
978-1-4244-1674-5/08 /$25.00 ©2008 IEEE CIS 2008

A Sinusoid Size Ring Structure Quantum
Evolutionary Algorithm

M.-H. Tayarani-N.
Bahar Institute of Higher Education

Mashhad, Iran
tayarani@ieee.org

M.-R. Akbarzadeh-T.
Ferdowsi University of Mashhad

Mashhad, Iran
akbarzadeh@ieee.org

Abstract — This paper proposes a dynamic ring architecture
of interaction among members of population in a Quantum
Evolutionary Algorithms (QEA). The ring is allowed to
expand/collapse based on a sinusoidal population size and partial
re-initialization of new members in the population. The study
shows that the ring structure can be an efficient architecture for
an effective Exploration/Exploitation tradeoff, and the partial re-
initialization of the proposed algorithm can improve the diversity
of the algorithm. The proposed approach is tested on Knapsack
Problem, Trap Problem as well as 14 numerical optimization
functions. Experimental results show that the proposed Structure
consistently improves the performance of QEA.

Keywords—Quantum Evolutionary Algorithms, Ring
structure population, dynamic structure.

I. INTRODUCTION
One of the most important parameters of Evolutionary

algorithms is the population size. A large population size has a
better search performance but more computational complexity,
while small population size has a better computational
complexity with less searching efficiency. Reference [1]
studies the optimal population size of genetic algorithms based
on a defined partial function. An adaptive population size for a
distributed genetic algorithm is proposed in [2] for video
segmentation. Reference [3] proposes a variable population
size for genetic algorithms with periodic reinitialization that
follows a saw-tooth scheme. In [4] a competitive frequency-
based methodology is proposed to explore the least proper
population size for GA. Reference [5] presents the mathematics
formula for researching the optimal population size of
Partheno-Genetic Algorithm. In [6], a novel dynamic
population size is proposed. In this approach the initial
population size is initialized randomly, and during the
evolution, the size of population is tuned by a mechanism
called “suppression“. A new scheme for adjusting the
population size in genetic algorithm is proposed in [7] that
provides a balance between exploration and exploitation. This
new schema is used for cell placement in the chip design
process. A variable population size and a hybridization of PSO
with GA are proposed in [8] which can improve the
performance of GA and PSO.

Variable population size schema is also used in Particle
Swarm Optimization. Considering the small effect of numbers
of particles on PSO performance, [9] proposes a method which
finds the best population size for PSO to make a tradeoff
between optimization precision and optimization speed.

One of the major parameters of evolutionary algorithms is
the structure of the population. A graph based evolutionary
algorithm is proposed in [10] in which the individuals are
located on the nodes of a graph structured population. The
effect of variable population structure on Particle Swarm
Optimization is investigated in [11]. Random graphs and their
performance on several criteria are compared in their work.

Reinitialization operator is another approach for improving
the diversity and hence performance of the evolutionary
algorithms. In order to maintain the diversity of population,
[12] proposes a genetic algorithm called Diversity Control GA
which uses a reinitialization schema. For optimization in
dynamic environments, [13] proposes two strategies for
population re-initialization when a change in the environment
is detected. The first strategy is the prediction of the new
optimum according to previous searches. The second proposed
strategy is to perturb the current population with a Gaussian
noise with variance which is estimated according to previous
changes. A PSO algorithm for finding the shortest path in
graphs is used in [14], which is improved with using a
reinitialization method and a local search operator.

Quantum Evolutionary Algorithm (QEA) is an approach in
which chromosomes are coded after quantum states of
electrons in a probabilistic fashion. The resulting architecture is
highly suitable to preserve diversity, i.e. each chromosome
consists of m Q-bits that is equivalent to 2m states. In quantum
informatics, the basic carrier of information is not a bit but a
quantum system with two states such as in an atom, an ion or a
photon with two polarized directions, or the Q-bit. A Q-bit is in
a linear superposition state and is used to specify the
amplitudes of two states. In [17, 18] quantum-inspired
evolutionary algorithms are investigated for a class of
combinatorial optimization problems in which quantum
rotation gates act as update operators. This quantum rotation
gate is also used in a novel parallel quantum GA for
hierarchical ring model and infinite impulse response (IIR)
digital filter design [19]. Reference [20] proposes a quantum
evolutionary algorithm for multi-objective optimization and
quantum rotation gate.

This paper proposes a Sinusoid size Ring structured
Quantum Evolutionary Algorithm (SRQEA) with a partial
reinitialization of population in the form of a sinusoid function.
In the proposed, random q-individuals are inserted in the ring
structured population during the expansion cycles of
population; while the inferior q-individuals are eliminated

Authorized licensed use limited to: Ferdowsi University of Mashhad. Downloaded on May 29,2010 at 13:40:58 UTC from IEEE Xplore. Restrictions apply.

during the shrinking cycles of decreasing population. The ring
interaction structure restricts the interactions among quantum
individuals to only their (left and right) neighbors, and hence
better diversity of the population is maintained. The variable
size of the population with partial reinitialization has a fine
effect on diversity preserving. This paper also tries to find the
best parameters of sinusoid function for population size for the
tested problems. The proposed algorithm is tested on Knapsack
Problem, Trap Problem as well as 14 numerical benchmark
functions for various dimensions of the problems. Experimental
results show that the proposed algorithm consistently improves
the performance of QEA.

This paper is organized as follows. Section II describes the
QEA representation. In Section III the ring structure for QEA is
proposed. Section IV proposes the sinusoid population size for
ring structured QEA. Finding the best angle frequency for
sinusoid function of population size for each problem is
performed in section V. In Section VI the proposed algorithm
is evaluated on some benchmark functions and finally the
proposed algorithm is concluded in section VII.

II. QEA
QEA is inspired from the principles of quantum

computation, and its superposition of states is based on qubits,
the smallest unit of information stored in a two-state quantum
computer. A qubit could be either in state “0” or “1”, or in any
superposition of the two as described in (1):

10 βαψ += (1)

Where α and β are complex numbers, which denote the
corresponding state’s appearance probability, following below
constraint:

122 =+ βα (2)

This probabilistic representation implies that if there is a
system of m qubits, the system can represent 2m states
simultaneously. At each observation, a qubits quantum state
collapses to a single state as determined by its corresponding
probabilities.

A. Representation
QEA uses a novel representation based on the above

concept of qubits. Consider i-th individual in t-th generation
defined as an m-qubit as (3):












= t

mi

t
mi

t
ki

t
ki

t
i

t
i

t
i

t
it

iq
,

,

,

,

2,

2,

1,

1,
β
α

β
α

β
α

β
α (3)

Where 1|||| 2
,

2
, =+ t

ki
t

ki βα , k=1,2,…,m , m is the number
of qubits, i.e., the string length of the qubit individual,
i=1,2,…,m, n is the population size and t is generation number
of the evolution. Since a qubit is a probabilistic representation,
any superposition of states is simultaneously represented. If
there is, for instance, a three-qubits (m = 3) individual such as
(4):














=

2
3

2
1

3
2
3

1

2
1
2

1
t
iq (4)

Alternatively, the possible states of the individual can be
represented as:

111

100101100

011010001000

2
1

32
1

22
1

62
1

2
1

32
1

22
1

62
1

+

+++

+++=t
iq

 (5)

Note that the square of above numbers are true
probabilities, i.e. the above result means that the probabilities
to represent the states 010,100,001,000 are 1/24, 1/8,
1/24 and 1/12 respectively. Consequently, the three-qubits
system of (4) could carry all eight states information at the
same time.

Evolutionary computing with the qubit representation has a
better characteristic of diversity than classical approaches since
it can represent superposition of states. Only one qubit
individual such as (4) is enough to represent eight states,
whereas in classical representation eight individuals are
needed. Additionally, along with the convergence of the
quantum individuals, the diversity gradually fades away and
the algorithm converges.

B. Quantum Gates Assignment
The common mutation is a random disturbance of each

individual, promoting exploration while also slowing
convergence. Here, the quantum bit representation can be
simply interpreted as a biased mutation operator. Therefore, the
current best individual can be used to steer the direction of this
mutation operator, which will speed up the convergence. The
evolutionary process of quantum individual is completed
through the step of “update Q(t).” A crossover operator,
quantum rotation gate, is described below. Specifically, a qubit
individual qt

i is updated using the rotation gate U(θ) in this
algorithm. The k-th qubit of the i-th quantum individual
generation t, Tt

ki
t

ki][,, βα is updated as:




















∆
∆−

∆
∆

=











+

+

t
ki

t
ki

t
ki

t
ki

,

,
1

,

1
,

)cos(
)sin(

)sin(
)cos(

β
α

θ
θ

θ
θ

β
α

 (6)

Figure 1. The ring structure of the proposed algorithm

Authorized licensed use limited to: Ferdowsi University of Mashhad. Downloaded on May 29,2010 at 13:40:58 UTC from IEEE Xplore. Restrictions apply.

Where ∆θ is rotation angle and controls the speed of
convergence and determined from Table I. Reference [17]
shows that these values for ∆θ have better performance.

III. A RING STRUCTURE FOR QEA
One of the main parameters of evolutionary algorithms is

the structure of the algorithm. Ring structured Evolutionary
Algorithms are structured evolutionary algorithms in which the
individuals are located in a ring structured population and each
individual only interacts with its neighbors. In a ring
environment, the connections among neighbors help the
algorithm to exploit possible solutions of the algorithm, and the
overlapped small neighborhoods help algorithm to explore the
search space. So the advantage of the ring structure is that the
fitness and genotype diversity in the population is preserved for
a long number of generations. This paper uses the ring structure
for QEA for two reasons. Firstly, the small connectivity among
the individuals in the ring structured population preserves the
diversity in the population. Secondly, the sinusoid variable
sizing of the population can be trivially applied to a ring
structure population. The ring structure of the proposed
algorithm is showed in Fig 1.

In the ring structured population each individual in the
population is connected to two neighbors. Suppose that the size
of the ring structured population is S. The neighbors of the
individual qi are then defined as:

},,{ iiii qqqN ′′′=

Where:





=
≠+

=′′




=
≠−

=′
Si
Sii

i
i
i

S
i

i
1

1
,

1
11

The proposed algorithm is described as below:
Procedure SRQEA
begin

t=0
1. initialize quantum population Q(0) by

ring structure with the size of SS =)0(
2. make X(0) by observing the states of

Q(0).
3. evaluate X(0).

4. for all binary solutions x0
i in X(t) do

begin
5. find neighborhood set Ni in X(0).
6. find binary solution x with best

fitness in Ni
7. save x in Bi

end
8. while not termination condition do

begin
t=t+1

9. ()()tSAStS ωsin)(+=

10. if S(t)>S(t-1) create random q-
individuals

11. if S(t)<S(t-1) eliminate the q-
individuals with worst observed
fitness

12. make X(t) by observing the states of
Q(t-1)

13. evaluate X(t)
14. update Q(t) based on Bi and X(t) using

Q-gates
15. for all binary solutions xt

i in X(t) do
begin

16. find neighborhood set Ni in X(t).
17. select binary solution x with best

fitness in Ni
18. if x is fitter than Bi save x in Bi

end
end

end

 (a) (b) (c)

Figure 2. Finding the best sinusoid function for Knapsack Problem, Trap Problem and Generalized Schwefel Problem, where ω1 … ω5= ()3002001005025 ,,,, πππππ , A1 …

A5= ()9.0,7.0,5.0,3.0,1.0 .

TABLE I. LOOKUP TABLE OF θ∆ .)(t
ixf IS THE FITNESS OF BINARY

SOLUTION t
ix AND)(iBf IS THE FITNESS OF iB

t
kix , kib ,)()(i

t
i Bfxf ≥ θ∆

0 0 False 0

0 0 True 0

0 1 False π01.0
0 1 True 0

1 0 False π01.0−

1 0 True 0

1 1 False 0

1 1 True 0

A1 A2 A3 A4 A5

ω2 ω2 ω2 ω2 ω2

A1 A2 A3 A4 A5

ω1 ω1 ω1 ω1 ω1

A1 A2 A3 A4 A5

ω3 ω3 ω3 ω3 ω3

A1 A2 A3 A4 A5

ω4 ω4 ω4 ω4 ω4

A1 A2 A3 A4 A5

ω5 ω5 ω5 ω5 ω5

A1 A2 A3 A4 A5

ω2 ω2 ω2 ω2 ω2

A1 A2 A3 A4 A5

ω1 ω1 ω1 ω1 ω1

A1 A2 A3 A4 A5

ω3 ω3 ω3 ω3 ω3

A1 A2 A3 A4 A5

ω4 ω4 ω4 ω4 ω4

A1 A2 A3 A4 A5

ω5 ω5 ω5 ω5 ω5

A1 A2 A3 A4 A5

ω2 ω2 ω2 ω2 ω2

A1 A2 A3 A4 A5

ω1 ω1 ω1 ω1 ω1

A1 A2 A3 A4 A5

ω3 ω3 ω3 ω3 ω3

A1 A2 A3 A4 A5

ω4 ω4 ω4 ω4 ω4

A1 A2 A3 A4 A5

ω5 ω5 ω5 ω5 ω5

Authorized licensed use limited to: Ferdowsi University of Mashhad. Downloaded on May 29,2010 at 13:40:58 UTC from IEEE Xplore. Restrictions apply.

The comprehensive description of the proposed algorithm
is:

1. In the initialization step, the quantum-individuals q0
i are

located in a ring structured population with the size of:

SS =)0(

Where, S is the average population size.

Then T
ikik][00 βα of all q0

i are initialized with 2
1 , where

i=1,2,…,S is the location of the q-individuals in the ring
structured population, k=1,2,...,m, and m is the number of
qubits in the q-individuals. This implies that each qubit
individual q0

i represents the linear superposition of all possible
states with equal probability.

2. This step makes a set of binary instants
},...,2,1|{)0(0 SixX i == at generation t=0 by observing

},...,2,1|{)0(0 SiqQ i == states, where X(t) at generation t is a
random instant of qubit population and S is the size of ring.
Each binary instant, x0

i of length m, is formed by selecting each
bit using the probability of qubit, either 20

, || kiα or 20
, || kiβ of

q0
i. Observing the binary bit xt

i,k from qubit Tt
ki

t
ki][,, βα

performs as:





 <=

otherwise1
||)1,0R(0 2

,
,

t
kit

ki
ifx α (6)

Where),R(⋅⋅ is a uniform random number generator.

3. Each binary instant x0
i is evaluated to give some measure

of its fitness. In this step, the fitness of all binary solutions of
X(0) are evaluated.

4,5,6,7. In these steps the neighborhood set Ni of all binary
solutions x0

i in X(0) are found and the best solution among Ni is
stored in Bi. Bi is the best possible solution, which the q-
individual qt

i and its neighbors had reached.

8. The while loop is terminated when the termination
condition is satisfied. Termination condition here is when
maximum number of iterations is reached.

9. In the proposed algorithm, the size of the population is a
sinusoid function of iteration number. In this step, S(t), the size
of the population in iteration t is calculated as:

()()tSAStS ωsin)(+=

Where, S is the average size of the population, t is the
iteration number and ω and A are the angle frequency and the
amplitude of the sinusoid size population respectively. The best
values for ω and A is found in section V.

10. If S(t), the size of the population in iteration t is greater
than S(t-1), it means that the size of the population is increased.
So creating random q-individuals, until the size of ring
structured population be equal to S(t).

11. If S(t), the size of the population in iteration t is smaller
than S(t-1), eliminate the q-individuals which have the worst

observed solution, until the size of ring structured population
reaches S(t).

12. Observing the binary solutions X(t) from Q(t).

13. Evaluating the binary solutions X(t).

14. The quantum individuals are updated using Q-gate.

15. The “for” loop is for all binary solutions xt
i

(i=1,2,…,S(t)) in the population.

16. Finding the neighbors of the binary solution xi.

17. Find the best possible solution in the Ni, and store it to
x.

18. If x is fitter than Bi, store x to Bi.

The proposed sinusoid size population has two cycles. The
first cycle is increasing the size of population. In the increasing
cycle, the new quantum individuals are created and inserted in
the ring. Creating new random quantum individuals increases
the diversity of the population and improves the exploration
performance of the algorithm. The other cycle is the decreasing
cycle. In this cycle, the worst quantum individuals of the
population are eliminated. This treatment improves the
exploitation of the algorithm by exploiting the best solutions
and ignoring the inferior ones. This means that the proposed
algorithm has two cycles: exploration cycle and exploitation
cycle.

IV. FINDING THE BEST SINUSOID FUNCTIONS FOR
POPULATION SIZE

This paper proposes a sinusoid sized population for QEA;
but the question is which amount of angular frequency ω and
amplitude A of the sinusoid function is the best. For evaluation
of the proposed algorithm, 14 numerical functions, Knapsack
Problem and Trap Problem are used. This section tries to find
the best sinusoid function for the size of the population for each
benchmark functions. Fig. 2 shows the effect of the angular

TABLE II. THE BEST PARAMETERS FINED FOR SRQEA. KP1
MEANS KNAPSACK PENALTY TYPE 1 AND KR1 MEANS KNAPSACK

REPAIR TYPE1

PROBLEM A ω PROBLEM A ω

Schwefel 2.26 0.7 200
π Schwefel 2.21 0.9 25

π

Rastrigin 0.7 50
π Dejong 0.7 50

π

Ackley 0.5 50
π Rosenbrock 0.9 100

π

Griewank 0.3 25
π Kennedy 0.1 300

π

Penalized 1 0.7 100
π KP1 0.1 25

π

Penalized 2 0.7 100
π KP2 0.1 100

π

Michalewicz 0.7 100
π KR1 0.7 50

π

Goldberg 0.7 50
π KR2 0.1 50

π

Sphere Model 0.7 50
π TRAP 0.9 50

π

Schwefel 2.22 0.7 50
π

Authorized licensed use limited to: Ferdowsi University of Mashhad. Downloaded on May 29,2010 at 13:40:58 UTC from IEEE Xplore. Restrictions apply.

frequency and amplitude on the performance of the proposed
algorithm for Generalized Schwefel's Problem 2.26,
Generalized Rastrigin's Function and Ackley's function (see
appendix). In Fig. 2 the vertical axis is the best fitness averaged
over 50 runs and the horizontal axis is the parameters of the
SRQEA. Finding the best parameters for all of the other
benchmark functions is the same as in Fig 2. The best values
for ω and A for all benchmark functions is summarized in
Table II.

V. EXPERIMENTAL RESULTS
Here Knapsack Problem, Trap Problem and 14 numerical

benchmark functions are used for testing the proposed
algorithm (see Appendix). The size of population for all of the
experiments is set to 20 (S =20), and maximum generation
termination condition is used equal to 2000. All results are
averaged over 50 runs. The value of ∆θ is considered as Table I
and the values of ω and A is set to their best values found in
section IV (see Table II). The structure of SRQEA is a ring
structure with sinusoid size population and the structure of the
QEA is considered as the structure proposed by [17]. The
experimental results are shown in Table III. In this paper the
proposed algorithm is compared with the conventional
structure of QEA as proposed in [17] with global migration of
100 and local migration of 30. The time complexity of the
proposed algorithm is equal to the QEA because the average
size of population for SRQEA is considered equal to QEA.

In all of the experiments, the proposed structure improves
the performance of QEA. The least improvement is in
Knapsack problem Repair type 1, and the best improvement is
in Schwefel problem 2.21. Additionally, the standard deviation
of the results in SRQEA is generally smaller than QEA. The

improvements of the proposed algorithm become more
substantial as the dimensions of the problem at hand increase.

VI. CONCLUSION
This paper proposes a sinusoid sized ring structure for

quantum evolutionary algorithm that aims to improve the
diversity and performance of QEA. One of the main tools for
improving the performance of the evolutionary algorithms is
finding a good architecture for these algorithms. Cellular,
parallel and ring structures are three kinds of these structures
which are powerful for making a tradeoff between exploration
and exploitation in EAs. The structure of the EAs has two roles
in the evolution process, first the limitation of the relationship
between the individuals allows the algorithm to better explore
the search space, second the connectivity between the
individuals make it possible to exploit the existing solutions.
We believe that either cellular or ring graph structure could
potentially be used for QEA. It is still an open question that
which structure is the best one.

APPENDIX
In this section two combinatorial optimization problems,

Trap problem and Knapsack problem, and 14 function
optimization problems are discussed to evaluate the proposed
SRQEA.

i. Trap problem
Trap problem is defined as:

∑
−

=
+++++=

1

0
5545352515),,,,(Trap)(

N

i
iiiii xxxxxxf (7)

Where N is the number of traps and

TABLE III. EXPERIMENTAL RESULTS ON THE KNAPSACK PROBLEM, TRAP PROBLEM AND FOURTEEN NUMERICAL FUNCTION OPTIMIZATION PROBLEMS. THE

NUMBER OF RUNS WAS 50. MEAN AND STD REPRESENT THE MEAN AND STANDARD DEVIATION OF BEST ANSWER FOUND FOR 50 RUNS RESPECTIVELY. KP1 AND KR1 MEANS
KNAPSACK PENALTY1 AND KNAPSACK REPAIR1

 100=m 250=m 500=m 1000=m
 QEA SRQEA QEA SRQEA QEA SRQEA QEA SRQEA
 MEAN STD MEAN STD MEAN STD MEAN STD QEA STD QEA STD QEA STD QEA STD

Schwefel [16] 3.47×104 3.36×103 4.74×104 2.55 5.74×104 6.24×103 7.94×104 4.88×103 8.75×104 8.47×103 1.17×105 8.37×103 1.25×105 1.86×104 1.81×105 1.81×104

Rastrigin [16] -1.99×103 2.27×102 -1.40×103 1.07×102 -6.83×103 4.49×102 -5.44×103 1.96×102 -1.57×104 7.23×102 -1.36×104 3.69×102 -3.54×104 1.38×103 -3.20×104 4.51×102

Ackley [16] -17.24 0.068 -16.99 0.053 -17.62 0.12 -17.29 0.032 -17.97 0.11 -17.42 0.07 -18.34 0.089 -17.58 0.094

Griewank [16] -38.53 6.51 -19.96 2.19 -156.94 16.51 -108.99 5.33 -3.82×102 2.59×101 -3.06×102 1.00×101 -8.79×102 3.95×101 -7.66×102 1.26×101

Penalized 1 [16] -1.69×105 2.15×104 -8.85×104 1.14×104 -5.94×105 4.78×104 -4.47×105 2.01×104 -1.45×106 8.28×104 -1.19×106 3.33×104 -3.19×106 1.07×105 2.86×106 4.92×104

Penalized 2 [16] -3.83×104 4.37×103 -2.13×104 1.82×103 -1.45×105 1.08×104 -1.03×105 7.58×103 -3.65×105 1.73×104 -2.89×105 8.17×103 -8.15×105 3.22×104 -7.11×105 1.58×104

Michalewicz [15] 22.84 2.55 33.14 2.08 36.07 4.28 52.51 2.65 53.23 6.55 74.11 3.78 70.94 9.09 103.28 5.17

Goldberg [3] 40.01 2.59 51.71 2.20 76.76 4.69 94.58 2.71 127.96 6.22 153.76 3.67 2.29×102 10.79 2.56×102 6.11

Sphere Model [16] -4.32×105 5.46×104 -2.27×105 2.93×104 -1.65×106 1.83×105 -1.20×106 5.85×104 -4.22×106 2.67×105 -3.39×106 1.14×105 -9.91×106 4.50×105 -8.45×106 2.05×105

Schwefel 2.22 [16] -4.90 0.54 -3.39 0.19 -6.41 0.39 -5.32 0.17 -7.45 0.25 -6.56 0.18 -8.18 0.21 -7.50 0.12

Schwefel 2.21 [16] -176.56 5.86 -168.17 5.18 -190.94 2.26 -189.84 1.78 -195.83 1.03 -195.62 1.04 -198.33 0.39 -198.07 0.67

Dejong [15] -2.47×107 6.02×106 -8.02×106 1.75×106 -3.18×108 4.71×107 -1.68×108 1.75×107 -1.79×109 1.77×108 -1.22×109 6.76×107 -9.25×109 6.25×108 -7.15×109 3.17×108

Rosenbrock [3] -1.06×105 3.43×104 -3.71×104 6.00×103 -5.06×105 8.39×104 -2.77×105 2.46×104 -1.37×106 1.39×104 -9.81×105 3.77×104 -3.49×106 2.29×105 -2.76×106 1.03×105

Kennedy [3] -1.22 1.07 -8.9×10-4 8.44×10-4 -20.99 5.42 -0.07 0.14 -74.82 12.09 -0.83 0.57 -227.30 21.05 -4.80 1.98

KR1 415.29 6.26 428.69 3.29 893.58 18.54 960.13 11.96 1742.02 30.71 1861.89 25.56 3140.68 44.05 3350.98 40.79

KR2 420.88 2.52 423.27 0.95 1011.23 13. 60 1036.12 3.99 1904.88 36.06 1967.35 23.99 3613.54 60.16 3739.79 37.16

KP1 579.22 8.06 591.16 3.47 1217.66 35.27 1357.41 12.79 2161.42 59.23 2417.01 51.09 3898.92 114.63 4370.67 96.63

KP2 399.64 5.86 411 3.03 923.82 21.42 1001.99 8.86 1701.52 36.87 1846.33 23.18 3340.36 46.39 3582.66 43.67

TRAP 72.17 4.19 82.37 1. 81 154.8 8.42 186.87 5.29 283.7 15.27 343.37 14.53 531.43 27.41 663.8 35.99

Authorized licensed use limited to: Ferdowsi University of Mashhad. Downloaded on May 29,2010 at 13:40:58 UTC from IEEE Xplore. Restrictions apply.





=
≤−

=
5)(onesif5
4)(onesif),(ones4

)(Trap
x
xx

x (8)

Where the function “ones” returns the number of ones in
the binary string x. Trap problem has a local optimum in
()0,0,0,0,0 and a global optimum in ()1,1,1,1,1 .

ii. Knapsack problem
Knapsack problem is a well-known combinatorial

optimization problem which is in class of NP-hard problems
[17]. Knapsack problem can be described as selecting various
items ix (i=1,2,…,m) with profits ip and weights iw for a
knapsack with capacity C. Given a set of m items and a
knapsack with capacity C, select a subset of the items to
maximize the profit f(x):

∑
=

=
m

i
ii xpxf

1
)(, ∑

=
≤

m

i
ii Cxw

1
.

This paper considered:

),1(R vwi = ,),1(R vpi =

Where),(R ⋅⋅ is a uniform random number generator and
v=10.

The use of QEA for solving Knapsack problem is described
in [17].

iii. Numerical Functions
There are some benchmark numerical functions for testing

the optimization algorithms. Here 14 benchmark functions are
used for testing the algorithms:

 Generalized Schwefel's Problem 2.26 [16], Generalized
Rastrigin's Function [16], Ackley's function [16], Generalized
Griewank Function [16], Generalized Penalized Function 1
[16], Generalized Penalized Function 2 [16], Michalewicz
Function [15], Goldberg & Richardson Function [3], Sphere
Model [16], Schwefel's Problem 2.22 [16], Schwefel's Problem
2.21 [16], Dejong Function 4 [15], Rosenbrock Function [3],
and Kennedy multimodal function generator [3].

These functions have some local minima and a global
minimum. We used them for maximization process, so we used
–f(x) as fitness function.

REFERENCES
[1] Dawei Li, Li Wang, “A study on the optimal population size of genetic

algorithm,” the 4th World Congress on Intelligent Control and
Automation, 2002.

[2] Se Hyun Park, Eun Yi Kim and Beom-Joon Cho, “Genetic Algorithm-
Based Video Segmentation with Adaptive Population Size,” Proceeding
of 25th DAGM Symposium Magdeburg, Germany, September, Springer-
Verlag 2003.

[3] V. K. Koumousis, C. P. Katsaras. "A Saw-Tooth Genetic Algorithm
Combining the Effects of Variable Population Size and Reinitialization
to Enhance Performance," IEEE Trans. Evol. Comput. vol. 10, pp. 19–
28, 2006.

[4] A. Kaveh, M. Shahrouzi. “A hybrid ant strategy and genetic algorithm to
tune the population size for efficient structural optimization,” Emerald
Journal of Engeneering Computations, Vol. 24 pp 237-254.

[5] Yong, He, “Optimal Population Size for Partheno-Genetic Algorithm,”
IEEE Chinese Control Conference, 2007.

[6] Qin Jun Kang Li-Shan, “A novel dynamic population based evolutionary
algorithm for revised multimodal function optimization problem,” IEEE
Fifth World Congress on Intelligent Control and Automation, 2004.

[7] Al Qasim, Rose Eldos and Taisir, “Population Sizing Scheme for
Genetic Algorithm”, IEEE, International Conference on Computer
Systems and Applications, 2007.

[8] Shi, X.H. Wan, L.M. Lee, H.P. Yang, X.W. Wang, L.M. Liang, Y.C.
“An improved genetic algorithm with variable population-size and a
PSO-GA based hybrid evolutionary algorithm,” IEEE International
Conference on Machine Learning and Cybernetics, 2003.

[9] Fei Ma Xue-bo Chen, “Application of Varying Population Size Particle
Swarm Optimization Algorithm to AGC of Power Systems,” IEEE The
Sixth World Congress on Intelligent Control and Automation, 2006.

[10] Kenneth Mark Bryden, Daniel A. Ashlock, Steven Corns, and Stephen J.
Willson, “Graph-Based Evolutionary Algorithms,” IEEE Trans. Evol.
Comput. vol. 10, no 5, pp. 550–567, 2006.

[11] Kennedy, J. Mendes, R, “Population structure and particle swarm
performance,” IEEE Proceedings of the Congress on Evolutionary
Computation, 2002.

[12] Hisashi Shimodaira, “Methods for Reinitializing the Population to
Improve the Performance of a Diversity-Control-Oriented Genetic
Algorithm,” IEICE TRANSACTIONS on Information and Systems
Vol.E84-D No.12 pp.1745-1755, 2001.

[13] Aimin Zhou, Yaochu Jin, Qingfu Zhang, Bernhard Sendhoff and Edward
Tsang, “Prediction-Based Population Re-initialization for Evolutionary
Dynamic Multiobjective Optimization,” Springer, bookchapter,
Evolutionary Multi-Criterion Optimization, pp. 832-846, 2007.

[14] Mohemmed, A.W. Sahoo, N.C, “Particle Swarm Optimization
Combined with Local Search and Re-Initialization for Shortest Path
Computation in Networks,” IEEE Swarm Intelligence Symposium, pp.
266 – 272, 2007.

[15] A.-R. Khorsand, M.-R. Akbarzadeh-T. “Quantum Gate Optimization in
a Meta-Level Genetic Quantum Algorithm”. IEEE International
Conference on Systems, Man and Cybernetics, 2005.

[16] W. Zhong, J. Liu, M. Xue, L. Jiao, "A Multi-agent Genetic Algorithm
for Global Numerical Optimization," IEEE Trans. Sys, Man and Cyber.
vol. 34, pp. 1128–1141, 2004.

[17] K. Han, J. Kim, “Quantum-inspired evolutionary algorithm for a class of
combinatorial optimization,” IEEE Trans. on Evolutionary Comput, vol.,
no. 6, 2002.

[18] K.H Han, K.H Park, C.H Lee, J.H Kim, “Parallel quantum-inspired
genetic algorithm for combinatorial optimization problem,” Proceeding
of the 2001 IEEE congress on Evolutionary Computation Seoul, Korea,
2001.

[19] G Zhung, W Jin, L Hu, “Novel parallel quantum GAs,” Proceedings of
the 4th International Conference on Parallel and Distributed
Computing, Applications and Technologies, PDCAT,'2003.

[20] G Zhung, W Jin, L Hu, “Quantum evolutionary algorithm for multi-
objective optimization,” Proceedings of the 2003 IEEE International
Symposium on Intelligent Control Houston, Texas October 5-8.2003.

Authorized licensed use limited to: Ferdowsi University of Mashhad. Downloaded on May 29,2010 at 13:40:58 UTC from IEEE Xplore. Restrictions apply.

