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Abstract

Moving mesh partial differential equations have been widely used in the last decade for solving

differential equations exhibiting large solution variations such as shock waves and boundary

layers.

In this paper, we have applied a dynamic adaptive method for solving time-dependent differential

equations. The mesh velocities are governed by an equation in which a relaxation time is employed to

move nodes in such a way that they remain concentrated in regions of rapid variation of the solution.

A numerical example involving a blow-up problem shows the advantage of using a variable

relaxation time over a fixed one.

r 2006 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Adaptive mesh methods have been widely used for approximating partial differential
equations that involve large solution variations. Several moving mesh approaches have
been derived and many people have discussed the significant improvements in accuracy
and efficiency that can be achieved with respect to fixed mesh methods [1–4]. For the type
of dynamical moving mesh method considered here, another partial differential equation
governing the mesh evolution is solved alongside the original [5,6].
0.00 r 2006 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
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An ideal class of problems for examining the behaviour of moving mesh methods is that
of blow-up of temperature in a reacting medium. One of the simplest equations in this class
will form the basis of our numerical simulations [7–9]:

ut ¼ uxx þ f ðuÞ,

uð0; tÞ ¼ uð1; tÞ ¼ 0,

uð0;xÞ ¼ u0ðxÞ. ð1Þ

If u0ðxÞ is sufficiently large, positive and has a single non-degenerate maximum, then there
is a blow-up time To1 and a unique blow-up point x� such that

uðx�; tÞ�!1 as t�!T

and

uðx; tÞ�!uðx;TÞo1 if xax�.

The paper is organized as follows: In Section 2, we review briefly moving mesh methods in
which the mesh equations incorporate a relaxation time t. Blow-up problems are
introduced in Section 3 and in Section 4, we improve the moving mesh by describing an
extension to the method which uses a variable relaxation time. The numerical experiments
in Section 5 illustrate the advantages of this new method.

2. Moving mesh methods

Let x and x denote the physical and computational coordinates, respectively,
both of which are assumed to be in ½0; 1�. Define a one-to-one coordinate transformation
by

x ¼ xðx; tÞ; x 2 ½0; 1�,

xð0; tÞ ¼ 0; xð1; tÞ ¼ 1.

The computational coordinate is discretized on a uniform mesh given by

xi ¼
i

N
; i ¼ 0; 1; . . . ;N, (2)

where N is a certain positive integer and the corresponding non-uniform mesh in x is
denoted by

0 ¼ x0ox1ðtÞox2ðtÞo � � �oxN�1ðtÞoxN ¼ 1.

For a chosen monitor function Mðx; tÞ40, the moving mesh xiðtÞ satisfies the following
equidistribution principle (EP) for all values of time t. The equidistribution principle is one
of the most important concepts in the development of moving mesh methods [1]:Z xiðtÞ

xi�1ðtÞ

Mðx; tÞdx ¼
1

N

Z 1

0

Mðx; tÞdx ¼
yðtÞ
N

or Z xiðtÞ

0

Mðx; tÞdx :¼
i

N
yðtÞ ¼ xiyðtÞ. (3)
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Differentiating the above equation yields an equivalent differential form

q
qx

M
qx

qx

� �
ðx; tÞ ¼ 0, (4)

where xð0; tÞ ¼ 0 and xð1; tÞ ¼ 1:
A moving mesh equation can be derived by taking the mesh to satisfy the above EP

equation at a later time tþ t instead of at t, since yðtÞ has been omitted in the above
differential form of the EP. In this case, the mesh should satisfy

q
qx

Mðxðx; tþ tÞ; tþ tÞ
q
qx

xðx; tþ tÞ
� �

¼ 0,

where the parameter t is called a relaxation time and also has the effect of introducing
temporal smoothing. By expanding the terms ðq=qxÞxðx; tþ tÞ and Mðxðx; tþ tÞ; tþ tÞ in
Taylor series and dropping certain higher order terms, various MMPDEs can be obtained
[1]. In this paper, we will employ two moving mesh methods labelled MMPDE4 and
MMPDE6 below

t
q
qx

M
q _x
qx

� �
¼ �

q
qx

M
qx

qx

� �
; ðMMPDE4Þ

t
q2 _x

qx2
¼ �

q
qx

M
qx

qx

� �
; ðMMPDE6Þ.

In practice, it is important to smooth the monitor function in space as well [10]. To this
end, the monitor function values Mi appearing in the discretized form of the MMPDEs
above are replaced with

~Mi ¼

Piþip
j¼i�ip ðMjÞ

2
ðg=1þ gÞjj�ijPiþip

j¼i�ip ðg=1þ gÞjj�ij

 !1=2

, (5)

where we take g ¼ 2 and ip ¼ 4.

3. Blow-up problems

In this paper, we consider the semi-linear parabolic differential equation

ut ¼ uxx þ up, (6)

where p41 and 0pxp1, having boundary conditions uð0; tÞ ¼ uð1; tÞ ¼ 0 and initial
condition uð0;xÞ ¼ u0ðxÞ. If the initial value u0ðxÞ is sufficiently large and has a single non-
degenerate maximum then there exists a blow-up point x� [11]. We restrict ourselves to the
case p ¼ 5 and, following [7], we take u0ðxÞ ¼ 20 sinðpxÞ.

4. Variable relaxation time

In most other work on moving mesh methods, the relaxation time t is taken to be
constant, or at best the numerical results have been presented with a few different values
for t [9,2]. Here, we take t as a function of time, or of the solution. In practice, we have had
to fix t within a very small neighborhood of the blow-up point owing to the breakdown of
the solution in the blow-up problem we are investigating.
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One form of the relaxation time, motivated by the analysis of chemotactic blow-up
problems presented in [8], is

t1ðtÞ ¼
jT � tja; tot�;

jT � t�ja otherwise:

(
(7)

where a ¼ 1, t� ¼ T � 10�6, and T is an estimate of the blow-up time. This is a natural
choice since more temporal smoothing (i.e., a smaller value of t) is required in regions
where the solution blows up. However, the relaxation time in Eq. (7) is applicable only to
problems of the form (6) and hence is not useful for a general moving mesh solver. On the
other hand, the dependence of the monitor function for blow-up problems is shown in [8]
to be of the form jT � tj�a, which suggests the alternate choice

t2ðtÞ ¼
C

maxx ðMðx; tÞÞ
, (8)

where C is some constant. This second form of the relaxation time is more general because
it is based on the solution through value of the monitor function. Since the monitor
function takes on large values in regions where the mesh must be refined, t is necessarily
smaller in these regions as expected. Both forms of the relaxation time, t1ðtÞ and t2ðtÞ will
be employed in our numerical experiments.

5. Numerical experiments

As a first example, consider solving the mesh equation only for the given function

uðx; tÞ ¼ e�p
2t sinðpxÞ; 0pxp1.

This function was used in [12] to study the stability of various mesh equations, and as a
numerical example in [1]. Since uxðx; tÞ ! 0 in the limit as t!1, then for the typical arc-
length monitor function M1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

x

p
, we have M1ðx; tÞ ! 1 as t!þ1 and therefore

the equidistributed mesh should tend to a uniform mesh in space. Fig. 1 shows the mesh
trajectories for the above example using MMPDE6 and a uniform initial mesh. This figure
demonstrates that the mesh trajectories depend quite strongly on the value of the
relaxation time t, and that there is a limiting value t0 such that for tot0 the mesh
trajectories are relatively unchanged.
For the blow-up problem (6), if we apply moving mesh method to solve with an

underlying scaling invariance, the MMPDE4 or MMPDE6 should be invariant
under a scaling formula [9]. That means, in the moving mesh equation, the relaxation
parameter t and the monitor function M can indeed be suitably chosen to meet this
requirement. Budd et al. in [9] described a scaling formulae, which if t is taken constant
and M2ðuÞ ¼ up�1, then MMPDE4 and MMPDE6 can be made invariant under that
scaling relations. Here, we also consider a new monitor function M3ðuÞ ¼ uðp�1Þ=2 and our
numerical experiment shows the problem be integrated further and the solution has a good
accuracy.
Now, consider the blow-up problem (6) with p ¼ 5 and the boundary conditions

uð0; tÞ ¼ uð1; tÞ ¼ 0 and the initial condition uðx; 0Þ ¼ 20 sinðpxÞ: This differential equation
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Fig. 1. Mesh trajectories with different values of t obtained with MMPDE6. The monitor function is the arc-

length function.
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is transformed into the computational domain to obtain

_u�
ux

xx
_x ¼

1

xx

ux

xx

� �
x
þ u5. (9)

After discretizing in space only, the resulting ODE system is solved using the Matlab
routine ‘‘ode15s’’. We use tolerances rtol ¼ atol ¼ 10�8, and implement a dynamically
changing relaxation time through the use of option ‘‘OutputFcn’’ set with the ‘‘odeset’’
command in Matlab. The discrete form of Eq. (9) is coupled with discrete moving mesh
equations (MMPDE4 or MMPDE6), and the smoothed monitor function ~M is used.

Three different monitor functions are used, including the arclength monitor

M1ðx; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

x

q
,

the monitor function derived analytically by [2]

M2ðx; tÞ ¼ up�1,
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and the new monitor function

M3ðx; tÞ ¼ uðp�1Þ=2.

Numerical results are presented with the two different relaxation times t1ðtÞ and t2ðtÞ, as
well as a fixed value of t ¼ 10�5.
The computed CPU time and blow-up time are displayed in Fig. 2 for different values of

N. To obtain an estimate of the actual blow-up time T appearing in Eq. (7) for p ¼ 5, we
performed a highly resolved calculation to obtain T � 1:56259� 10�6. We can conclude
that M3ðx; tÞ ¼ uðp�1Þ=2 yields a better approximation of the solution blow-up. For the arc-
length monitor function with t1ðtÞ, the blow-up time is significantly less accurate than the
other cases. Except for the arc-length monitor function with t2ðtÞ, we can say that there is
an approximately linear increase in CPU time with number of mesh points N.
The legend for the second plot of Figs. 2 and 3 are the same as the first plot of Fig. 2.

Fig. 3 indicates that the value of umax computed with the new monitor function M3ðx; tÞ
and relaxation time t1ðtÞ is significantly bigger than for the other monitor functions, which
can be interpreted as having higher accuracy, since the problem can be integrated further
into the blow-up. Notice also that umax is approximately constant as N is increased.
The computations also show that both the blow-up time and blow-up point be effected

by the initial conditions. By the scaling transformation [7,13], we expect the solution to
have a symmetric peck centered on x�. Finally, we present a plot of u=umax as a function of
x in Fig. 4. We have plotted the results at time slices when umax ¼ 10k, for k ¼ 8; 9; . . . ; 15.
In this figure, MMPDE6 is used for the mesh equation and the monitor function is
M3ðx; tÞ. This figure shows that the self-similar behaviour of the blow-up solution about
the point x� ¼ 1

2
is captured quite accurately; otherwise, the resolution of the adaptive mesh

would degrade and the solution would degenerate to only a few points within the blow-up
region.
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Fig. 2. Variation of the CPU time and blow-up times with the number of mesh points N, choosing different

monitor functions Mðx; tÞ and relaxation times t.
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Fig. 3. The value maxx uðx; tÞ4 when t tends to the blow-up time. Results are reported for number of mesh points

N, and choosing the same monitor functions Mðx; tÞ and relaxation times t as labelled in Fig. 2.
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6. Conclusion

In this paper, we have considered one class of blow-up problem and applied the moving
mesh method with variable relaxation time. We have applied two forms of the relaxation
times Eqs. (7) and (8), the latter of which is suitable for general purpose simulations. Also,
a new monitor function M3ðx; tÞ ¼ uðp�1Þ=2 was defined and the results compared with the
arc-length and M2ðx; tÞ ¼ up�1 monitor functions. In our numerical experiments with the
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new monitor function, preserve scaling invariance property and a blow-up problem may be
integrated further than otherwise possible.
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