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In this article, we consider the product-limit quantile estimator of an unknown
quantile function under a censored dependent model. This is a parallel problem to
the estimation of the unknown distribution function by the product-limit estimator
under the same model. Simultaneous strong Gaussian approximations of the
product-limit process and product-limit quantile process are constructed with rate
O��log n�−�� for some � > 0. The strong Gaussian approximation of the product-
limit process is then applied to derive the laws of the iterated logarithm for product-
limit process.

Keywords Censored dependent data; Kaplan–Meier estimator; Kiefer process;
Law of the iterated logarithm; �-Mixing; Strong Gaussian approximation.
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1. Introduction and Preliminaries

In medical follow-up or in engineering life testing studies, the lifetime variable may
not be observable. Let X1� � � � � Xn be a sequence of lifetimes, having a common
unknown continuous marginal distribution function F� with a density function f =
F ′ and hazard rate � = f/�1− F�. The random variables are not assumed to be
mutually independent (see assumption (1) for the kind of dependence stipulated).
Let the random variable Xi be censored on the right by the random variable Yi, so
that one observes only

Zi = Xi ∧ Yi and 	i = I�Xi ≤ Yi��
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2272 Fakoor and Rad

where ∧ denotes minimum and I�·� is the indicator of the event specified in
parentheses. In this random censorship model, we assume that the censoring random
variables Y1� � � � � Yn are not mutually independent (see assumption (2) for the kind
of dependence stipulated), having a common unknown continuous d.f. G� and that
they are independent of the Xis. Because censored data traditionally occur in lifetime
analysis, we assume that Xi and Yi are nonnegative. The actually observed Zis have
a distribution function H satisfying

H�t� = 1−H�t� = �1− F�t���1−G�t���

Denote by

F∗�t� = P�Z ≤ t� 	 = 1��

the subdistribution function for the uncensored observations. Define

Nn�t� =
n∑

i=1

I�Zi ≤ t� 	 = 1� =
n∑

i=1

I�Xi ≤ t ∧ Yi��

the number of uncensored observations less than or equal to t, and

Yn�t� =
n∑

i=1

I�Zi ≥ t��

the number of censored or uncensored observations greater than or equal to t and
also the empirical distribution functions of �H�t� and F∗�t� are respectively defined as

Y n�t� = n−1Yn�t�� Nn�t� = n−1Nn�t��

Then the Kaplan–Meier estimator for 1− F�t�, based on the censored data is

1− F̂n�t� =
∏
s≤t

(
1− dNn�s�

Yn�s�

)
� t < Z�n�� (1.1)

where Z�i� are the order statistics of Zi and dNn�t� = Nn�t�− Nn�t−��
As is known (see, e.g., Gill, 1980), for a d.f. F on �0���� the cumulative hazard

function 
 is defined by


�t� =
∫ t

0

dF�s�

1− F�s−�
�

and 
�t� = − log�1− F�t�� for the case that F is continuous. The empirical
cumulative hazard function 
̂n�t� is given by


̂n�t� =
∫ t

0

dNn�s�

Yn�s�
�

which is called the Nelson–Aalen estimator of 
�t� in the literature.
For a censored model with �Xi� i ≥ 1
 and �Yi� i ≥ 1
 independent and

identically distributed (i.i.d) sequences and mutually independent, Burke, Csörgő,
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Strong Gaussian 2273

and Horváth (1981, 1988) established strong Gaussian approximation of the
product-limit (PL) process

√
n�F̂n�t�− F�t�� by a two-parameter Gaussian process

at the almost sure rate of O�n−1/2�log n�2�� In left truncation and right censorship
(LTRC) model, Zhou and Yip (1999) initiated and Tse (2003, 2005) established
strong Gaussian approximation of the PL-process by a two-parameter Gaussian
process at the almost sure rate of O��log n�3/2n−1/8�� a rate that reflects the two-
dimensional nature of the LTRC model.

The quantile function Q and its sample estimator Qn are defined by

Q�p� �= inf�t � F�t� ≥ p
� Qn�p� �= inf�t � F̂n�t� ≥ p


for 0 < p < 1� The role of the quantile function in statistical data modeling was
emphasized by Parzen (1979). In econometrics, Gastwirth (1971) used the quantile
function to give a succinct definition of the Lorenz curve, which measures inequality
in distribution of resources and in size distribution.

In the independent framework with no censoring, the properties of estimator
Qn (where F̂n is replaced by the empirical d.f. Fn) have been extensively studied
(see, e.g., Csörgő, 1983; Shorack and Wellner, 1986). Under �-mixing condition
(for the definition see Doukhan, 1996), the Bahadur representation was obtained
by Sen (1972) and the extension to the �-mixing case was obtained by Yoshihara
(1995). Under �-mixing condition (see definition below), the strong approximation
of the normed quantile process �n�p� �=

√
nf�Q�p���Q�p�−Qn�p�� by a two-

parameter Guassian process at the rate O��log n�−�� for some � > 0 was obtained
by Fotopoulos, Ahn, and Cho (1994) and was later improved by Yu (1996).

For a censored model with Xi and Yis, independent and identically distributed
sequences and mutually independent, Padgett and Thombs (1989) stated the strong
consistency and asymptotic normality for a smooth estimator of Q�p�. Sander
(1975) obtained some asymptotic properties, and Csörgő (1983) and Cheng (1984)
discussed strong approximation results with some applications for Qn�p�. In left
truncation and right censorship model, Tse (2005) obtained strong Gaussian
approximations of the PL-quantile process by a two-parameter Kiefer type process
at the rate O��log n�3/2n−1/8�� Ould-Saïd and Sadki (2005) established the strong
consistency and a Badadur-type representation of K-M quantile function Qn�·�
under a strong mixing hypothesis.

The main aim of this article is to derive strong Gaussian approximations of the
PL-process and PL-quantile process, for the case in which the underlying lifetime
are assumed to be �-mixing whose definition is given below. As a result, we obtain
the law of the iterated logarithm for PL-process.

For easy reference, let us recall the following definition.

Definition 1.1. Let �Xi� i ≥ 1
 denote a sequence of random variables. Given a
positive integer m, set

��m� = sup
k≥1

�	P�A ∩ B�− P�A�P�B�	� A ∈ � k
1 � B ∈ ��

k+m
� (1.2)

where � k
i denote the �-field of events generated by �Xj� i ≤ j ≤ k
� The sequence is

said to be �-mixing �strongly mixing� if the mixing coefficient ��m� → 0 as m → ��
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2274 Fakoor and Rad

Among various mixing conditions used in the literature, �-mixing is reasonably
weak and has many practical applications. There exist many processes and
time series fulfilling the strong mixing condition. In particular, the stationary
autoregressive-moving average (ARMA) processes, which are widely applied in time
series analysis, are �-mixing with exponential mixing coefficient; i.e., ��n� = e−�n

for some � > 0. The threshold models, the EXPAR models (see Ozaki, 1979), the
simple ARCH models (see Engle, 1982; Masry and Tjostheim, 1995, 1997), and their
extensions (see Diebolt and Guégan, 1993) and the bilinear Markovian models are
geometrically strongly mixing under some general ergodicity conditions. Auestad
and Tjostheim (1990) provided excellent discussions on the role of �-mixing for
model identification in nonlinear time series analysis.

Now, for the sake of simplicity, the assumptions used in this article are as
follows:

Assumptions.

(1) Suppose that �Xi� i ≥ 1
 is a sequence of stationary �-mixing random variables
with continuous distribution function F and mixing coefficient �1�n�.

(2) Suppose that �Yi� i ≥ 1
 is a sequence of stationary �-mixing random variables
with continuous distribution function G and mixing coefficient �2�n�. Moreover,
we assume the censoring times are independent of �Xi� i ≥ 1
.

(3) ��n� = O�e−�log n�1+�
� for some � > 0, with ��n� = max��1�n�� �2�n�� (see

Remark 2.1. in Ould-Saïd and Sadki, 2005).

Cai (1998, Lemma 1) showed that the Zis are �-mixing random variables (with
appropriate coefficient �).

The layout of the article is as follows. Section 2 contains main results. The
proofs of the main results are relegated to Sec. 3.

2. Main Results

In the first theorem, we construct a two-parameter mean zero Gaussian process that
strongly uniformly approximate the empirical processes Zn1�t� =

√
n�
̂n�t�−
�t��

and Zn2�t� =
√
n�F̂n�t�− F�t���

Theorem 2.1. Suppose that assumptions (1)–(3) are satisfied. On a rich probability
space, there exists a two-parameter mean zero Gaussian process �B�u� v� u� v ≥ 0
 such
that,

sup
t≥0

	Zn1�t�− B�t� n�	 = O��log n�−�� a�s�� (2.1)

sup
t≥0

	Zn2�t�− �1− F�t��B�t� n�	 = O��log n�−�� a�s� (2.2)

Remark 2.1. In the �-mixing case, we cannot achieve the same rate as in the iid
case; i.e., O�n−1/2�log n�2� (see Burke, Csörgő, and Horváth, 1988, Theorem 2.1). The
main reason is that our approach utilizes the strong approximation introduced by
Dhompongsa (1984) as a Kiefer process with a negligible reminder term of order
O�n−1/2�log n�−��� This is not as sharp as in iid case.
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Strong Gaussian 2275

Corollary 2.1. Under assumptions (1)–(3), we have,

sup
t∈R

	
̂n�t�−
�t�	 = O

(
log log n

n

)1/2

a�s�� (2.3)

sup
t∈R

	F̂n�t�− F�t�	 = O

(
log log n

n

)1/2

a�s� (2.4)

In the next theorem, we construct a two-parameter mean zero Gaussian process
that strongly uniformly approximates the empirical process �n�p�.

Theorem 2.2. Let 0 < p0 ≤ p1 < 1� Under assumptions (1)–(3), assume that F is
Lipschtiz continuous and that F is twice continuously differentiable on �Q�p0�−
	�Q�p1�+ 	� for some 	 > 0 such that f is bounded away from zero. Then there exists
a two-parameter mean zero Gaussian process B�t� u� for t� u ≥ 0 such that,

sup
p0≤p≤p1

	�n�p�− �1− p�B�Q�p�� n�	 = O��log n�−�� a�s�� (2.5)

with � > 0�

3. Proofs

In order to prove Theorem 2.1, we need the following lemma.

Lemma 3.1 (Theorem 3 in Dhompongsa, 1984). Under assumptions (1) and (3),
there exists a Kiefer process �K�s� t�� s ∈ �� t ≥ 0
 with covariance function

E�K�s� t�K�s′� t′�� = ��s� s′�min�t� t′�

and ��s� s′� is defined by

��s� s′� = Cov�g1�s�� g1�s
′��+

�∑
k=2

�Cov�g1�s�� gk�s
′��+ Cov�g1�s

′�� gk�s��
�

where gk�s� = I�Zk ≤ s�−H�s�� such that, for some � > 0 depending only on �� given
in assumption (3),

sup
t∈�

	Y n�t�−H�t�− K�t� n�/n	 = O�bn�� a�s�

where

bn = n−1/2�log n�−��

Proof of Theorem 2.1. We start with the usual decomposition of Zn1�t��

Zn1�t� =
√
n�
̂n�t�−
�t�� = √

n

[ ∫ t

0

dNn�x�

Y n�x�
−

∫ t

0

dF∗�x�
H�x�

]

=
∫ t

0

√
n�H�x�− Y n�x��

�H�x��
2 dF∗�x�+ Rn1�t�
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2276 Fakoor and Rad

where

n−1/2Rn1�t� =
∫ t

0

�Y n�x�−H�x��2

Y n�x��H�x��2
dF∗�x�+

∫ t

0

d�Nn�x�− F∗�x��
H�x�

+
∫ t

0

(
1

Y n�x�
− 1

H�x�

)
d�Nn�x�− F∗�x��

= I1 + I2 + I3�

Define, for t ≥ 0 the sequence of Gaussian processes

B�t� n� =
∫ t

0

K�x� n�/
√
n

�H�x��2
dF∗�x�� (3.1)

where K�s� t� is the Kiefer process in Lemma 3.1. Clearly, E�B�t� n�� = 0�

Cov�B�s�m�� B�t� n�� =
√
m

n

∫ t

0

∫ s

0

��x� y�

H�x�
2
H�y�

2 dF∗�x�dF∗�y��

where ��s� t� is defined in Lemma 3.1. Let

��t� n� = −√
n�Y n�t�−H�t��− K�t� n�/

√
n�

Theorem 2.1 is about the order

sup
t≥0

	Ẑn1�t�− B�t� n�	 = sup
t≥0

	Rn1�t�+ Rn2�t�	� (3.2)

where

Rn2�t� =
∫ t

0

��x� n�

�H�x��2
dF∗�x��

To deal with Rn1�t�� we treat Y n�x� as an empirical d.f. associated to Z′
is and from

Theorem 1 in Cai (1998), we have

I1 = O�a2
n� a�s�� (3.3)

where

an =
(
log log n

n

)1/2

�

To estimates of I2� divide the interval �0� t� into subintervals �xi� xi+1�� i =
1� � � � � kn where kn = O�a−1

n �� and 0 = x1 < x2 < · · · < xkn+1 = t are such that xi+1 −
xi = O�bn�� Then

	I2	 =
∣∣∣∣∫ t

0

d�Nn�x�− F∗�x��
H�x�

∣∣∣∣ ≤
kn+1∑
i=0

∣∣∣∣∫ xi+1

xi

d�Nn�x�− F∗�x��
H�x�

∣∣∣∣ �
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Strong Gaussian 2277

The integral on the right-hand side of the latter inequality is bounded above by
�log n�−�−�/

√
n� almost surely (the proof of this can be done using similar arguments

to A in Lemma 3.4 in Ould-Saïd and Sadki (2005). Therefore,

I2 = O��log n�−�−�� a�s� (3.4)

The estimate of I3 is similar to the estimate of I3 in the proof of Theorem 2 in Cai
(1998). Hence,

I3 = O�bn� a�s� (3.5)

Therefore, by combining (3.3)–(3.5), we have

sup
t≥0

	Rn1�t�	 = O��log n�−�−�� a�s� (3.6)

Next, by applying Lemma 3.1, we have

sup
t≥0

	Rn2�t�	 = O��log n�−�� a�s� (3.7)

Combining (3.2), (3.6), and (3.7) we obtain (2.1). It can be shown that

F̂n�t�− F�t� = �1− F�t���
̂n�t�−
�t��+ O

(
log log n

n

)
a�s� (3.8)

Therefore, (2.2) is proved via (3.8). �

Proof of Corollary 2.1. By the law of the iterated logarithm for Kiefer processes
(see, Theorem A in Berkes and Philipp, 1977), and (3.1) we have,

sup
t∈R

	B�t� n�	 ≤ C sup
t∈R

	K�t� n�	/√n = O

(
log log n

n

)1/2

a�s� (3.9)

where C is a positive constant. From (2.1), (2.2), and (3.9) we obtain the results. �

The proof of Theorem 2.2 is mainly based on the following lemmas of Ould-
Saïd and Sadki (2005). Lemma 3.2 shows that F̂n composed with Qn is an
approximate identity up to order O�bn�. Lemmas 3.3 and 3.4 give global and local
bounds for the deviation between Qn and Q.

Lemma 3.2. Let 0 < p0 ≤ p1 < 1. Under assumptions (1)–(3), assuming that F is
continuous, then

sup
p0≤p≤p1

	F̂n�Qn�p��− p	 = O�bn� a�s�

where bn = �log n�−�/
√
n with � > 0.
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2278 Fakoor and Rad

Lemma 3.3. Under assumptions (1)–(3), assuming that F ′ = f is continuous and
strictly positive on �Q�p0�− 	�Q�p1�+ 	� for some 	 > 0. Then,

sup
p0≤p≤p1

√
n	Qn�p�−Q�p�	 = O�

√
log log n� a�s�

Lemma 3.4. Let �n = const�bn. Under (1)–(3) and assuming that F is Lipschitz
continuous on �0� ��. Then,

sup
	s−t	≤�n

√
n	Zn2�s�− Zn2�t�	 = O��log n�−�−�� a�s��

where � > 0 and � > 0.

Proof of Theorem 2.2. We continue to use the notation �n as in Lemma 3.4. Let s =
Qn�p� and t = Q�p�, p0 ≤ p ≤ p1, Lemma 3.3 yields

√
n	s − t	 = O�

√
log log n� a�s�

Applying Lemma 3.4 gives,

F̂n�Qn�p��− F̂n�Q�p�� = F�Qn�p��− F�Q�p��+ O��log n�−�−�/
√
n� a�s� (3.10)

By Lemma 3.2, F̂n�Qn�p�� can be replaced by p up to O�bn�. For the right-hand side,
a Taylor expansion of the first term about Q�p� up to second-order term gives,

f�Q�p���Q�p�−Q�p��+ O��Qn�p�−Q�p��2�+ O��log n�−�−�/
√
n� a�s��

for p0 ≤ p ≤ p1. Invoking Lemma 3.3 and rearranging terms in (3.10), we have,

√
nf�Q�p���Qn�p�−Q�p�� = √

n�p− F̂n�Q�p��
+ O��log n�−�−�� a�s��

for p0 ≤ p ≤ p1. Since F is continuous, F�Q�p�� = p. Recalling the definitions of the
PL process Zn and PL-quantile process �n, we have,

�n�p� = Ẑn�Q�p��+ O��log n�−�−�/
√
n� a�s� (3.11)

for p0 ≤ p ≤ p1. By using Theorem 2.1 and (3.11), theorem is proved. �
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Burke, M. D., Csörgő, S., Horváth, L. (1988). A correction to and improvment of “Strong
Approximations of Some Biometric Estimates under Random Censorship.” Probab.
Theor. Relat. Field. 79:51–57.

Cai, Z. (1998). Asymptotic properties of Kaplan–Meier estimator for censored dependent
data. Stat. Probab. Lett. 37:381–389.

Cheng, K. F. (1984). On almost sure representation for quantiles of the product limit
estimator with applications. Sankhya 46:426–443.
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