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Abstract 
 
This paper deals with a new proof of convergence of He’s variational iteration method applied to 
nonlinear oscillators. One example is given to verify convergence hypothesis and to illustrate the 
efficiency and simplicity of the method.  
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1  Introduction 
 
 
Recently He [1] published a survey article. Some new asymptotic techniques with numerous examples 
were reviewed, the limitations of traditional perturbation procedures were illustrated, and various 
modified perturbation techniques were introduced, furthermore some mathematical tools such as 
variational theory, homotopy technology, and iteration technique were suggested to overcome the 
shortcomings arising in classical perturbation methods. For the nonlinear oscillators, all the reviewed 
schemes produced high approximate periods, but the accuracy of the amplitudes cannot be ameliorated 
by iteration. This review article [1] was on the variational approaches, parameter-expanding method, 
parameterized perturbation technique, homotopy perturbation method, iteration perturbation procedure 
and ancient Chinese methods. Variational approaches to soliton solution, bifurcation, limit cycle, and 
period solutions of nonlinear equations including the Ritz method, energy technique, variational 
iteration method were systemtically discussed in Ref.[1]. 
The variational iteration method (VIM) plays an important role in both mathematics and engineering. 
This method was proposed by He [2-5] as a modification of a general Lagrange multiplier method [6]. 
It has been shown that this procedure is a powerful tool for solving various kinds of problems (e.g., 
see [7-10]). 
In this work, we adapt the technique to nonlinear oscillator problems and we prove the convergence of 
this method by proposing a new formulation of the method. An example is presented to show 
convergence assumption. 
 
 
2  The variational iteration method  
 



A. Ghorbani , J. Saberi-Nadjafi, Nonlinear Sci. Lett. A, Vol. 1, No.4, 379-384, 2010 380 

 
The idea of VIM is very simple and straightforward. To explain the basic idea of VIM, we consider a 
general nonlinear oscillator with specified initial conditions (i.e.,  and ) as 
follows (more general form can be considered without loss of generality):  

Au =(0) 0=(0)u′

0,=),,()(:=),,( uuuuguufuuuu ′′′+′+′′′′′F                 (1) 

In the equation (1),  and  are continuous nonlinear operators with respect to their arguments, 
and  is an unknown variable. We first consider Eq. (1) as:  
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where, as shown above,  with the property L 0≡fL  when 0≡f  denotes the linear operator 
with respect to  and u N  is a nonlinear operator with respect to . We then construct a correction 
functional for Eq. (2) as [5]:  
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where  is the initial guess and the subscript  denotes the n -th iteration, and )(0 tu n 0),( ≠stλ  

denote the Lagrange multiplier, which can be identified efficiently via the variational theory, and nu~  
is considered as a restricted variation [5], i.e., 0=~

nuδ .  
Taking the variation with respect to the independent variable , we notice that . 
Afterward, we make the correction functional stationary, and we obtain ; therefore, we 
have  
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As a result, we have the following stationary conditions:  
0,=),( tsstλ =

                    (6) 

1,=),(

ts

st

s
λ

=
∂

∂
                                  (7) 

0.=),(
2

2
),(

2

st
st λω

s
λ

+
∂

∂
                           (8) 

The Lagrange multiplier can be readily identified as  

).(sin1=),( tsωωλ st −                          (9) 
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Moreover, we have the following variational iteration formula:  

∫ ′′′++
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Accordingly, the successive approximations  of VIM will be readily obtained by 
choosing all the above-mentioned parameters. Consequently, the exact solution may be obtained by 
using  

0),( ≥ntun

).(lim=)( tutu n
n ∞→

                               (11) 

The initial guess can be freely chosen with possible unknown constants; it can also be solved from its 
corresponding linear homogeneous equation . It is important to note that for linear 
problems, its exact solutions can be obtained easily by only one iteration step due to the fact that the 
auxiliary function can be suitably identified [11]. For nonlinear problems, in general, one iteration 
leads to highly accurate solution by VIM if the initial solution is carefully chosen with some unknown 
parameters. 

0=)]([ 0 tuL

 
 
3  Convergence theorem  
 
 
The variational iteration formula makes a recurrence sequence . Obviously, the limit of the 
sequence will be the solution of Eq. (1) if the sequence is convergent. In this section, we give a new 
proof of convergence of VIM in details by introducing a new iterative formulation of this procedure. 
Here,  denotes the class of all real valued functions defined on , which have 
continuous th order derivatives. 
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Lemma 3.1  If for any , , then the variational iteration formula (10) is equivalent 
to the following iterative relation:  
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where  is as noted in (3).  L
Proof Suppose  and  satisfies the variational iteration formula (10). Applying  to 
both sides of (10) results in  
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Now, using the conditions (6)-(8) and 1=),( −
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From the definition (3) of , we obtain  L
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Conversely, suppose  and  satisfies (12). In view of the definition L  and nu 1+nu 0),( ≠stλ , 

multiplying (12) by  and then integrating from both sides of the resulted term from  to 1 
yield  
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Using integration by parts, the expression (16) becomes  
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which exactly results in (10) upon imposing the conditions (6)-(8), i.e.  
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and this ends the proof.    □ 
Theorem 3.2 If the sequence (11) converges, where  is produced by the variational iteration 
formulation of (10), then it must be the exact solution of the equation (1).  
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Using the expressions (19) and (20), and the definition of  in (3), we can easily gain  L
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From (21) and according to the Lemma 3.1, we obtain  
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          .),,()(= vvvvgvvfv ′′′+′+′′  
From the equations (23) and (24), we have  

0.     0,=),,()( ≥′′′+′+′′ tvvvvgvvfv                        (25) 

On the other hand, using the specified initial conditions and the definition of the initial guess, we have  
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Therefore, according to the above three expressions, (25)-(27),  must be the exact solution of the 
equation (1). This ends the proof.    □ 
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Note that the above theorem is valid for the linear operator  defined by (3). This convergence 
theorem is important. It is because of this theorem that we can focus on ensuring that the 
approximation sequence converges. It is clear that the convergence of the sequence (11) depends upon 
the initial guess  and the linear operator . Fortunately, VIM provides us with great freedom 
of choosing them. Thus, as long as  and  are so properly chosen that the sequence (11) 
converges in a region 

L

)(0 tu L
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Tt ≤≤0 , it must converge to the exact solution in this region. Therefore, the 
combination of the convergence theorem and the freedom of the choice of the initial guess  and 
the linear operator  establish the cornerstone of the validity and flexibility of VIM. 
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4  An illustrative example 
 
 
In order to illustrate the efficiency of the VIM described in this paper, we present one example. 
Example Let us consider the nonlinear oscillator [12]  

0.=(0)     and     ,=(0)   0,= uAuuuuεuu ′′′′++′′            (28) 

By expanding the exact solution  of (28) with the help of the Maple computational software, we 
can obtain  
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Solution We shall apply the method for solving (28). If we choose , then we obtain  Atu =)(0
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It is easy to see that  

),(=)(lim tutun
n ∞→

                 (34) 

which is the solution of (28). 
 
 
5  Conclusion 
 
 
In this work, we have given a new proof of convergence of He’s variational iteration method by 
presenting a new formulation of He’s method. The main property of this method is in its flexibility and 
ability to solve nonlinear equations accurately and conveniently without decomposing the nonlinear 
terms, which is very complex. This technique is a very powerful tool for solving nonlinear problems. 
Furthermore, it gives an accurate and easily computable solution by means of a truncated series whose 
convergence is fast. 
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