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Abstract: Due to the good tracking behaviour of the LMS adaptive filter in a noisy environment, 
the FX-LMS algorithm is proposed in the literature as a method of active noise control,  
ANC. But each of the LMS and RLS algorithms have their own advantages and disadvantages.  
In this paper, a new approach based on a mixture of the RLS and LMS algorithms, RLMS, is 
presented. The optimum weights of the mixture are derived and it is proved that the MMSE of the 
proposed system is reduced compared to those of the RLS and LMS algorithms. Then, the 
proposed RLMS algorithm is employed for active noise cancellation to form the FX-RLMS 
algorithm, in a duct. Experimental results show better performance of the RLMS algorithm 
compared to both the RLS and LMS algorithms of convergence and tracking behaviour in the 
system identification problem and noisy chirp tracking. The FX-RLMS algorithm shows better 
results in active noise cancellation compared to the FX-LMS algorithm. 
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1 Introduction 
In recent years, acoustic noise cancelling by active methods, 
owing to its numerous applications, has been in the focus of 
interest of many researches. Contrary to the passive method, 
it is possible by using the active method to suppress or 
reduce the noise in a small space particularly in low 
frequencies (below 500 Hz) (Prandoni and Vetterli, 1998; 
Sadoghi Yazdi et al., 2004). ANC was introduced for the 
first time by Lveg (1936) for suppressing the noise in a duct 
(Elliott and Nelson, 1993). In the active control method by 
producing a sound with the same amplitude but with 
opposite phase, the noise is removed. For this purpose, the 
amplitude and phase of the noise must be detected and 
inverted. The developed system must have the adaptive 
noise control capability (Strauch and Mulgrew, 1998).  
In usual manner, an FIR filter is used in ANC whose 
weights are updated by a linear algorithm (Das and Panda, 
2004; Das et al., 2006). Using the linear algorithm of the 
LMS is not possible owing to the non-linear environment of  
the duct and appearing the secondary path transfer function 
H(z). Hence, the FX-LMS algorithm is presented in which 
the filtered input noise x′(n) is used as an input to the 
algorithm (Tan and Jiang, 2001; Sicuranza and Carini, 
2004). The notable points in the ANC are as follows: 

• The duct length and the distance between the system 
elements are such that the system becomes causal 
(Prashanth et al., 2008). 

• Regarding the speaker response, no decrease will be 
obtained in frequencies below 200 Hz (Sadoghi Yazdi 
et al., 2004). Also, passive techniques for reducing the 
noise in frequencies below 500 Hz have not been 
successful (Prandoni and Vetterli, 1998; Sadoghi  
Yazdi et al., 2004). Therefore, the ANC systems are 
used in the range of 200–500 Hz and above 500 Hz. 

The existence of non-linear effects in the ANC environment 
complicates the use of the FX-LMS algorithm and similar 
algorithms. Divergence or slow convergence is among these 
difficulties. Some of research works in recent years  
(2008–2009) are reviewed in the next section. 

1.1 Recent works over ANC 

ANC has gained a lot of significance in the recent past 
because of its potential use in low-frequency ANC 
applications (Elliott and Nelson, 1993). FX-LMS algorithm 
is one of the simplest methods for ANC applications. 
Because of the poor performance (Strauch and Mulgrew, 
1998) of the FX-LMS algorithm in the case of non-linear 
noise processes, two non-linear adaptive algorithms, namely 
Filtered-S LMS (FSLMS) algorithm (Das and Panda, 2004; 
Das et al., 2006) and Volterra Filtered-X LMS (VFXLMS) 
algorithm (Tan and Jiang, 2001; Sicuranza and Carini, 
2004), have been proposed. Computationally efficient fast 
implementation of these two algorithms is presented in 
Prashanth Reddy et al. (2008). The concept of reutilising a 
part of the computations performed for the first sample 
while computing the next sample, for a block length of two 
samples, is exploited to implement the fast and exact 
versions of the FSLMS and VFXLMS algorithms. Akhtar et 
al. (2009) investigate new methods for online Feedback 
Path Modelling and Neutralisation (FBPMN) in 
multichannel ANC systems for improving the degraded 
performance of strong acoustic feedback. The modification 
is to combine the role of the FBPM and FBPN filters into 
one FBPMN filter, which results in reduced computational 
complexity. Improved convergence performances with the 
ANC structure proposed in Akhtar et al. (2006) were 
obtained by introducing the delay compensation, and by 
removing the auxiliary noise from the error signal of the 
control filter. They used two adaptive filters, one for 
adapting the control filter and one for modelling the 
secondary path. Carini and Malatini (2008) introduce two 
improvements in the feedforward ANC system with online 
secondary path modelling developed by Akhtar et al. 
(2006). First, optimal variable step-size parameters are 
derived for the adaptation algorithms of the secondary  
path-modelling filter and of the control filter. Second,  
a self-tuning power scheduling for the auxiliary noise is 
introduced. A few papers like Flotte-Hernández et al. (2008) 
have worked on real constructed ANC systems where  
LMS algorithms were used to achieve noise suppression.  
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In this paper, the FX-LMS and FBFXLMS algorithms were 
implemented and tested to cancel noise over a prototype of a 
duct network using DSP processors. 

In this work, a new structure is substituted to the LMS 
and the FX-LMS algorithm is improved to the FX-RLMS 
algorithm. 

1.2 Related work in the adaptive filtering theory 
Adaptive filtering is employed in a variety of applications to 
help modelling of time-variations of system parameters.  
In lack of a priori knowledge of the statistical model of the 
input signal, a wide range of algorithms has been developed. 
Among these, the LMS (Widrow and Stearns, 1984) 
algorithm is very attractive, as it provides an efficient, 
robust and low-complexity solution. Also, the simplicity of 
the LMS algorithm has made it an important benchmark for 
other algorithms. The ability of the LMS algorithm to 
operate in a non-stationary environment has been 
investigated by many authors (Widrow and Walach, 1984; 
Macchi, 1986; Farhang-Borojeny and Gazor, 1996). 
However, the slow convergence of the LMS algorithm for 
inputs with large eigenvalue spreads may lead to the use of 
the RLS algorithm (Haykin, 1996). On the other hand,  
the low tracking capability of the RLS algorithm in  
noisy environments (Haykin, 1996) makes it impractical  
to be used as a suitable adaptive filtering algorithm in low 
SNRs. 

Historically, several methods have been developed to 
improve the performance of the LMS and RLS algorithms 
by combining both (Ysebaert et al., 2003; Yu and  
Chung Ko, 2003; Huang et al., 2008). Reduction of the 
complexity by combining RLS and LMS is considered in 
Ysebaert et al. (2003) wherein, a part of Kalman vector of 
RLS algorithm is updated with the LMS algorithm.  
Because of its application for per-tone equalisers, this 
method works in frequency domain and its implementation 
is too complicated. Owing to utilisation of Kalman filters, 
this method is restricted only to autoregressive signals.  
Yu and Chung Ko (2003) and Huang et al. (2008) are  
two different configurations of cascaded RLS and LMS. To 
solve the slow convergence problem of the LMS algorithm,  
a low-order RLS predictor is cascaded prior to the LMS 
predictor in Yu and Chung Ko (2003). Although Yu and 
Chung Ko (2003) is one of good research works on mixture 
of RLS and LMS for lossless compression but the tracking 
performance and reliability of the system are not 
considered. Huang et al. (2008) use cascaded RLS–LMS 
Predictor in MPEG-4 lossless audio coding. This research is 
constituted from several cascaded RLS, LMS and DPCM 
predictors. Therefore, the implementation complexity and 
amount of computations, owing to applying of high-order 
LMS and RLS predictors, are too much. In Oikawa and 
Tetsuya Shimamural (2006), a kind of parallelisation of 
RLS and LMS is discussed. It used two estimators. The first 
of which is the LMS and the second one is the RLS. This 
configuration is not really parallel, because the error signal 
of the first estimator is used as the desired signal for the  
 

second estimator. Moreover, unlike our method, it does not 
have any combination of RLS and LMS at the end. Schober 
and Gerstacker (2001) are not talking about combination of 
RLS and LMS with each other. It has depicted the 
efficiency of separate combination of RLS and LMS with 
NSE against carrier phase variations in receivers. None of 
the above-mentioned works applied for automatic noise 
cancellation in a duct. Briefly, in this method, the input  
is decorrelated by using a suitable transformation before 
applying the LMS adaptation in the frequency domain 
(Haykin, 1996) or time domain (Oikawa and Tetsuya 
Shimamural, 2006; Schober and Gerstacker, 2001; Mboup 
et al., 1994). In Hansler (1990), the probability density 
function of the signal and error was utilised in the RLS 
algorithm. The MAP1 estimator is cascaded to RLS and 
reduction of MSE2 was obtained. 

We proposed a new combination of RLS and LMS for 
ANC. Our three principles here are: 

a When comparing the LMS and RLS algorithms 
individually, we have the LMS as a better tracker while 
the RLS has faster convergence speed. We are seeking 
for a combination that first we can benefit from the 
primary fast convergence speed of the RLS algorithm, 
and second, we can have the good tracking performance 
of the LMS algorithm after convergence. 

b An efficient system is the one that is adjustable for 
different situations. So, we want to design a system  
that according to application, one of the RLS and LMS 
methods plays the dominant role in the ANC. In other 
words in systems with faster convergence, wRLS, and for 
systems with more tracking ability, wRLS, should be 
more pronounced. 

c Increasing the reliability of the whole system is our  
last goal in mixture of the LMS and RLS algorithms.  
In a real constructed system, it is possible to have 
failure in one of RLS and LMS blocks, which means 
one of them is not working. In such a situation,  
we should have a system that is still workable. 

The proposed method in this paper, mixture of RLS and 
LMS, namely the RLMS3 algorithm has a better tracking 
performance and a lower MMSE4 compared with the RLS 
and LMS algorithms. The proposed RLMS algorithm is 
configured for the ANC problem. 

Section 2 is devoted to the proposed RLMS algorithm. 
Section 3 of the paper concerns the investigation of the 
ANC in a duct. In Section 4, application of the proposed 
RLMS algorithm is presented in the system identification 
problem, the noisy sinusoidal chirp tracking and ANC and 
finally, conclusions are derived in the final. 

2 RLMS algorithm 

We combine the LMS and RLS algorithms in a parallel 
form. At first, we briefly review the LMS and RLS 
algorithms. 
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2.1 The LMS algorithm 
The LMS algorithm is an important member of the family of 
gradient algorithms. A significant feature of the LMS 
algorithm is its simplicity and good tracking properties  
in identification problem at low SNRs. The LMS is a linear 
adaptive filtering algorithm that consists of a filtering 
process and an adaptation process according to the 
following equations: 

Filtering process: 

.T
k k ky X W=  (1) 

Adaptation process: 

1 ,k k k kW W e Xµ+ = +  

where 

.k k ke d y= −  (2) 

The weight vector of the estimator at time index k is 
1[ , , ]T

k LW W W= …  and 1[ , , ]T
k LX x x= …  the L element 

vector of the samples of a buffered data sequence, which is 
a stationary random process, and L is the number of filter 
taps and ek is the estimation error and dk represents the 
desired response and µ is the step size. 

2.2 The RLS algorithm 

The RLS filter is an adaptive, time-update version of the 
Wiener filter. Its goal is to minimise the weighted sum of 

the squared error, i.e., the error function in the time domain 
obtained from equation (3) 

2
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where ek is the error signal, T
k k k ke d X W= −  and λ is the 

forgetting factor. The filter weights are obtained as, 
1
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+ = +  (4) 

where Rk is the input autocorrelation matrix and its inverse, 
1

kR−   is obtained recursively from the following equation 
(Haykin, 1996), 
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2.3 The proposed RLMS algorithm 
We combine the LMS and RLS algorithms in a parallel 
form, as shown in Figure 1. In a system identification 
configuration, the outputs are fed to an adaptive linear 
combiner. 

As depicted in Figure 1, we have increased the 
reliability of the whole system with parallelisation of the 
LMS and RLS. In real constructed systems, with failure in 
one of the RLS and LMS blocks, the whole system is still 
workable in the noise cancellation configuration, although 
with a reduced efficiency. 

Figure 1 The configuration for RLMS algorithm, in system identification problem 

 
 
In the following equations, the optimum weights of the 
combiner are derived and it is proved thopat the MMSE of 
the RLMS is decreased compared with those of the RLS and 
LMS algorithms. 

( )c LMS LMS RLS RLSe d w y w y= − +  (6) 

where ec is the error output of the proposed system and d  
is the desired signal and wLMS and wRLS are weights by which 
the outputs of the LMS and RLS algorithms are weighted, 
respectively. 

yLMS and yRLS are outputs of the LMS and RLS filters, 
respectively. 
 

LMS LMSy d e= −  (7) 

.RLS RLSy d e= −  (8) 

eLMS and eRLS are the output errors of the LMS and RLS 
algorithms, respectively. By substitution of equations (7) 
and (8) into equation (6), we obtain: 

( ) ( )
(1 ) .

c LMS LMS RLS RLS

LMS RLS LMS LMS RLS RLS

e d w d e w d e
d w w w e w e

= − − − −
= − − + +  (9) 

Assuming wLMS + wRLS = 1 and for convenience, we let 
w = wLMS then, 
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(1 ) .c LMS RLSe we w e= + −  (10) 

Assuming { } 0LMS RLSE e e =  and taking expectation from 
squares of both sides of equation (10), we have, 

{ } { } { }2 2 2 2 2(1 )c LMS RLSE e w E e w E e= + −  (11) 

or equivalently, 
2 2(1 ) .c LMS RLSw wξ ξ ξ= + −  (12) 

For finding the optimum weights, we take the derivative of 
the above-mentioned equation, 

min

0

, .

c

RLS LMS RLS
opt c

RLS LMS RLS LMS

w

w

ξ

ξ ξ ξξ
ξ ξ ξ ξ

∂
=

∂

= =
+ +

 (13) 

In the above-mentioned formulae, the MMSE of the 
proposed approach is lower than those of both the LMS and 
the RLS algorithms. In practice, combination of the RLS 
and LMS may be done dynamically with LMS method 
according to the following equation (14): 

1

,LMS LMS lms
c ck

RLS RLS rlsk k k

w w y
e

w w y
µ

−

     
= +     

     
 (14) 

where µc is the step size and eck is the output error in kth 
sample. 

Because of automatic tuning of the weighting system 
according to equation (14), it is possible to design a system 
where one of the RLS and LMS methods plays the dominant 
role in the ANC. For systems with faster convergence,  
wRLS and for systems with more tracking ability wLMS,  
are more pronounced. 

We utilise the proposed RLMS algorithm in the ANC 
application but, before explaining the proposed FX-RLMS 
algorithm, the FX-LMS algorithm is introduced in the next 
section. 

3 Principle of active noise control in a duct 

If we assume that the noise propagates in a one-dimensional 
form, then it is possible to use a single channel ANC for 
noise cancellation. For simulation and implementation of 
this system, a narrow duct is used as in Figure 1. According 
to Figure 1, the primary noise before reaching to the speaker 
is picked up by the input microphone. The system uses the 
input signal for generating the noise cancelling signal y(n). 
The generated sound by the speaker gives rise to a reduction 
in the primary noise. The error microphone measures the 
residual signal, e(n), which can be minimised using an 
adaptive filter, which is used for identifying the duct’s 
transfer function. Because of using the input and error 
microphones, we must take into account some functions, 
which are known as the secondary path effects. In such a 
system, usually for cancelling the noise, the FX-LMS 
algorithm, Figure 2, and equation (1) are considered 

(Prandoni and Vetterli, 1998; Elliott and Nelson, 1993; 
Akhtar et al., 2006, 2009). The vector x′(n) is a filtered 
version of the vector x(n) using LMS adaptive filter 
(equation (2)). 

Figure 2 Using the FX-LMS algorithm in a single channel  
ANC system 

 

In the above-mentioned figure, C(z) is an estimation  
of H(z), which can be obtained by some off-line techniques  
(Flotte-Hernández et al., 2008). The considerable points in 
the execution of the FX-LMS are as follows 

• cancelling the broadband noise needs a filter of high 
order, which increases the duct length  
(Flotte-Hernández et al., 2008) 

• to choose the proper step size, we need knowledge  
of statistical properties of the input data (Kuo and 
Morgan, 1999; Eriksson et al., 1987) 

• to ensure the convergence, the step size is chosen small; 
hence, the convergence speed will be low  
and the performance will be weak 

• for executing the above-mentioned algorithm, we need 
to estimate the secondary path 

• non-linear behaviour of this system stimulated new 
researches on developing algorithms in ANC. 

Increasing the speed of convergence of the LMS algorithm 
is the main concern in ANC. So, we increase the 
convergence speed of the LMS algorithm by mixing it with 
the RLS algorithm and substitute in filtered input LMS 
algorithm. We proceed to applying the mixture of the RLS 
and LMS algorithms in system identification, noisy chirp 
tracking and ANC in the next section. 

4 Applications of the RLMS algorithm 

We use the RLMS algorithm in identification and in noise 
reduction from noisy chirp sinusoid problem and, finally, 
FX-RLMS algorithm is proposed for ANC application. 

4.1 Using the RLMS algorithm in identification  
and noisy chirp tracking 

In simulation of RLMS for identification and noise 
reduction problems, the forgetting factor of the RLS 
algorithm, λ, is set to 0.5 for increasing the tracking ability 
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and the step size of LMS algorithm is set to 0.06 and µc in 
equation (14) is 0.02. 

4.1.1 The system identification problem 

We study the behaviour of the proposed algorithm in  
two different conditions, stationary and non-stationary 
environments. For the stationary environment, the  
error-performance surface is fixed and the essential 
requirement is to seek the minimum point of that surface. 
But, in a non-stationary environment, minimum point of the 
error surface changes with statistical variations of the input. 
Therefore, adaptive filter must track these variations and 
optimum weights of filters must be changed in adaptation 
process as well. It is assumed that optimum weights of the 
plant change according to a first-order Markov process as 
(Haykin, 1996), 

( ) ( )opt 1 optk kW aW η+ = +  (15) 

where a is a constant and η is an AWGN.5 

We expect contribution of RLS algorithm be higher than 
LMS algorithm in seeking optimum weights at convergence 
phase in RLMS algorithm, because of slow convergence of 
the LMS algorithm and fast convergence of the RLS 
algorithm. Results of the simulation for an identification 
problem are plotted in Figure 3 at convergence phase. 
Figure 3 shows the time evolution of the respective 
weightings for outputs of the LMS (i.e., wLMS) and RLS  
(i.e., wRLS) filters. From Figure 3, we can conclude that 
during the convergence phase, wRLS begins to increase while 
wLMS decreases. 

Figure 3 LMS and RLS weightings during the convergence 
phase (see online version for colours) 

 

In the tracking phase of the RLMS algorithm, we expect 
wRLS < wLMS in finding optimum weights, because of good 
tracking of LMS algorithm in low SNR (Haykin, 1996).  
To check the tracking behaviour of the proposed system,  
optimum weights of the plant are changed according to 
equation (15). As seen in Figure 4, in tracking phase wLMS is 
bigger than wRLS. 

We conclude from the above-mentioned observations 
that the mixture of the LMS and RLS, i.e., RLMS, 
according to the proposed scheme has two notable 
advantages: 

a In the convergence phase, the RLS weight (wRLS)  
is greater than the LMS weight (wLMS), so we expect  
that the convergence speed to be higher than that of  
the LMS algorithm (Figure 5). 

b In the tracking phase for the system identification 
problem, wLMS is greater than wRLS (Figure 4).  
Also in a different SNR, the MSE of RLMS is less  
than both the LMS and the RLS algorithms (Figure 6). 

Figure 4 LMS and RLS weightings during the tracking phase 
(see online version for colours) 

 

Figure 5 Learning curve of the proposed and LMS algorithms 
(see online version for colours) 

 

Figure 6 MSE vs. SNR in the tracking phase (see online  
version for colours) 

 

4.1.2 Noisy chirp tracking 

We used a dynamic mixture of RLS and LMS in a noise 
reduction application. Adaptive recovery of a chirp sinusoid 
buried in noise is a standard method because the chirp 
sinusoid represents a well-defined form of non-stationarity. 
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In this experiment, we consider the tracking of a chirped 
sinusoid. The chirped input signal is given by: 

( )( ) exp( [ 2 / 2 ])s cS k P j f k kπ ψ ϕ= + +  (16) 

where sP  denotes the signal amplitude, fc is the centre 
frequency, ψ is the chirp rate and ϕ is an arbitrary phase 
shift. The signal S(k) is deterministic but non-stationary 
because of the chirping. S(k) is added with noise n(k), then 
tracking of the noisy chirp is a benchmark for testing the 
RLMS and LMS and RLS algorithms. The SNR is denoted 
by: 

SNR 10log s

n

P
A

 
=  

 
 (17) 

where An is the amplitude of the noise. 
The estimation error for 1001 samples for 2 s with 

1 kHz sample rate of chirp is shown in Figure 7. In low 
SNR, the proposed method is better than the RLS and LMS 
algorithms, while in SNR bigger than 20dB, RLS is slightly 
better than the proposed method. Thus, we propose that for 
low SNR environment, a dynamic mixture of RLS and LMS 
is used for noise reduction. 

Figure 7 Estimation error vs. SNR (see online version  
for colours) 

 

4.2 Using the RLMS algorithm in ANC 

The present network is used to actively cancel the noise as  
in Figure 8. Two points are interested in the proposed 
system as 

a increasing the convergence speed 

b increasing the tracking ability of the RLMS algorithm 
compared with the RLS and LMS algorithms. 

For precise simulation of the proposed algorithm and 
comparison with the conventional FX-LMS method,  
 
the transfer function of the primary path (the duct transfer 
function) and the secondary path must be available,  
which for this purpose, the information given in Lveg 
(1936), which is obtained practically is utilised. 
 

Figure 8 A structure for cancelling noise in a duct with the 
proposed method (see online version for colours) 

 

Higher convergence speed and lower error for the proposed 
algorithm in comparison with the FX-LMS algorithm in 
Figure 9 is observed. On average, the convergence speed 
increased 1.6 times and the final MSE minimum error 
decreased by 16%. Figure 10 shows the convergence and 
tracking phases of FX-LMS and FX-RLMS proposed 
algorithms, respectively. This figure shows increasing  
speed of convergence in the proposed algorithm compared 
with FX-LMS algorithms and also it shows reducing error 
in tracking phase for RLMS and FX-LMS algorithms. 

Figure 9 Learning curves to sinusoidal chirp with a variable 
frequency of 300–305 Hz in ANC in the duct for the 
FX-LMS (see online version for colours) 

 

Figure 10 Learning curves for convergence and tracking phases, 
convergence for frequency of 300 Hz and tracking  
for sinusoidal chirp with a variable frequency  
of 300–305 Hz (see online version for colours) 

 

4.3 Active noise cancellation of variable frequency 
narrow band noise using FX-RLMS algorithm 

For best mixing of LMS and RLS algorithms in the  
FX-RLMS algorithm, suitable µc in equation (14) is 
required in wide range frequency 200–500 Hz. We 
employed a novel approach based on frequency estimation  
 
and a look-up table, which is obtained in learning phase.  
We know which ANC algorithms have different behaviour 
in variety of frequencies so we find optimum µc (µopt) in 
each frequency. For this purpose, a novel system is 
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proposed as shown in Figure 11. The proposed system 
contains three main parts 

a ANC algorithm 

b best step size calculation for fusion of RLS and LMS 
outputs in ANC 

c frequency estimation. 

The FX-RLMS algorithms shown structure in Figure 8 are 
used for ANC algorithm. Best step size of ANC algorithm, 
µopt, is obtained in range 200–500 Hz, by changing of step 
size for reaching to minimum error in Figure 8. µopt  is 
obtained by step 25 Hz in range 200–500 Hz. Table 1 shows 
µopt vs. frequency in ANC application. 

Figure 11 The proposed system for cancellation of variable 
narrow band frequency 

 

Table 1 Obtained µopt vs. frequency in ANC application 

f 200 237.5 275 300 312 325 

µopt 0.025 0.009 0.025 0.029 0.030 0.03 

f 350 375 400 425 475 500 

µopt 0.026 0.017 0.011 0.022 0.031 0.03 

For selecting of µopt, frequency is required. So, we used 
MUSIC algorithm for frequency estimation (Eriksson and 
Allie, 1988; Bouchard and Yu, 2001). Using MUSIC 
algorithm, frequency of signal is estimated by extracting of 
Eigenvalues of autocorrelation function. 

In the above-mentioned figure, a spline curve has been 
fitted over the µopt vs. frequency. 

5 Conclusions 

For increasing the convergence speed and decreasing the 
MSE in the tracking mode, combining of the adaptive filters 
is a suitable method. A new approach based on a mixture  
of the RLS and LMS algorithms was presented, namely  
the RLMS algorithm. We proved that the MMSE of the 
proposed algorithm is reduced compared with those of  
the RLS and LMS algorithms. The RLMS algorithm  
was employed for active noise cancellation to form of the  
FX-RLMS algorithm, in a duct. Our new approach has 
several superiorities to the above-mentioned works, namely: 

• our work is presenting a new configuration for 
combining of RLS and LMS methods in a real  
parallel form, considering convergence speed,  
tracking performance and error reduction 

• applying the final system for ANC in a duct 

• increasing the reliability of the whole system, which  
is not considered in previous research works. 

Obtained results showed increasing performance of the 
RLMS algorithm in system identification, noisy chirp 
tracking and active noise cancellation. 
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