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Abstract

Corrected fundamental solution (CFS) is a meshless method for homogeneous elliptic problems that corrects the density
function in a simple layer potential integral. In the CFS method, we apply a new expansion of density function with var-
iable coefficients which are approximated in a finite subspace of a complete space. These coefficients are determined by the
moving least square method (MLS), using a suitable weight function that its support is in the real and artificial domain.
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1. Introduction

The method of fundamental solution (MFS) is a numerical method for homogeneous elliptic problems that
needs knowing and having related fundamental solutions [6,3,8]. It is a boundary meshless method. This
method originally presented by Kupradze and Aleksidze [6]. First, simple and double layer integrals is approx-
imated on artificial boundary and then by expanding its density function in a finite subspace of a complete
basis, one have an approximation solution depend on the related problem. Unknown coefficients of the den-
sity function must be found by collocating the approximate solution on the boundary. By selecting some
boundary points equal to the coefficients, one can find the coefficients of the density function using the collo-
cation method on the real boundary. Instead of the collocation method, many boundary points may be cho-
sen, more than the unknown density coefficients and so, by using the least square method the unknown density
coefficients can be found.

In 1968, Shepard [9] presented the moving least square method (MLS) in a simple and low order form enti-
tled Shepard Interpolant. Then in 1981, Lancaster and Salkauskas [7] generalized the MLS method and
extended it to higher order [4].
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In this paper, we change the density function expansion or series, and correcting it similar to the MLS
approximation together with the variable coefficients. These expansions need a finite subspace of a complete
basis such as polynomial and trigonometric functions.

The rest of this paper is structured as follows: Section 2 introduces the MFS. Section 3 is a review on the
MLS method and in Section 4, we explained our method, the CFS. In Section 5, we presented a 2–D numerical
example. Section 6 introduces a typical adaptivity. Section 7 gives our concluding remarks.

2. Method of fundamental solution

Fundamental solution of a problem is potential of a point source charge. In the MFS, one knows FS pre-
viously. This method is a boundary meshless method and needs an artificial domain, which is greater than real
domain.

This method is as follows:
Let X � Rd , d = 1,2 or 3 be an open domain and oX = C be its boundary.
Consider the following homogeneous elliptic boundary value problem:
LuðxÞ ¼ 0; x 2 X;

uðxÞ ¼ gðxÞ; x 2 C.
ð1Þ
Fundamental solution of the model problem (1) for a fixed point y 2 X is the solution of
LHðx; yÞ ¼ dðx; yÞ; x 2 X; ð2Þ

where d is the Dirac delta distribution that shows point source charge at the fixed point y and the fundamental
solution H(x,y) means amount of potential at the point x with respect to the point charge at y. In this method,
we suppose that the FS of the problem are known.

Let r(y) be a density or a correction function and f/jðyÞg
n
j¼1 be a finite subspace of a complete space. Then,

the density function is approximated in the following form:
rðyÞ ¼
Xn

j¼1

cj/jðyÞ; y 2 X. ð3Þ
The solution of the problem (1) in a simple layer potential integral lies in the following form:
~uðxÞ ¼
Z
bC rðyÞHðx; yÞdsðyÞ; x 2 X. ð4Þ
For preventing the singularity points of the fundamental solution H(x,y), and having a better condition
number for immediate linear systems, this boundary integral is defined on an artificial boundary. So, instead
of the real domain X and its boundary C, a greater boundary bX where X � bX and bC ¼ obX is applied. There-
fore x and y can never be equal (singularity of the fundamental solution is the case when x = y) to each other
and the boundary integral passes over its singularity. Consider quadrature points fykg

M
k¼1 on the artificial

boundary bC (or in the region bX n X). Using a suitable quadrature rule, the boundary integral (4) can be
approximated in the form
~uðxÞ ¼
XM

k¼1

rðykÞHðx; ykÞwk; x 2 X; ð5Þ
where, wk is the quadrature weight. Then, by substituting the density function series (3) in (5), the approximate
solution
~uðxÞ ¼
Xn

j¼1

cjwjðxÞ; x 2 X ð6Þ
as a linear combination of a basis functions
wjðxÞ ¼
XM

k¼1

/jðykÞHðx; ykÞwk; j ¼ 1; 2; . . . ; n; x 2 X ð7Þ
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constructs an approximation basis for the model problem (1) (see [5]). Therefore, ~u 2 spanðfwjðxÞg
n
j¼1Þ. Now,

by applying the boundary conditions of the problem (1), the constant coefficients cj, j = 1,2, . . . ,n, can be ob-
tained by the weighted residual methods such as collocation or least square method. By selecting n suitable
points fxign

i¼1 � C on the real boundary and solving the following system
dxið~uÞ ¼ dxiðgÞ; i ¼ 1; 2; . . . ; n; ð8Þ
the coefficients fcign
i¼1, can be found. In (8) which is distributional form of the collocation method, weight is

the Dirac delta generalized function and pushes to have an exact solution for the selected boundary points.
Unique solution of this system depends on the invertibility of the coefficient matrix, which is not symmetric
because, wj(xi) 5 wi(xj) for the i, j = 1,2, . . . ,n. Linear independency of the base functions fwjg

n
j¼1 is an open

problem. As another method, the least square method can be used to calculate these coefficients. Let the points
fxigN

i¼1 be selected on the boundary C, such that N� n. The following functional is
Jðc1; c2; . . . ; cnÞ ¼
XN

k¼1

ðgðxkÞ � ~uðxkÞÞ2; ð9Þ
which is convex and non-negative. By minimizing this functional with respect to the coefficients ci, for
i = 1,2, . . . ,n the following system will be found
oJ=oci ¼
XN

k¼1

wiðxkÞðgðxkÞ � ~uðxkÞÞ ¼ 0; i ¼ 1; 2; . . . ; n. ð10Þ
Suppose
~bi ¼
XN

k¼1

wiðxkÞgðxkÞ for i ¼ 1; 2; . . . ; n; ð11Þ

~aij ¼
XN

k¼1

wiðxkÞwjðxkÞ for i; j ¼ 1; 2; . . . ; n; ð12Þ
then the system (10) can be rewritten in the following simple form:
Xn

j¼1

~aijcj ¼ ~bi; i ¼ 1; 2; . . . ; n. ð13Þ
Now, if we set
A ¼ ð~aijÞni;j¼1;

b ¼ ½~b1; ~b2; . . . ; ~bn�T;
c ¼ ½c1; c2; . . . ; cn�T;

ð14Þ
then, we have a linear system
Ac ¼ b. ð15Þ

For the least square method, the coefficient matrix A is invertible because it is symmetric and positive def-

inite. After finding the coefficients cj for j = 1,2, . . . ,n, approximate solution (6) of the model problem (1) are
known. This approximate solution is not a typical interpolation but it is an approximation of the model
problem.

3. Moving least square method (MLS)

Let u : X! R, where X � Rd ; d ¼ 1; 2 or 3 be an unknown continuous function that we try to approxi-
mate it by having some data point. Given xj 2 X, j = 1,2, . . . ,n, an irregular distribution of nodes in the
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domain and uj = u(xj), j = 1,2, . . . ,n. Let P(x) be a given m-dimensional base, for example, in 1-D case, let
PT(x) = {1,x, . . . ,xm�1}. Define local approximation
~uyðxÞ ¼ PTðxÞaðyÞ; ð16Þ

where y 2 X is fixed and the coefficient vector a(y) = [a1(y),a2(y), . . . ,am(y)]T should be found. Let wi(x),
i = 1,2, . . . ,n be a suitable weight. By minimizing the weighted discrete square of the local error functional
JðaðyÞÞ ¼ kuð�Þ � ~uyð�Þk2
w ¼

Xn

j¼1
wðy� xjÞðuj � ~uyðxjÞÞ2 ¼

Xn

j¼1
wðy� xjÞðuj � PTðxjÞaðyÞÞ2; ð17Þ
with respect to the coefficient vector a(y), we will have the following system:
AðyÞaðyÞ ¼ FðyÞU ; ð18Þ

where
AðyÞ ¼ BWðyÞBT;

FðyÞ ¼ BWðyÞ;
B ¼ fxi�1

j g; i ¼ 1; . . . ;m; j ¼ 1; . . . ; n;

WðyÞ ¼ diagðwðy� x1Þ; . . . ;wðy� xnÞÞ;
U ¼ ½uðx1Þ; uðx2Þ; . . . ; uðxnÞ�T.
Then the local approximation (16) becomes
~uyðxÞ ¼ UT
y ðxÞU ð19Þ
and the global approximation will be
~uðxÞ ¼ UTðxÞU ¼
Xn

j¼1

/jðxÞuj; ð20Þ
where the vector base function in the global form with components f/jðxÞg
n
j¼1 is
UTðxÞ ¼ PTðxÞA�1ðxÞFðxÞ. ð21Þ
4. Corrected fundamental solution (CFS)

Referring to the Section 3, for a fixed point y 2 X, let r(x,y) be a corrected density function emerged of the
MLS method and f/jðyÞg

n
j¼1 be a finite subspace of a complete space. Then, the density function can be

approximated in the following form:
rðx; yÞ ¼
Xn

j¼1

cjðxÞ/jðyÞ; x 2 X. ð22Þ
The solution of the problem (1) based on the single layer potential by this density function, becomes
~uðxÞ ¼
Z
bC rðx; yÞHðx; yÞdsðyÞ; x 2 X; ð23Þ
where bC is the artificial boundary and H(x,y) is the fundamental solution of related problem. The function
ũ(x) is the solution of the model problem (1) if the following conditions satisfy:
LcjðxÞ ¼ 0; x 2 X j ¼ 1; 2; . . . ; n. ð24Þ

If we get quadrature points fykg

M
k¼1 on the artificial boundary bC, by a suitable quadrature rule, the bound-

ary integral (23) can be approximated in the form
~uðxÞ ¼
XM

k¼1

rðx; ykÞHðx; ykÞwk; x 2 X; ð25Þ
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where, wk is the quadrature weight. The approximate solution of the model problem, based on its basis
becomes
~uðxÞ ¼
Xn

j¼1

cjðxÞwjðxÞ; x 2 X; ð26Þ
where the functions fwjg
n
j¼1 are defined in (7). The coefficient functions cj(x), j = 1,2, . . . ,n can be found by

the MLS method, by selecting the points fxkgN
k¼1 on the boundary C such that N� n and a weight func-

tion with smoothing degree more than order of the operator L. Then, the following functional will be
constructed:
Jðc1ðxÞ; . . . ; cnðxÞÞ ¼
XN

k¼1

wkðxÞðgðxkÞ � ~uxðxkÞÞ2; ð27Þ
which is a weighted discrete square L2ðXÞ-norm of local error and
~uxðyÞ ¼
Xn

j¼1

cjðxÞwjðyÞ; y 2 fxkgN
k¼1; x 2 X ð28Þ
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Fig. 1. Approximation for the CFS (down) and the MFS (up) under similar conditions.
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is the local approximation introduced in (16). By minimizing the functional J(c1(x), c2(x), . . . ,cn(x)) with re-
spect to the cj(x), j = 1,2, . . . ,n the following system will be found:
oJ=ociðxÞ ¼
XN

k¼1

wkðxÞwiðxkÞðgðxkÞ � ~uxðxkÞÞ ¼ 0; i ¼ 1; 2; . . . ; n. ð29Þ
Let
~biðxÞ ¼
XN

k¼1

wkðxÞwiðxkÞgðxkÞ; i ¼ 1; 2; . . . ; n; ð30Þ

~aijðxÞ ¼
XN

k¼1

wkðxÞwiðxkÞwjðxkÞ; i; j ¼ 1; 2; . . . ; n ð31Þ
then the system (29) can be rewritten by the following simple form:
Xn

j¼1

~aijðxÞcjðxÞ ¼ ~biðxÞ; i ¼ 1; 2; . . . ; n. ð32Þ
Now, assume
AðxÞ ¼ ð~aijðxÞÞni;j¼1;

bðxÞ ¼ ½~b1ðxÞ; ~b2ðxÞ; . . . ; ~bnðxÞ�T;
cðxÞ ¼ ½c1ðxÞ; c2ðxÞ; . . . ; cnðxÞ�T

ð33Þ
then, the compact form of the system (32), is in the following form:
AðxÞcðxÞ ¼ bðxÞ. ð34Þ
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Fig. 2. Linear error of the Fig. 1 in the x-direction when y = 0.1 and for the CFS (down) and the MFS (up).
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Support of each weight function is a subdomain in X which the weight function is nonnegative and its clo-
sure is compact. Here, center of the weights are the boundary points fxkgN

k¼1 � C. So, one part of the supports
are in the real domain and the other part are in the artificial domain. These supports are overlapping such that
at least n number of the points fxkgN

k¼1 belong to each support. Furthermore, each arbitrary boundary point be
in the intersection of at least n number of these supports. After applying the operator L on the system (32),
and using the constraint (24), we will have a new system for the coefficients cj(x), j = 1,2, . . .n in the following
form:
Xn

j¼1

L~aijðxÞcjðxÞ ¼L~biðxÞ; i ¼ 1; 2; . . . ; n. ð35Þ
It is important to know that the smoothing degree of the weight functions must be more than the order of
derivative operator in L.

5. A numerical example

Let X ¼ ½0; 1� � ½0; 1� be closure of the real domain and bX ¼ ½�1:0; 2:0� � ½�1:0; 2:0� be closure of the arti-
ficial domain. The real and artificial domain are rectangular, and their boundary comprise of four lines.
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Fig. 3. Approximation for the CFS (down) and the MFS (up) under one condition.
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Here, our model problem is
Duðx; yÞ ¼ 0; ðx; yÞ 2 X;

uð0; yÞ ¼ uð1; yÞ ¼ uðx; 1Þ ¼ 0;

uðx; 0Þ ¼ sinðpxÞ; x 2 ½0; 1�;
ð36Þ
which is the Laplace problem and Dirichlet boundary conditions. The exact solution of this problem is
u(x,y) = sin(px)(cosh(py) � coth(p)sinh(py)), where ðx; yÞ 2 X. The FS of the Laplace operator, is
Hðx; y; n; gÞ ¼ �1

4p
lnððx� nÞ2 þ ðy � gÞ2Þ; ðx; yÞ 2 X; ð37Þ
which is independent of the boundary conditions and (n,g) 2 X is a fixed point. The density function for the
results shown in Fig. 1 is expanded in the finite subset of the polynomial {1,x,y}, for the results given in Fig. 3
is expanded in the higher order set {1,x,y,x2,xy,y2}.

The Gauss–Legendre rule is used for the numerical quadrature that applied for approximation of the
boundary integral (4) and (23) into the (5) and (25) respectively. Here, in the MFS, the density constants
be obtained by the least square method and in the CFS, the density coefficient functions are calculated by
the MLS method. The coefficients in the MFS and the CFS, be obtained on each side of the real domain
boundary. We consider 12 nodes with uniform distribution. In the CFS and the MLS method, the following
inverse square singular weight function be used:
wðx; y; n; gÞ ¼ 1=ððx� nÞ2 þ ðy � gÞ2Þ; ð38Þ

which have global support and is decreasing radially from its center. Figs. 1 and 3 show the graph of both the
MFS (up) and the CFS (down), when the density function approximation is of linear and quadratic order
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Fig. 4. Linear error of the Fig. 3 in x-direction for y = 0.1 and for the CFS (down) and the MFS (up).



M. Ghorbani, A.R. Soheili / Applied Mathematics and Computation 181 (2006) 175–184 183
respectively. Linear error ð~uðx; 0:1Þ � uðx; 0:1ÞÞ of both methods for y = 0.1 and x 2 [0,1] (Figs. 2 and 4),
shows the accuracy of the CFS with respect to the MFS.

6. Adaptivity

We can add another base function like fp‘g
ne
‘¼1, such as polynomial base over another base fwjg

n
j¼1 that was

introduced in (7), enrichment of the approximation (6) can be done. So, an alternative approximation becomes
~uðxÞ ¼
Xn

j¼1

cjwjðxÞ þ
Xne

‘¼1

d‘p‘ðxÞ; x 2 X. ð39Þ
It is important to note that the above approximation is a solution of the model problem (1), if
Lp‘ðxÞ ¼ 0; x 2 X; for ‘ ¼ 1; 2; . . . ; ne. ð40Þ

For example, if we want to enrich the bases of the model problem (36), a finite subset of the base fRz‘g‘¼0

can be appended to the approximation space fwjg
n
j¼1. Because, the real and imaginary part of an analytic func-

tion is harmonic and satisfies in the Laplace equation [2].

7. Concluding remarks

• Computational task of the CFS is more than the MFS. Because, the inverse of n · n matrix for each eval-
uation point must be calculated.

• Both the MFS and the CFS require neither domain nor boundary discretization. They are boundary mesh-
less methods (see [5]).

• Radial form of the MFS and the CFS is intensive to dimensionality of the problem and thus is very attrac-
tive to high-dimensional problems.

• The correction function in reproducing kernel particle method (RKPM) [1] can be considered for any
change in the density function.

• Numerical quadrature error of the boundary integral must be balanced with another error sources.
• Relation between the real domain and the artificial domain and type of the artificial boundary have not any

strict reply. For example, these two questions have not any strict reply: how much the artificial boundary
should be greater than the real domain and what is its type?

• The MFS and CFS are applicable for homogeneous and elliptic problems when the fundamental solution
are known. Otherwise, these methods cannot be applied.

• The approximate basis functions wj, j = 1,2, . . . ,n have global support. So, local support form of it can be
searched and, the MFS and the CFS can be localized.

• If one can expand the FS of a problem by a complete basis, computational effort will be more simple and
efficient.

• Computational cost of the MFS and CFS is relatively inexpensive with respect to domain or mesh methods.
• The solution can be extended outside of the real domain and in the artificial domain.
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