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Abstract — This paper proposes a dynamic ring architecture 
of interaction among members of population in a Quantum 
Evolutionary Algorithms (QEA). The ring is allowed to 
expand/collapse based on a sinusoidal population size and partial 
re-initialization of new members in the population. The study 
shows that the ring structure can be an efficient architecture for 
an effective Exploration/Exploitation tradeoff, and the partial re-
initialization of the proposed algorithm can improve the diversity 
of the algorithm. The proposed approach is tested on Knapsack 
Problem, Trap Problem as well as 14 numerical optimization 
functions. Experimental results show that the proposed Structure 
consistently improves the performance of QEA. 

Keywords—Quantum Evolutionary Algorithms, Ring 
structure population, dynamic structure. 

I.  INTRODUCTION 
One of the most important parameters of Evolutionary 

algorithms is the population size. A large population size has a 
better search performance but more computational complexity, 
while small population size has a better computational 
complexity with less searching efficiency. Reference [1] 
studies the optimal population size of genetic algorithms based 
on a defined partial function. An adaptive population size for a 
distributed genetic algorithm is proposed in [2] for video 
segmentation. Reference [3] proposes a variable population 
size for genetic algorithms with periodic reinitialization that 
follows a saw-tooth scheme. In [4] a competitive frequency-
based methodology is proposed to explore the least proper 
population size for GA. Reference [5] presents the mathematics 
formula for researching the optimal population size of 
Partheno-Genetic Algorithm. In [6], a novel dynamic 
population size is proposed. In this approach the initial 
population size is initialized randomly, and during the 
evolution, the size of population is tuned by a mechanism 
called “suppression“. A new scheme for adjusting the 
population size in genetic algorithm is proposed in [7] that 
provides a balance between exploration and exploitation. This 
new schema is used for cell placement in the chip design 
process. A variable population size and a hybridization of PSO 
with GA are proposed in [8] which can improve the 
performance of GA and PSO.  

Variable population size schema is also used in Particle 
Swarm Optimization. Considering the small effect of numbers 
of particles on PSO performance, [9] proposes a method which 
finds the best population size for PSO to make a tradeoff 
between optimization precision and optimization speed. 

One of the major parameters of evolutionary algorithms is 
the structure of the population. A graph based evolutionary 
algorithm is proposed in [10] in which the individuals are 
located on the nodes of a graph structured population. The 
effect of variable population structure on Particle Swarm 
Optimization is investigated in [11]. Random graphs and their 
performance on several criteria are compared in their work. 

Reinitialization operator is another approach for improving 
the diversity and hence performance of the evolutionary 
algorithms. In order to maintain the diversity of population, 
[12] proposes a genetic algorithm called Diversity Control GA 
which uses a reinitialization schema. For optimization in 
dynamic environments, [13] proposes two strategies for 
population re-initialization when a change in the environment 
is detected. The first strategy is the prediction of the new 
optimum according to previous searches. The second proposed 
strategy is to perturb the current population with a Gaussian 
noise with variance which is estimated according to previous 
changes. A PSO algorithm for finding the shortest path in 
graphs is used in [14], which is improved with using a 
reinitialization method and a local search operator. 

Quantum Evolutionary Algorithm (QEA) is an approach in 
which chromosomes are coded after quantum states of 
electrons in a probabilistic fashion. The resulting architecture is 
highly suitable to preserve diversity, i.e. each chromosome 
consists of m Q-bits that is equivalent to 2m states. In quantum 
informatics, the basic carrier of information is not a bit but a 
quantum system with two states such as in an atom, an ion or a 
photon with two polarized directions, or the Q-bit. A Q-bit is in 
a linear superposition state and is used to specify the 
amplitudes of two states.  In [17, 18] quantum-inspired 
evolutionary algorithms are investigated for a class of 
combinatorial optimization problems in which quantum 
rotation gates act as update operators. This quantum rotation 
gate is also used in a novel parallel quantum GA for 
hierarchical ring model and infinite impulse response (IIR) 
digital filter design [19]. Reference [20] proposes a quantum 
evolutionary algorithm for multi-objective optimization and 
quantum rotation gate. 

This paper proposes a Sinusoid size Ring structured 
Quantum Evolutionary Algorithm (SRQEA) with a partial 
reinitialization of population in the form of a sinusoid function. 
In the proposed, random q-individuals are inserted in the ring 
structured population during the expansion cycles of 
population; while the inferior q-individuals are eliminated 
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during the shrinking cycles of decreasing population. The ring 
interaction structure restricts the interactions among quantum 
individuals to only their (left and right) neighbors, and hence 
better diversity of the population is maintained. The variable 
size of the population with partial reinitialization has a fine 
effect on diversity preserving. This paper also tries to find the 
best parameters of sinusoid function for population size for the 
tested problems. The proposed algorithm is tested on Knapsack 
Problem, Trap Problem as well as 14 numerical benchmark 
functions for various dimensions of the problems. Experimental 
results show that the proposed algorithm consistently improves 
the performance of QEA. 

This paper is organized as follows. Section II describes the 
QEA representation. In Section III the ring structure for QEA is 
proposed. Section IV proposes the sinusoid population size for 
ring structured QEA. Finding the best angle frequency for 
sinusoid function of population size for each problem is 
performed in section V. In Section VI the proposed algorithm 
is evaluated on some benchmark functions and finally the 
proposed algorithm is concluded in section VII. 

II. QEA 
QEA is inspired from the principles of quantum 

computation, and its superposition of states is based on qubits, 
the smallest unit of information stored in a two-state quantum 
computer. A qubit could be either in state “0” or “1”, or in any 
superposition of the two as described in (1): 

10 βαψ +=                                                                (1) 

Where α and β are complex numbers, which denote the 
corresponding state’s appearance probability, following below 
constraint: 

122 =+ βα                                                                      (2) 

This probabilistic representation implies that if there is a 
system of m qubits, the system can represent 2m states 
simultaneously. At each observation, a qubits quantum state 
collapses to a single state as determined by its corresponding 
probabilities. 

A. Representation 
QEA uses a novel representation based on the above 

concept of qubits. Consider i-th individual in t-th generation 
defined as an m-qubit as (3): 












= t

mi

t
mi

t
ki

t
ki

t
i

t
i

t
i

t
it

iq
,

,

,

,

2,

2,

1,

1, ......
β
α

β
α

β
α

β
α                                            (3) 

Where 1|||| 2
,

2
, =+ t

ki
t

ki βα , k=1,2,…,m , m is the number 
of qubits, i.e., the string length of the qubit individual, 
i=1,2,…,m, n is the population size and t is generation number 
of the evolution. Since a qubit is a probabilistic representation, 
any superposition of states is simultaneously represented. If 
there is, for instance, a three-qubits (m = 3) individual such as 
(4): 
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Alternatively, the possible states of the individual can be 
represented as: 
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Note that the square of above numbers are true 
probabilities, i.e. the above result means that the probabilities 
to represent the states 010,100,001,000  are 1/24, 1/8, 
1/24 and 1/12 respectively. Consequently, the three-qubits 
system of (4) could carry all eight states information at the 
same time. 

Evolutionary computing with the qubit representation has a 
better characteristic of diversity than classical approaches since 
it can represent superposition of states. Only one qubit 
individual such as (4) is enough to represent eight states, 
whereas in classical representation eight individuals are 
needed. Additionally, along with the convergence of the 
quantum individuals, the diversity gradually fades away and 
the algorithm converges. 

B. Quantum Gates Assignment 
The common mutation is a random disturbance of each 

individual, promoting exploration while also slowing 
convergence. Here, the quantum bit representation can be 
simply interpreted as a biased mutation operator. Therefore, the 
current best individual can be used to steer the direction of this 
mutation operator, which will speed up the convergence. The 
evolutionary process of quantum individual is completed 
through the step of “update Q(t).” A crossover operator, 
quantum rotation gate, is described below. Specifically, a qubit 
individual qt

i is updated using the rotation gate U(θ) in this 
algorithm. The k-th qubit of the i-th quantum individual 
generation t, Tt

ki
t

ki ][ ,, βα  is updated as: 
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Figure 1.   The ring structure of the proposed algorithm 
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Where ∆θ is rotation angle and controls the speed of 
convergence and determined from Table I. Reference [17] 
shows that these values for ∆θ have better performance. 

III. A RING STRUCTURE FOR  QEA 
One of the main parameters of evolutionary algorithms is 

the structure of the algorithm. Ring structured Evolutionary 
Algorithms are structured evolutionary algorithms in which the 
individuals are located in a ring structured population and each 
individual only interacts with its neighbors. In a ring 
environment, the connections among neighbors help the 
algorithm to exploit possible solutions of the algorithm, and the 
overlapped small neighborhoods help algorithm to explore the 
search space. So the advantage of the ring structure is that the 
fitness and genotype diversity in the population is preserved for 
a long number of generations. This paper uses the ring structure 
for QEA for two reasons. Firstly, the small connectivity among 
the individuals in the ring structured population preserves the 
diversity in the population. Secondly, the sinusoid variable 
sizing of the population can be trivially applied to a ring 
structure population. The ring structure of the proposed 
algorithm is showed in Fig 1. 

In the ring structured population each individual in the 
population is connected to two neighbors. Suppose that the size 
of the ring structured population is S. The neighbors of the 
individual qi are then defined as: 

},,{ iiii qqqN ′′′=  

Where: 
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The proposed algorithm is described as below: 
Procedure SRQEA 
begin 

t=0 
1. initialize quantum population Q(0) by 

ring structure with the size of SS =)0(  
2. make X(0) by observing the states of 

Q(0). 
3. evaluate X(0). 

4. for all binary solutions x0
i in X(t) do 

begin 
5. find neighborhood set Ni in X(0). 
6. find binary solution x with best 

fitness in Ni 
7. save x in Bi 

end 
8. while not termination condition do 

begin 
t=t+1 

9. ( )( )tSAStS ωsin)( +=  

10. if S(t)>S(t-1) create random q-
individuals 

11. if S(t)<S(t-1) eliminate the q-
individuals with worst observed 
fitness 

12. make X(t) by observing the states of 
Q(t-1) 

13. evaluate X(t) 
14. update Q(t) based on Bi and X(t) using 

Q-gates 
15. for all binary solutions xt

i in X(t) do 
begin 

16. find neighborhood set Ni in X(t). 
17. select binary solution x with best 

fitness in Ni 
18.  if x is fitter than Bi save x in Bi 

end 
end 

end 

    
                                            (a)                                                                                           (b)                                                                                          (c) 

Figure 2.  Finding the best sinusoid function for Knapsack Problem, Trap Problem and Generalized Schwefel Problem, where ω1 … ω5= ( )3002001005025 ,,,, πππππ , A1 … 

A5= ( )9.0,7.0,5.0,3.0,1.0 . 
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The comprehensive description of the proposed algorithm 
is:  

1. In the initialization step, the quantum-individuals q0
i are 

located in a ring structured population with the size of: 

SS =)0(  

Where, S is the average population size. 

Then T
ikik ][ 00 βα  of all q0

i are initialized with 2
1 , where 

i=1,2,…,S is the location of the q-individuals in the ring 
structured population, k=1,2,...,m, and m is the number of 
qubits in the q-individuals. This implies that each qubit 
individual q0

i represents the linear superposition of all possible 
states with equal probability. 

2. This step makes a set of binary instants 
},...,2,1|{)0( 0 SixX i ==  at generation t=0 by observing  

},...,2,1|{)0( 0 SiqQ i ==  states, where X(t) at generation t is a 
random instant of qubit population and  S is the size of ring. 
Each binary instant, x0

i of length m, is formed by selecting each 
bit using the probability of qubit, either 20

, || kiα  or 20
, || kiβ  of 

q0
i. Observing the binary bit xt

i,k from qubit Tt
ki

t
ki ][ ,, βα  

performs as: 
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Where ),R( ⋅⋅ is a uniform random number generator.  

3. Each binary instant x0
i is evaluated to give some measure 

of its fitness. In this step, the fitness of all binary solutions of 
X(0) are evaluated. 

4,5,6,7. In these steps the neighborhood set Ni of all binary 
solutions x0

i in X(0) are found and the best solution among Ni is 
stored in Bi. Bi is the best possible solution, which the q-
individual qt

i and its neighbors had reached. 

8. The while loop is terminated when the termination 
condition is satisfied. Termination condition here is when 
maximum number of iterations is reached. 

9. In the proposed algorithm, the size of the population is a 
sinusoid function of iteration number. In this step, S(t), the size 
of the population in iteration t is calculated as: 

( )( )tSAStS ωsin)( +=  

Where, S is the average size of the population, t is the 
iteration number and ω  and A are the angle frequency and the 
amplitude of the sinusoid size population respectively. The best 
values for ω and A is found in section V. 

10. If S(t), the size of the population in iteration t is greater 
than S(t-1), it means that the size of the population is increased. 
So creating random q-individuals, until the size of ring 
structured population be equal to S(t). 

11. If S(t), the size of the population in iteration t is smaller 
than S(t-1), eliminate the q-individuals which have the worst 

observed solution, until the size of  ring structured population 
reaches S(t). 

12. Observing the binary solutions X(t) from Q(t). 

13. Evaluating the binary solutions X(t). 

14. The quantum individuals are updated using Q-gate. 

15. The “for” loop is for all binary solutions xt
i 

(i=1,2,…,S(t)) in the population. 

16. Finding the neighbors of the binary solution xi. 

17. Find the best possible solution in the Ni, and store it to 
x. 

18. If x is fitter than Bi, store x to Bi. 

The proposed sinusoid size population has two cycles. The 
first cycle is increasing the size of population. In the increasing 
cycle, the new quantum individuals are created and inserted in 
the ring. Creating new random quantum individuals increases 
the diversity of the population and improves the exploration 
performance of the algorithm. The other cycle is the decreasing 
cycle. In this cycle, the worst quantum individuals of the 
population are eliminated. This treatment improves the 
exploitation of the algorithm by exploiting the best solutions 
and ignoring the inferior ones. This means that the proposed 
algorithm has two cycles: exploration cycle and exploitation 
cycle. 

IV. FINDING THE BEST SINUSOID FUNCTIONS FOR 
POPULATION SIZE 

This paper proposes a sinusoid sized population for QEA; 
but the question is which amount of angular frequency ω and 
amplitude A of the sinusoid function is the best. For evaluation 
of the proposed algorithm, 14 numerical functions, Knapsack 
Problem and Trap Problem are used. This section tries to find 
the best sinusoid function for the size of the population for each 
benchmark functions. Fig. 2 shows the effect of the angular 

 
TABLE II.              THE BEST PARAMETERS FINED FOR SRQEA. KP1 
MEANS KNAPSACK PENALTY TYPE 1 AND KR1 MEANS KNAPSACK 

REPAIR  TYPE1 

PROBLEM A ω PROBLEM A ω 

Schwefel 2.26 0.7 200
π  Schwefel 2.21 0.9 25

π  

Rastrigin 0.7 50
π  Dejong 0.7 50

π  

Ackley 0.5 50
π  Rosenbrock 0.9 100

π  

Griewank 0.3 25
π  Kennedy 0.1 300

π  

Penalized 1 0.7 100
π  KP1 0.1 25

π  

Penalized 2 0.7 100
π  KP2 0.1 100

π  

Michalewicz 0.7 100
π  KR1 0.7 50

π  

Goldberg 0.7 50
π  KR2 0.1 50

π  

Sphere Model 0.7 50
π  TRAP 0.9 50

π  

Schwefel 2.22 0.7 50
π     
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frequency and amplitude on the performance of the proposed 
algorithm for Generalized Schwefel's Problem 2.26, 
Generalized Rastrigin's Function and Ackley's function (see 
appendix). In Fig. 2 the vertical axis is the best fitness averaged 
over 50 runs and the horizontal axis is the parameters of the 
SRQEA.  Finding the best parameters for all of the other 
benchmark functions is the same as in Fig 2. The best values 
for ω and A for all benchmark functions is summarized in 
Table II. 

V. EXPERIMENTAL RESULTS 
Here Knapsack Problem, Trap Problem and 14 numerical 

benchmark functions are used for testing the proposed 
algorithm (see Appendix).  The size of population for all of the 
experiments is set to 20 ( S =20), and maximum generation 
termination condition is used equal to 2000. All results are 
averaged over 50 runs. The value of ∆θ is considered as Table I 
and the values of ω and A is set to their best values found in 
section IV (see Table II). The structure of SRQEA is a ring 
structure with sinusoid size population and the structure of the 
QEA is considered as the structure proposed by [17]. The 
experimental results are shown in Table III. In this paper the 
proposed algorithm is compared with the conventional 
structure of QEA as proposed in [17] with global migration of 
100 and local migration of 30. The time complexity of the 
proposed algorithm is equal to the QEA because the average 
size of population for SRQEA is considered equal to QEA. 

In all of the experiments, the proposed structure improves 
the performance of QEA. The least improvement is in 
Knapsack problem Repair type 1, and the best improvement is 
in Schwefel problem 2.21. Additionally, the standard deviation 
of the results in SRQEA is generally smaller than QEA. The 

improvements of the proposed algorithm become more 
substantial as the dimensions of the problem at hand increase. 

VI. CONCLUSION 
This paper proposes a sinusoid sized ring structure for 

quantum evolutionary algorithm that aims to improve the 
diversity and performance of QEA. One of the main tools for 
improving the performance of the evolutionary algorithms is 
finding a good architecture for these algorithms. Cellular, 
parallel and ring structures are three kinds of these structures 
which are powerful for making a tradeoff between exploration 
and exploitation in EAs. The structure of the EAs has two roles 
in the evolution process, first the limitation of the relationship 
between the individuals allows the algorithm to better explore 
the search space, second the connectivity between the 
individuals make it possible to exploit the existing solutions. 
We believe that either cellular or ring graph structure could 
potentially be used for QEA. It is still an open question that 
which structure is the best one. 

APPENDIX 
In this section two combinatorial optimization problems, 

Trap problem and Knapsack problem, and 14 function 
optimization problems are discussed to evaluate the proposed 
SRQEA. 

i. Trap problem 
Trap problem is defined as: 

∑
−

=
+++++=

1

0
5545352515 ),,,,(Trap)(

N

i
iiiii xxxxxxf                 (7) 

Where N is the number of traps and  

 
TABLE III.                EXPERIMENTAL RESULTS ON THE KNAPSACK PROBLEM, TRAP PROBLEM AND FOURTEEN NUMERICAL FUNCTION OPTIMIZATION PROBLEMS. THE 

NUMBER OF RUNS WAS 50. MEAN AND STD REPRESENT THE MEAN AND STANDARD DEVIATION OF BEST ANSWER FOUND FOR 50 RUNS RESPECTIVELY. KP1 AND KR1 MEANS 
KNAPSACK PENALTY1 AND KNAPSACK REPAIR1 

 
 100=m  250=m  500=m  1000=m  
 QEA SRQEA QEA SRQEA QEA SRQEA QEA SRQEA 
 MEAN STD MEAN STD MEAN STD MEAN STD QEA STD QEA STD QEA STD QEA STD 

Schwefel [16] 3.47×104 3.36×103 4.74×104 2.55 5.74×104 6.24×103 7.94×104 4.88×103 8.75×104 8.47×103 1.17×105 8.37×103 1.25×105 1.86×104 1.81×105 1.81×104

Rastrigin [16] -1.99×103 2.27×102 -1.40×103 1.07×102 -6.83×103 4.49×102 -5.44×103 1.96×102 -1.57×104 7.23×102 -1.36×104 3.69×102 -3.54×104 1.38×103 -3.20×104 4.51×102

Ackley [16] -17.24 0.068 -16.99 0.053 -17.62 0.12 -17.29 0.032 -17.97 0.11 -17.42 0.07 -18.34 0.089 -17.58 0.094 

Griewank [16] -38.53 6.51 -19.96 2.19 -156.94 16.51 -108.99 5.33 -3.82×102 2.59×101 -3.06×102 1.00×101 -8.79×102 3.95×101 -7.66×102 1.26×101

Penalized 1 [16] -1.69×105 2.15×104 -8.85×104 1.14×104 -5.94×105 4.78×104 -4.47×105 2.01×104 -1.45×106 8.28×104 -1.19×106 3.33×104 -3.19×106 1.07×105 2.86×106 4.92×104

Penalized 2 [16] -3.83×104 4.37×103 -2.13×104 1.82×103 -1.45×105 1.08×104 -1.03×105 7.58×103 -3.65×105 1.73×104 -2.89×105 8.17×103 -8.15×105 3.22×104 -7.11×105 1.58×104

Michalewicz [15] 22.84 2.55 33.14 2.08 36.07 4.28 52.51 2.65 53.23 6.55 74.11 3.78 70.94 9.09 103.28 5.17 

Goldberg [3] 40.01 2.59 51.71 2.20 76.76 4.69 94.58 2.71 127.96 6.22 153.76 3.67 2.29×102 10.79 2.56×102 6.11 

Sphere Model [16]  -4.32×105 5.46×104 -2.27×105 2.93×104 -1.65×106 1.83×105 -1.20×106 5.85×104 -4.22×106 2.67×105 -3.39×106 1.14×105 -9.91×106 4.50×105 -8.45×106 2.05×105

Schwefel 2.22 [16] -4.90 0.54 -3.39 0.19 -6.41 0.39 -5.32 0.17 -7.45 0.25 -6.56 0.18 -8.18 0.21 -7.50 0.12 

Schwefel 2.21 [16] -176.56 5.86 -168.17 5.18 -190.94 2.26 -189.84 1.78 -195.83 1.03 -195.62 1.04 -198.33 0.39 -198.07 0.67 

Dejong [15] -2.47×107 6.02×106 -8.02×106 1.75×106 -3.18×108 4.71×107 -1.68×108 1.75×107 -1.79×109 1.77×108 -1.22×109 6.76×107 -9.25×109 6.25×108 -7.15×109 3.17×108

Rosenbrock [3] -1.06×105 3.43×104 -3.71×104 6.00×103 -5.06×105 8.39×104 -2.77×105 2.46×104 -1.37×106 1.39×104 -9.81×105 3.77×104 -3.49×106 2.29×105 -2.76×106 1.03×105

Kennedy [3] -1.22 1.07 -8.9×10-4 8.44×10-4 -20.99 5.42 -0.07 0.14 -74.82 12.09 -0.83 0.57 -227.30 21.05 -4.80 1.98 

KR1 415.29 6.26 428.69 3.29 893.58 18.54 960.13 11.96 1742.02 30.71 1861.89 25.56 3140.68 44.05 3350.98 40.79 

KR2 420.88 2.52 423.27 0.95 1011.23 13. 60 1036.12 3.99 1904.88 36.06 1967.35 23.99 3613.54 60.16 3739.79 37.16 

KP1 579.22 8.06 591.16 3.47 1217.66 35.27 1357.41 12.79 2161.42 59.23 2417.01 51.09 3898.92 114.63 4370.67 96.63 

KP2 399.64 5.86 411 3.03 923.82 21.42 1001.99 8.86 1701.52 36.87 1846.33 23.18 3340.36 46.39 3582.66 43.67 

TRAP 72.17 4.19 82.37 1. 81 154.8 8.42 186.87 5.29 283.7 15.27 343.37 14.53 531.43 27.41 663.8 35.99 
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Where the function “ones” returns the number of ones in 
the binary string x. Trap problem has a local optimum in 
( )0,0,0,0,0  and a global optimum in ( )1,1,1,1,1 . 

ii. Knapsack problem 
Knapsack problem is a well-known combinatorial 

optimization problem which is in class of NP-hard problems 
[17]. Knapsack problem can be described as selecting various 
items ix (i=1,2,…,m) with profits ip and weights iw  for a 
knapsack with capacity C. Given a set of m items and a 
knapsack with capacity C, select a subset of the items to 
maximize the profit f(x): 

∑
=

=
m

i
ii xpxf

1
)(    ,    ∑

=
≤

m

i
ii Cxw

1
. 

This paper considered: 

),1(R vwi = , ),1(R vpi =  

Where ),(R ⋅⋅ is a uniform random number generator and 
v=10. 

The use of QEA for solving Knapsack problem is described 
in [17]. 

iii. Numerical Functions 
There are some benchmark numerical functions for testing 

the optimization algorithms. Here 14 benchmark functions are 
used for testing the algorithms: 

 Generalized Schwefel's Problem 2.26 [16], Generalized 
Rastrigin's Function [16], Ackley's function [16], Generalized 
Griewank Function [16], Generalized Penalized Function 1 
[16], Generalized Penalized Function 2 [16], Michalewicz 
Function [15], Goldberg & Richardson Function [3], Sphere 
Model [16], Schwefel's Problem 2.22 [16], Schwefel's Problem 
2.21 [16], Dejong Function 4 [15], Rosenbrock Function [3], 
and Kennedy multimodal function generator [3]. 

These functions have some local minima and a global 
minimum. We used them for maximization process, so we used 
–f(x) as fitness function. 
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