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Abstract 

An interesting field in the nano science studies, is based 

on modeling and simulation of vibrating carbon 

nanotubes (CNTs) in an elastic medium to predict the 

natural frequencies and associated mechanical 

properties. Meanwhile, in all of these models, the 

nanotube was assumed to be perfectly straight. 

However, photomicrographs of nanocomposites indicate 

that CNTs may exhibit significant waviness. This 

research prepares a model based on the continuum 

mechanics to determine vibrational property of 

circularly curved carbon nanotube. Analysis of free 

vibration of a curved single-walled carbon nanotube 

(SWCNT) is accorded to the Timoshenko theory under 

general boundary conditions. Winkler and Pasternak 

foundation models are employed to simulate the 

interaction of the SWCNT with the surrounding elastic 

medium and the differential equations of the model are 

solved using generalized differential quadrature rule. 

The present study shows that the curvature of a CNT 

has a strong effect on modal frequencies, especially 

when the stiffness of the foundation and aspect ratio of 

CNT are relatively small. 

 

Keywords: curved carbon nanotube, in-plane vibration, 
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1. Introduction 

Pursuant to superior mechanical, electrical and physical 

properties [1, 2], the number of publications on carbon 

nanotubes (CNTs) and related areas have grown quickly 

since CNT discovered by Ijima in 1991[3]. Because of 

high strength and stiffness of CNTs, they are widely 

used as reinforced phase in composite materials [4]. 

Since molecular dynamic simulations are difficult for 

large scales, continuum mechanics are applied to study 

the elastic and vibrational behavior of CNTs [5-7]. In all 

of these cases, the simulated model of CNTs was 

straight. However, photomicrographs of 

nanocomposites show that CNTs may exhibit significant 

waviness in nanocomposites [8]. Recently several 

studies have been done on the effects of waviness on 

characteristics of CNTs. Pantano and Boyce [9] studied 

the effect of the characteristic wavelike or wrinkles on 

the bending mode of CNT under considering the 

geometric nonlinearity and showed the phenomenon 

that the bending stiffness of CNT decrease with the 

increase of the diameter of CNT. According to Fisher et 

al. [10-11], the effect of elastic moduli of CNT-

reinforced polymer composites cannot be ignored. F.N. 

Mayoof and M.A. Hawwa [12], indicated Chaotic 

behavior of a curved SWCNT under harmonic 

excitation. However, it seems that no work has been 

thoroughly done on the effects of waviness on the 

vibration characteristics of CNTs [13].  

       Before the above studies, several researches about 

vibration of arched beams have been started since 

several decades ago. The studies which are about in-

Plane vibration are based on Bernoulli-Euler and 

Timoshenko beam theories. The Bernoulli-Euler theory 

neglects the effect of rotary inertia and shear 

deformation. Significant difference in natural 

frequencies can be seen while a short beam is solved by 

Timoshenko theory in compare with Bernoulli-Euler. 

Timoshenko theory has been employed using various 

boundary conditions, elastic foundations, etc. and 

scientific solutions. In-plane vibration based on curved 

Timoshenko beam theory has been carried out in several 

studies [15-20]. 

        This paper has five main objectives: (1) to present 

the differential equations for the in-plane free vibration 

of linearly elastic curved SWCNT; (2) to include the 

effect of variable curvatures with the different the 

opening angles, slenderness ratios and curvature 

radiuses; (3) to include effects of rotary inertia and 

shear deformation; (4) to present solutions for the 

general boundary conditions; and (5) to exhibit elastic 

model for the nanocomposites with Winkler and 

Pasternak foundations. GDQR formulation has been 

applied to solve the problem numerically. The 

fundamental frequencies are calculated with general 

boundary conditions. In addition, effects of nanotube 

curvature and elastic medium on the natural frequencies 

of a curved SWCNT has been calculated and discussed. 

The results show that the curvature of a CNT, the 

boundary conditions and the mechanical properties of 

the foundation have strong effect on resonant 

frequencies, especially when the aspect ratio of CNT is 

relatively large. Additionally, the effect of the aspect 

ratio, Pasternak and Winkler constants, and the opening 

angle on the vibrational characteristics of the model has 

been widely discussed. 

 

2. Governing equations 

As shown in Figure 1, the circularly curved SWCNT is 

modeled on Winkler-type and Pasternak-type 

foundation. Every point on the SWCNT is defined by 
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the angle θ, measured from the left end. The system 

consists of a uniformly curved SWCNT of radius R, 

average diameter of SWCNT  a v ed  , length L and the 

opening angle is 0 . Denote the displacements as u and 

w corresponding to the radial and tangential 

displacements, respectively. 
 

Figure 1: circularly curved SWCNT on elastic medium with 

the general boundary condition. 

 

        Using Timoshenko beam theory, both rotary inertia 

and shear deformation are taken into account. The 

differential governing equations for the in-plane 

vibration of SWCNT on Winkler-type and Pasternak-

type models are expressed by [16, 18]. 

 

0
12

1
0
























R

w
)

)(
(

θ

ψ

ν)2(1

κ

R

u
)K

S

K1
λ(1

Rθ

u
)K

ν)2(1

κ
(

0
42

2
2

2
0

3

 

(1) 

0
2

2
12

2

2
22

2
0

2

0

















R

w
)

S

K

ν)2(1

κ
(

)
S

K

ν)2(1

κ
(K

R

u

ν)2(1

κ










 

(2) 

0

1

2

2

2
0

2

2
12

0




















R

w
)

S

κ1

ν)2(1

κ
(

R

w
)

S

K

ν)2(1

κ
(

R

u
)

ν)2(1

κ
(

2






  
(3) 

 

Where   is shear coefficient factor on its cross-

sectional shape,   is the Poisson’s ratio of the SWCNT 

and  is the slope of the deflection of the curved 

nanotube due to pure bending.   and S  are two 

dimensionless variables have been introduced as 

follows: 
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         is a dimensionless frequency parameter and S  

is the slenderness ratio of the SWCNT. Where A  is the 

cross-sectional area,  is the density,  is the natural 

frequency, I  is the moment of inertias of cross-section 

about principal axes and E  is the Young’s modulus of 

the curved SWCNT. In Eqs. (1-3), the quantities 
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In which 
PK  is the shear modulus parameter due to the 

Pasternak foundation and 
wK  is the Winkler modulus 

parameter. 

 

         In the boundary conditions, the shear force F , the 

tensile force P and the bending moment M could be 

expressed in terms of amplitude u and w [25] and were 

given as: 
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        Each end of the arch was supported by two 

separate springs, the linearly elastic translational tK and 

rotational rK  springs (Figure 1). At the left end 

( 0 ), the spring constants are ( tat KK  ) and 

( rar KK  ) and at the right end (
0  ), the spring 

constants are ( tbt KK  ) and ( rbr KK  ).Therefore, 

the shear force F , the tensile force P and the bending 

moment M corresponding to tK and rK with deflection 

u  and w  and rotation  could be expressed as 

2


cosuKF t  (10) 

2


sinwKP t

 

(11) 
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(12) 

 

   Combining Eqs.(7-9) with Eqs.(10-12) give the 

boundary equations as follows 
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         Nanotubes in nanocomposite materials may 

undergo different and general conditions in which it 

may not be a standard boundary conditions but between 

of them. Thus, general boundary conditions support all 

probable boundary conditions. Several standard 

boundary conditions based on the boundary stiffness of 

this model are shown in table 1. 

 

3. The generalized differential quadrature rule 

         Differential Quadrature method (DQM) is a 

numerical method for evaluating derivatives of a 
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sufficiently smooth function, proposed by Bellman and 

Casti in 1971. The basic idea of DQM comes from 

Gauss Quadrature, a useful numerical integration. This 

method approach has been extensively used to solve 

various problems in different fields of science. 

 
Table1. Standard boundary conditions based on boundary 

stiffness. 

Standard Boundary 

conditions 

Stiffness  

taK  tbK  raK  rbK  

Pinned-Pinned   0   0 

Fixed- Fixed     

Free- Free 0 0 0 0 

Fixed- Pinned    0 

Fixed- Free   0 0 

Fixed-Slide   0   

Pinned- Free   0 0 0 

 

New achievement in the DQM causes the development 

of a generalized differential quadrature rule (GDQR). 

The GDQR can be applied to any high-order differential 

equations without using the conventional δ -point 

technique. The GDQR has been shown to be a powerful 

contender in solving initial and boundary value 

problems. Suppose a function )(x  is governed by a 

differential equation, is constrained by one or more 

conditions at any individual point. The solution domain 

is divided by points ),...,2,1( Nixi  that include all 

the points with given conditions. If in  conditions 

(equations) are to be satisfied at point ix , the GDQR is 

expressed as follows: 
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derivative are given by recurrence relations in general 
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 For the higher order derivatives, the weighting 

coefficients are obtained by using the following 

recurrence relationship: 
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The term )( ixM   is defined as 
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     Another important point for successful application 

of the GDQR is how to distribute the grid points. In 

fact, the accuracy of this method is usually sensitive to 

the grid point distribution. The optimal grid point 

distribution depends on the order of derivatives in the 

boundary condition and the number of grid points used. 

The nonuniform grid points are better known as 

Chebyshev–Gauss–Lobatto points (C–G)[22]: 
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4. Applying the GDQR to the curved SWCNT 

vibration
 The GDQR is used to formulate solutions to             

Eqs. (1) - (3). 
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Where 
)1(

ijC and 
)2(

ijC are the weighting coefficients 

along the dimensionless axis for the first and second 

derivatives, respectively. Similarly, the GDQR is 
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applied  to the boundary conditions. Eqs. (13-15) are 

written according to Eq. (16) as follows: 
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     By using the GDQR, domain equations and 

boundary conditions for in-plane vibrations of a circular 

SWCNT can be transformed to an assembled form 

given by   
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Where the subscript b denotes elements associated with 

the boundary points (at the two ends of the curved 

SWCNT) while d the remainder. By matrix subtracting 

and manipulation, one obtains a standard eigenvalue 

equation: 

    dd UUS 2  (31) 

in which 
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5. Numerical results and comparison 

Based on the above equations, the resonant frequencies 

of the in-plane vibration of a circularly curved SWCNT 

are derived using GDQR. By considering a SWCNT 

with an inner diameter 0.7 nm and an outer diameter 1.4 

nm. It is assumed that the Young’s modulus, Poisson’s 

ratio and mass density of SWCNT are ,TpaE 1  

250.  and 332
cm

gr
. respectively also the shear 

correction factor   is taken to be 0.82 [23]. 

     Firstly, natural frequencies are found by using 

generalized differential quadrature rule (GDQR) and 

given in table 2 for in-plane vibrations of curved 

SWCNT. SWCNT is assumed to be circularly curved 

with the clamped condition at both ends, the opening 

angle is equal to 180
°
 and the stiffness coefficients of 

Winkler and Pasternak are zero. Natural frequencies are 

given for the first three modes (n=1, 2and 3) and for the 

various amounts of aspect ratios
d

l . 

Table2. Natural frequency of in-plane vibration for circular 

curved SWCNT 

L/d n f (THZ) 

 1 0.44812 

10 2 0.84311 

 3 1.46228 

 1 0.12304 

20 2 0.25933 

 3 0.47326 

 1 0.00509 

100 2 0.01118 

 3 0.02075 

 

The circularly curved SWCNT with various opening 

angles and stiffness parameters  0 pw KK  has been 

studied under clamped-clamped conditions for many 

mode numbers and Figures 2 and 3 compared these 

results for a curved SWCNT with small and large aspect 

ratios, respectively. It is observed from these figures 

that the natural frequency is sensitive to increasing the 

aspect ratios l/d. Meanwhile, maximum variations in 

frequencies occur when the opening angel decreases 

while slenderness ratio increases.   

 
Figure 2: Fundamental frequency of in-plane vibration of short 

curved SWCNT against mode numbers for various opening 

angles. 

 
Figure 3: Fundamental frequency of in-plane vibration of long 

curved SWCNT against mode numbers for various opening 

angles. 

 
Figure 4: First natural frequency of in-plane vibration of 

curved SWCNT against the different aspect ratios for various 

end conditions. 

The effect of the aspect ratio on the first natural 

frequency of in-plane vibration for semi circular 

SWCNT (
1800 ) under three standard boundary 
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conditions is shown in figure 4. In addition, in this 

figure, the Pasternak parameter KP and the Winkler 

parameter KW are equal to zero. As shown in this figure 

the natural frequencies of each standard boundary 

condition are converged to each other for long 

slenderness ratios. 

The effect of the Winkler stiffness on a semi circular 

SWCNT under clamped-clamped condition without 

Pasternak shear modulus effects (KP =0) is presented in 

figure 5. The resonant frequencies increases 

considerably while the aspect ratio l/d and Winkler 

parameter KW increase. In this case, with increasing the 

bending stiffness of SWCNT due to the Winkler 

stiffness, the variation on the natural frequencies rises 

and this effect is obviously clear for the  stiffer elastic 

mediums (say KW>10
8
) . 

Efficacy of Pasternak parameter KP on a curved 

SWCNT under clamped-clamped condition is shown in 

figure 6 when Winkler constant is neglected. Like the 

pervious case, the resonant frequency increases with 

increasing the Pasternak shear stiffness KP and aspect 

ratios l/d. However, the gradients of the curves are 

linear respect to the nonlinear gradient of the curves in 

figure 5. 
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 Figure 5: The effect of the Winkler foundation parameter with 

various slenderness ratios on the dimensionless frequencies of 

a circular SWCNT. 
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a circular SWCNT.  

In figure 7, the effects of Pasternak and Winkler 

constants (KP and KW ) on resonant frequency of a 

curved SWCNT are presented. In this situation, 

variations of the frequencies are inconsiderable when 

Pasternak coefficient and Winkler constant are less than 
710

and
710 respectively and with increasing in 

Winkler constant KW  the slope of the curves increase 

significantly. In this condition when Pasternak 

parameter KP is equal to 
510

 the resonant frequency 

remains almost constant without any changes. This 

means that the stiffness of the medium due to the 

Pasternak-type model, in this case, is relatively large 

respect to the mass and the inertial effects of SWCNT. 
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The effect of the boundary stiffness for the curved 

SWCNT with large and small aspect ratios on the 

frequency of in-plane vibration is shown in figure 8. In 

this case, it is supposed that the spring constants in the 

left and the right sides of the model have the same 

quantity ( CKKKK rbratbta  ). 

     The parameter C changes from 
2010

to
3510 and 

consequently, the boundary conditions of the curved 

SWCNT will vary from free-free to clamped-clamped 

boundary conditions. The variation of the natural 

frequencies as a function of supported end conditions 

for SWCNTs with large and small aspect ratios is 

revealed clearly. The figure indicates that when C is 

very small, the natural frequencies for nanotube with 

l/d=10 and l/d=100 are almost the same. While by 

increasing the stiffness of the ends, the natural 

frequency for SWCNT with a large aspect ratio will 

take higher values respect to the one with small l/d. 
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Figure 8: The effect of boundary stiffness on the 

dimensionless frequencies of a circular SWCNT. 

 



 

 6 ISME2010, 11-13 May, 2010 

 

 

Conclusions 

The GDQR was applied to compute the natural 

frequencies for in-plane vibration of circular SWCNT in 

an elastic Winkler-type and Pasternak-type foundation 

under general boundary conditions. Timoshenko beam 

theory has been used in which both rotary inertia and 

shear deformation are taken into account. The results 

confirm that the resonant frequencies of a curved 

SWCNT are completely related to the stiffness of the 

elastic medium, modulus of the shear layer, slenderness 

ratio, and opening angle. The present approach is shown 

that the effects of the opening angle, the stiffness and 

the shear layer constants of the medium on the resonant 

frequency are perfectly significant when curved 

SWCNT has large aspect ratios.  
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