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Abstract This paper presents a new version of support vec-
tor regression (SVR) named Fuzzy Cost SVR (FCSVR) with
a unique property of operating on fuzzy data where fuzzy
cost (fuzzy margin and fuzzy penalty) are maximized. This
idea admits to have uncertainty in the penalty and margin
terms jointly. Robustness against noise is shown to be supe-
rior in the experimental results as a property compared with
conventional SVR,
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1 Introduction

The standard support vector machine works using crisp
training samples. Chun-fu Lin in [1, 2] proposed fuzzy sup-
port vector machine (FSVM) by considering noise in the
training samples. They used the membership function to ex-
press the membership value of a sample to positive or neg-
ative classes, with crisp training data. It, however, remains
a conventional support vector machine from the view point
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of fuzzy theory. The degree of importance of training data
is then modeled in the FSVM by inserting a membership
value, 1¢; as a penalty term of the cost function in the form of
%|| W||2 + C(Zf:l ii&). The error term &; is scaled by ;.
The fuzzy membership values are used to weight the soft
penalty term in the cost function of SVM. The weighted soft
penalty term reflects the relative fidelity of the training sam-
ples during training. Important samples with large member-
ship values will have more emphasis in the FSVM training
procedure and more effect on the determination of hyper-
planes. In [1] linear and quadratic functions are presented
for y¢; in the FSVM, on which two main targets_are fol-
lowed, increasing margin and decreasing misclassification
error.

Hong in [3] presented support vector fuzzy regression
machines which introduces use of SVM for multivariate
fuzzy linear and nonlinear regression models. The model
presented in [3] for regression includes fuzzy input and out-
put (x, ¥) in the form of:

F=w'zi+b. (1)

A SVM model is, then, used for calculation of crisp w
(weights). This model includes conventional fuzzy regres-
sion with new constraints in which upper and lower bounds
of fuzzy input and output are used for generation of con-
straints. The effect of fuzzy variables (input and output) on
the cost of SVR has not been considered though. Assuredly,
uncertainty in input data affects margin and penalty maxi-
mization in the SVR, which has not been studied in the pge-

vious works.
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In [4] Ji studied the support vector machine with fuzzy
chance constraints in the following form:
1 !
Minimize > [|W| +C§E,
,e 2)
Pos{yi(W' X; +b)+ & =1} >
>0, i=12,...,1L

subject to

They showed that Posfa < 0} > A with triangular fuzzy
number a = (ry, r2. r3) for any given level of A (0 < A < 1)
is equivalent to: (1 — A)ry + ra < 0. Thereupon, constraints
in (2) are simplified.

In our previous work [5], probabilistic constraints were
applied to reduce the impact of noisy samples in maximiza-
tion of margin. A constraint is in the form of Pr(d; (w’ x; +
b) > u;) > &; where u; is an independent random variable
with a known distribution function and 0 < §; < | is the
value of effect of i samples in fixing the optimal hyperplane.

Liu in [6] presented total margin-based adaptive fuzzy
support vector machines, TAF-SVM. TAF-SVM is a type
of FSVM which also corrects the skew of the optimal sep-
arating hyperplane due to the very imbalanced data sets by
using different cost algorithm. This work was performed by
dividing training data into two categories with different lev-
els of importance and results in dual problems in different
boundaries for different Lagrange multipliers.

In [7] two new methods for calculation of membership
function of ¢; are presented based on geometry of distribu-
tion of the training samples. Those samples are near to opti-
mal hyperplane and have similar geometric properties. The
main idea of FSVM is that if the input is detected as an out-
lier or noisy sample, membership function decreases so that
total error decreases. In [8] a new method for p; of FSVM is
presented which follows the same idea that one input is as-
signed with a low membership to the class if it is detected as
an outlier. However, the method presented in [8] treats each
input as an input of the opposite class with higher member-
ship and makes full use of the data achieving better gen-
eralization ability. Also in two different works [9. 10]. au-
thors have tried to determine membership function in multi-
category data classification.

The related works reviewed above can be categorized in
the following form:

(1) Standard FSVM and its variants, which modify mem-
bership function j;.
(II) SVMs with special constraints for better performance
against noisy samples.
(IIT) SVM as a method for finding optimal parameters of a
regression model.

The main idea in this work is the presentation of a full
fuzzy support vector machine according to a new fuzzy cost

and fuzzy input signal. Undoubtedly, fuzzy input or fuzzy
penalty cannot exist alone. If we assume that the input signal
is a fuzzy number then fuzzyfication permeates into the out-
put part of SVM, which includes margin and penalty terms.

This paper is organized as follows: The SVM and SVR
are discussed in Sect. 2 in more detail. Section 3 is devoted
to the proposed method, namely fuzzy cost SVR (FCSVR).
Experimental results are discussed in Sect. 4. Final section
incorporates conclusions and future work.

2 Support vector machine and regression

We first discuss Support vector machine and regression,
prior to introducing our approach. The support vector ma-
chine (SVM) is a supervised learning method which gener-
ates input-output mapping functions from a set of labeled
training data. The mapping function can be either a classi-
fication function, i.e., the category of the input data, or a
regression function. Initially developed for solving classifi-
cation problems, support vector techniques can be success-
fully applied to regression. The general regression learning
problem is set as follow:

Suppose we are given the training data {(X),y).
(X2, ¥2)0..., (X;. w)) C X x R, where X denotes the space
of the input patterns (e.g. X = R”). In £-SV regression
[Vapnik. 1995]. the goal is to find a function f(x) that has at
most £ deviation from the actually obtained targets y; for all
the training data. The regressor must not only fit the given
data well, but also make minimal error in predicting the val-
ues at any other arbitrary point in R”. Nonlinear regression
is accomplished by fitting a linear regressor in a higher di-
mensional feature space. A nonlinear transformation ¢ is
used to transform data points from the input space with
dimension D into a feature space having a higher dimen-
sion L. The nonlinear mapping is denoted by ¢ : R” — RL.

This problem can be written as a convex optimization
problem: hence, we arrive at the formulation stated in [ Vap-
nik, 1995].

I
I l 2 *
Minimize 5|)W|| - C(g(&”f + & ))
=
subjectto  yi — W (X)) —b<e+& 3)
—yi+Wlgp(X)+b<e+&
&.6=0
where W = [wy, ..., wy|", C > 0 is a constant, &.&" are

slack variables for soft margin SVM, that allows to accept
some deviation larger than the precision, &. It turns nut}hal
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in most cases the optimization problem (3) can be solved
more easily in its dual formulation.

!
|
Maximize —= Z(a, —of )« —a*})K(X{. X

-

i j=I

! 1
—eY (ita)+ Y yilwi—a) (4
i=l i=1
!
subject to Z(a,-—a,—"):().

i=l

a;.af €[0.C]

where @, o are Lagrange coefficients and matrix K is
termed as a kernel matrix and its elements are given by:
K{X;, X )= X)To (X)) i, j=1,2,..., M.

By solving (4) we can find Lagrange coefficients and by
replacing them, we have: W = Zﬁ;, (i —a])p(X;). Thus
we can find the hyperplane function as:

1
f(X)=> (i —a})K(Xi. X) +b. (5)

i=l

3 The proposed fuzzy cost support vector regression
(FCSVR)

We now discuss the proposed algorithm for support vec-
tor regression, termed as fuzzy cost support vector re-
gression (FCSVR). Consider the fuzzy sample set § =
{(X]._\j).(xj.»\‘]) ..... ()?;._\',)}, where X; = (¥}, %2, ...,
X4) 1s a d-dimensional fuzzy input vector, y; is the desired
output, and [ is the number of training samples for regression
operation. The fuzzy input can be having different form of
membership functions. Here we will consider the following
linear membership function related to each fuzzy sample:

| X <X
wi(X) = L*—;’r‘—" Xi<X<X +d (6)
0 X2X|+df

d; 1s the tolerance of ith input vector and d; € (0, 1],
X eRP,i=1,....1. Some considerable are notable about
the tolerance of data. (I) Without any further calculation,
we enter the concept of noise in (6). (IT) In many applica-
tions we cannot easily obtain prescience (prior knowledge)
about Signal to Noise Ratio (SNR) so we consider SNR us-
ing data with tolerance. (III) Also (6) provides the ability
of inserting samples with tolerance and degree of uncer-
tainty in the training of learning data. (IV) Tolerance is an
unwanted part, which is derived from unprecise nature of
devices, and sensors in data acquisition, its inclusion in the
estimation/regression, however, appears to be a challenging
issue.

a Springer

The support vector machine for fuzzy linear examples
solves the following fuzzy quadratic equation:

!
| 7 M
EI|W||'+C(Z(55+E, ))

i=l

Minimize

subjectto  y; — wT }E’,' —b<e+§ (7
—vi + WT)?,' +b SF"f‘S,-'

5.6 =0,

In (7) fuzzy input leads to fuzzy cost Z = §|W|* +
C(Zf:, (& +&7)). For entering the fuzzy conceptin Z, we.
use the following algorithm which incorporates determining
the upper and lower cost function (Z) and its fuzzyfication.

Step (I) Boundary calculation of the cost function

As the range of fuzzy samples is [ X;. X; +d;], Z is there-
fore obtained in the bounds as the solution of two classical
convex quadratic programming (QP) problems. It takes the
form of (8) for the lower bound and that of (9) for the upper
bound.

Minimize

I
I y
Z) = EIIWII-+C(Z(E. +§; ))

i=l
subjectto vy — WIX, —b<e+g (8)
—vi + WTX,‘ +b<e +E:
§&.5§7=0

and

!
o I .
Minimize 75 = > IW>+C (Z(sf EE ))
i=1
subjectto ¥ — WT (X;+di)—b<e+§& (9)
—yi+Wl(X;+d)+b<e+&
E[- E“ = 0.
Solving (8) and (9), results in Z; andZ> as the values for
Z respectively. In the next step, cost function of Z is fuzzi-
fied for studying all states of the input signal in [ X;, X; +d;].

Step (II) Fuzzyfication of the cost function

Lower and upper bounds of Z are:

Min{Z,, Z>) = Z, (10)
Max{Z,.Z2) = Z, (l{l)
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where Z, is the upper bound and Z; is the lower bound of
the object function of (8) and (9) respectively. Other opti-
mum values are varying between the two values where in-
puts are varying between [X;, X; + d;]. Now we consider
the following linear membership function to determine the
optimal grade for Z:

1, Z<Z
pz(WE+8) =1 5%, z<zZ<2Z, (12)
0, Z ZZu
where, W = [wy,..., il E = [y g7, & =
(&, ....&517.

Step (III) Finding decision space

The membership function of the fuzzy set “decision™ of

fuzzy model is in the following form:

Hei(W. & +E7)

0 y—-WIXi+d)—b>e+
e+E —(vi —WT (X +d;)—b)
wT,

s yvi—WI(X; +d)—b (13)
<e+&<y,—Wi'X;,—b
Il y—WiX;—b<e+§

and

e (W E+E%)

0 —yi+Wi'Xj+b>e+&
E+E —(—yi+WT X;+b)

wTd
—yi+WTX;+b<e+§" (14)
<—yi+WI(X;+d)+b
1 —y =Wl Xi+d)+b <e+ &

where W7d; #0.

The intersection of the membership function of objective
function and the membership function of constraints are in
fact the minimization of all membership functions. There-
fore, we must maximize this minimum value. We have:

MaxMin{puz(W,E+E*), e (W, E+E%), ...,
(W, E+E), ub (W, E+E7), ...,
o (W.E+E%)) (15)

Using a-cut method, we arrive at the following con-
straint:
Maximize o
nz(W.E+£%)>a
Hei(W,E+E") > a (16)
Hy (W E+E) >

O<a<l.

subject to

Substituting in the above, assuming that W7d; is non-
zero, we have:

Maximize o

- ’
-5 IWI —C(Z(s, +E)

subject to

EO’(Z"*ZI)—Zn D

e+& —(yi— WI(Xi +d;) —b) > aW'd;
e+E —(—yi+WTX, +b)>aWd;.

Solving this, we find optimized W, b and maximum .

4 Experimental results

We now demonstrate the effectiveness of our proposed
model for linear function approximation. The experimental
results pertaining to the model are compared to conventional
support vector regression models. In this work, we have in
fact studied the effect of measurement noise on the proposed
method in estimation of the desired function. We used MAT-
LAB for implementing and testing our method. Results are
obtained from an average of 400 times of executing the pro-
gram. Some definitions are mentioned before carrying out
the experiments,

Triangular or trapezoidal form of fuzzy numbers is used
for simulation of uncertain data in the operation of re-
gression. They fall in the interval [X;, X; + d;]. If X is a
fuzzy number then alpha-cut of X is represented by X, =
{X : g = ) that is a closed interval and is denoted by:
Xo =[XE, XU), where @ € [0, 1].

An LR-type fuzzy number X with its membership func-
tion y¢ ¢ (x) is defined as:

L(ﬂla_—x) for X <m,

nyp(X)=11
X—m;y
R(X52)

formy <X <m> (18)

for X = m»>.

This is called an LR-type TEN (Trapezoidal Fuzzy Number)
where m ., m> are boundaries. The results are represented in
Fig. 1(a). Fig. 2 and Fig. 6 respectively. «, f are slopeg of
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= Trapesoidal fuzzy number

" Traingular fuzzy number

(a)

09 /i /1
/ | { t
os} /i) /

(b)

Fig. 1 (a) Two common samples of TFN. (b) LR-type triangular fuzzy number

right and left side of trapezoid. Two types of TFN are shown
in Fig. 1(a).

In general, fuzzy number X is a number in the interval
[Xi. Xi + d;] with defined uncertainty degree. Noise may
affect parameters of fuzzy numbers. This effect can be mod-
eled as the following form using LR-type fuzzy numbers:

L(iﬁg—x) for X <=my

np (X)=11 ‘ form; < X <m> (19)
R{x—;f’*’»] for X = rit

where rity, sit2, &, B are noisy parameters of LR-type fuzzy
numbers corrupted with uniform noise. Accurate study of
noise effects and method of contamination is a new work
in the field of fuzzy numbers. Signal 10 Noise Ratio (SNR)
is also defined as 20|03%:— where Dy is the main value
of parameters and D, is the domain of noise. Error is
also defined in the form of ;érz,‘-\;ﬂ(j’,' — ¥)? where ¥
is the resulted output using SVR or FCSVR method and
i is the desired output. N is the number of training sam-
ples.

Example Given the samples shown in Fig. 2. we want 1o es-
timate linear equation in the form of v = wX + b 1o check
the results. It is known that the given data are generated from
v =3.73X + 4 and noise is added to v which is modeled
in the form of added noise into parameters of fuzzy num-
bers.

Obtained results using standard SVR and FCSVR are
shown in Table I. The optimum value of input tolerance

@ Springer
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Fig. 2 Noisy captured data in signal to noise ratio equal 13.9 dB

(the parameter d;, mentioned in (17)) is obtained using ex-
haustive scarch and is shown in second column of Table 1.
Maximum value of membership degree o appears in the end
column. Error indicates superiority of the proposed FCSVR
relative to standard SVR. bsvg, bsyg arc estimated parame-
ters by SVR and wgcgyg, !3pr:sva are estimated parameters
by FCSVR. Also, error of SVR (esyg) and error of FCSVR
(epcsvr) are shown in Fig. 3.

Figure 4 demonstrates the optimum tolerance of (d;) in
different SNRs. In the low noise condition or low SNR, 1o
gain lower error, we need to decrease d;. It means that de-
creasing the certainty degree (d;) must be performed once
the signal has been detected to be contaminated with noist.
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Table 1 Result of estimation of

v =wX + b from captured SNR d; sV WECSVR bsvi bresvi CSVR CECSVR o
noisy samples (Yn) (as shown in (per dB)
Fig. 2) in different SNR over
400 runs 26.02 0.08 38211 1OB28 4. 1015 40159 0.0412 0.0005 . 1865
20 014 3.9282 3.7527 4,200 40046 0.1722 00006 0. 1969
16,4782 0.2 40006 38351 4.2963 1961 (L3549 0.0024 0.2086
13.9794 0.28 4115 3.969 43966 3.861 (L6635 0.0112 0.2338
12.76 0.3 41039 3.9749 44608 38771 1.0394 0.02 0.2249
12,0412 0.34 4.1979 4.0595 45043 38268 1 4988 00409 0.2265
11.37 0.4 4.2109 41095 4.5595 3.7255 1.5443 0.0438 0.2491
10,4576 0.42 4.3304 4. 1883 4.5838 38069 2.3889 0.0784 02164
91186 048 4.1579 4.0748 4.704 3.677 20048 0.0819 0.2381
2, e pas———— s
e _m'"“ 0.24 _ A
0} T~ )
e N 0.23 \ \ / ‘\
— \[ W\
al - ] 0.22 \
. — s \
. ™ 0.21
A 4
| 0.2
& ~ | o.wi 4
0.18) - "
‘| s 10 15 20 25 30
PO . P e U
8 1 12 14 1w 1. W 2 a2 n SRt{per o)
SNR(per 48)

Fig. 3 Comparison of the proposed FCSVR and standard SVR

0.5] e T

ﬂ.l\ \\

0.4 [ &\\“‘--\

—

ol L L 4

15 20 25 10
SNRiper dB)

Fig. 4 Input tolerance (di) versus SNR

Therefore, if SNR decreases, to have lower error, d;, must
increase. The main problem. however, would be 1o esti-
mate the level of noise present in the signal, In the future
work this issue will be addressed to complete regression sys-
tem.

Maximum membership, (@) in (17) indicates its relation
with SNR. An increase in the noise level, ¢ increases about
10-15% for a 50% decrease in SNR. An increase in @ means
that fuzzy values are selected in a narrower range. In other

Fig. 5 o versus SNR

words. according to (17) constraints puz(W.§ + £%) = a,
Wi (W E+E") = p) [ (W.E+E") = a are saiisfied in
higher certainty. For pe,(x) = & higher @ means that the op-
timum Z in (9) moves owards Z; or alternatively the cost
function is spotted with higher degree of certainty. It is obvi-
ous that Z includes both the margin of SVR and the penalty
term, therefore. decreasing uncertainty in the margin re-
sults in a medium to high level of SNR. Simultancously, the
penalty term has higher certainty, From ji (W E+£%) > @,
5 (W E + E7) = o we find that, constraints move toward
standard SVR.

Alternatively, when SNR is high, the regression model
moves toward SVR with high value of uncertainty due to un-
certainty in modeling the input data. This lemma is correct
only in medium to high level of SNR (more than 13 dB) ac-
cording to Fig. 5. There is no basis for evaluating low value
of SNR at the present. though.

Figure 6 indicates the function estimation using SVR and
FCSVR in two different values (medium and high) of SNR.
Robustness of FCSVR against noise is noticeable compared
1o SVR. W
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04 x 06

(@)

(b)

Fig. 6 Estimation of Y=3,73X+4 with two different SNR. (a) SNR = 30 dB, (h) SNR — 14 dB

5 Conclusion

Noisy samples cause performance decrease in the support
vector regression method. Fuzzy margin with fuzzy penalty
concept were introduced in this paper. The idea could re-
sult in decreasing the noise effect. Several experiments were
performed and compared to standard SVR. The obtained re-
sults indicate superiority of the proposed method as opposed
to conventional SVR.
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