots\right)^{2}+\ldots\right]
\end{aligned}
$$

Finally

$$
\begin{array}{r}
e_{n+1}=e_{n}-\left(e_{n}+\left(c_{2}-\frac{4}{3} c_{2}\right) e_{n}^{2}+\left(-\frac{4}{3} c_{2}^{2}-\frac{5}{4} c_{3}-\frac{1}{6} c_{4}-\frac{4}{3} c_{2}^{2}+c_{3}\right) e_{n}^{3}+\ldots\right. \\
e_{n+1}=\frac{c_{2}}{3} e_{n}^{2}+\left(\frac{8 c_{2}^{2}}{3}+\frac{c_{3}}{4}+\frac{c_{4}}{6}\right) e_{n}^{3}+\ldots \\
\lim _{n \rightarrow \infty} \frac{e_{n+1}}{e_{n}^{2}}=\frac{c_{2}}{3}=\frac{f^{(2)}(r)}{6 f^{\prime}(r)}
\end{array}
$$

Since asymptotic convergence of Newton method is c_{2} and from Theorem 5, we result that the convergence rate of Algorithm 3 is better than the Newton method.

Figure 1: The number of iteration between the Newton method and Algorithm 3. with common starting value $x_{0}=4$

4 Numerical experiments

In all of our examples, the maximum number of iteration is $n=200$ and our examples are tested with precision $\varepsilon=1 \times 10^{-15}$. The following stopping criteria is used for computer programs:
(i) $\left|f\left(x_{n+1}\right)\right|<\varepsilon$. (ii) $\left|x_{n+1}-x_{n}\right|<\varepsilon$.

Table 1 presents iteration number comparison of algorithms 2, 3 and 4 with the Newton method in given precision. In Table 2, the CPU time (per second) of our algorithms and Newton method are compared . All numerical results show here, are obtained on a pentium IV processor at 3.00 GHz .
Fig. 1 presents convergence comparison between the Newton method and Algorithm 3 for $f(x)=e^{x^{2}+7 x-30}-$ 1 from starting value $x_{0}=4$.

Table 1: Examples and comparison between algorithms.

Equation	x_{0}	Newton	Algorithm 2	Algorithm 3	Algorithm 4	x_{n}
$e^{x^{2}+7 x-30}-1=0$	4	20	9	13	10	3.000000000000000
$x^{3}-10=0$	1.5	7	4	5	4	2.154434690031884
$x^{2}-e^{x}-3 x+2=0$	2	6	4	4	4	-1.207647827130919
$\sin ^{2}(x)-x^{2}+1=0$	-1	7	4	5	4	-1.404491648215341
$x^{10}-1=0$	1.5	10	5	7	6	1.000000000000000
$11 x^{11}-1=0$	0.7	8	4	6	4	0.804133097503664
$\sin \left(\frac{1}{x}\right)-x=0$	2	6	4	4	4	0.897539461280487

5 Conclusion

In Theorem 1. we proved that asymptotic convergence of algorithm 3. is less than the Newton method. Then this two step method is better than the Newton method. One can prove that other two-step algorithms proposed here are better than the Newton method too. In Table 1. we can see accuracy and efficiency of our two-step methods when compared with the Newton method.

Table 2: The CPU time (per second) of algorithms.

Equation	Newton	Algorithm 2	Algorithm 3	Algorithm 4
$e^{x^{2}+7 x-30}-1=0$	0.171875	0.078125	0.109375	0.093750
$x^{3}-10=0$	0.078125	0.031250	0.031250	0.046875
$x^{2}-e^{x}-3 x+2=0$	0.046875	0.031250	0.031250	0.031250
$\sin ^{2}(x)-x^{2}+1=0$	0.046875	0.031250	0.046875	0.031250
$x^{10}-1=0$	0.078125	0.031250	0.046875	0.031250
$11 x^{11}-1=0$	0.062500	0.031250	0.031250	0.031250
$\sin \left(\frac{1}{x}\right)-x=0$	0.046875	0.031250	0.031250	0.031250

References

[1] K.E. Atkinson: An introduction to numerical analysis. 2nd ed., John Wiley \& Sons, New York (1987)
[2] M. Aslam Noor:New iterative methods for nonlinear equations.J.Appl.Math.Comput.Inpress
[3] M. Aslam Noor, Khalida Inayat Noor: Predictor-corrector Halley method for nonlinear equations . J. Appl. Math. Comput.188: 1587-1591 (2007)
[4] M. Aslam Noor, F. Ahmad: On a predictor-corrector method for solving nonlinear equations. J. Appl. Math. Comput. 183 :128-133(2006)
[5] C.T. Kelly: Iterative Methods for Linear and Nonlinear Equations. SIAM, Philadelphia, PA (1995)
[6] J.F. Traub: Iterative Methods for Solution of Equations. Prentice-Hall, Englewood Cliffs, NJ(1964)

[^0]: * Corresponding author. E-mail address: soheili @ math.usb.ac.ir

