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Abstract 
The present article describes the application of Genetic Algorithm to force- and moment-balance of a four 
bar linkage. This technique permit competing design objectives to be considered through the investigation of 
trade-offs between those objectives. The objective functions of the design parameters are determined and 
their values are minimized by adjusting the independent variables of the designer. The technique permits 
both partial force and partial moment balance to be accomplished simultaneously. Genetic algorithm is a 
powerful and widely used stochastic optimization technique which relies on analogies to natural selections 
and natural genetics.  
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Introduction 
Genetic Algorithms are stochastic search methods 
that mimic the metaphor of natural biological 
evolution. Genetic algorithms operate on a 
population of potential solutions applying the 
principle of survival of the fittest to produce better 
and better approximations to a solution. At each 
generation, a new set of approximations is created 
by the process of selecting individuals according to 
their level of fitness in the problem domain and 
breeding them together using operators borrowed 
from natural genetics. This process leads to the 
evolution of populations of individuals that are 
better suited to their environment than the 
individuals that they were created from, just as in 
natural adoption. [1] 
 A Genetic Algorithm starts with a random creation 
of a population of strings and thereafter generates 
successive populations of strings that improve over 
time. Genetic Algorithm mostly used binary strings. 
A simple Genetic algorithm is composed of three 
operators: 
 
1. Reproduction: Reproduction is a process in which 
individual strings are copied according to their 
objective function values, f (fitness function). [1] 

 
2. Crossover: Crossover produces new individuals 
in combining the information contained in the 
parents. Members of newly reproduced strings in 
the mating pool are mated at random. The single 
point crossover chooses a random cut-off point in 
each of the two strings to form two substrings one to 
the left of the point, and one to the right. Then the 
left part of the string of one parent will spliced with 
the right part of the string of the other parent. [2] 
 
3. Mutation: Mutation is a random alteration of the 
value of a string position. In binary coding, this 
means changing a 1 to 0 and vice versa. Mutation is 
needed because, even though reproduction and 
crossover effectively search and recombine extant 
notion, occasionally they may become overzealous 
and lose some potentially useful genetic material. 
Mutation introduces some extra variability into the 
population in order to avoid local minima. [1, 2] 
 
 
In general, design optimization is the process of 
achieving the best solution of a given objective or 
objectives while satisfying certain restrictions. If a 
single objective function is to be minimized, then 
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the problem is of single criterion optimization 
nature. Quite often, however, there exist several 
conflicting objectives. Then the problem is 
formulated as multi criteria, also called multiple 
objective or vector optimization problem, in which 
the goal is to minimize and/or maximize several 
objective functions simultaneously. 
Formulation of an optimization problem consists of 
constructing a mathematical model, which describes 
the behaviour of a physical system encompassing 
the problem area. This model must closely 
approximate the actual behaviour of the system in 
order for the solution obtained to be adequate and 
useful.  
Mechanism design cannot be complete without 
focusing attention on the interface between that 
mechanism and its mounting frame. Berkof and 
Lowen have addressed this problem in depth. Two 
methods, complementing each other, have been 
developed, permitting elimination of both shaking 
forces and shaking moments transmitted to ground. 
Force balance is achieved by developing a set of 
linearly independent time-dependent vectors. These 
vectors define distribution of mass locations of the 
centres of mass such that the centre of mass for the 
entire system remains fixed. Thus the vector sum of 
the forces transmitted to ground from a force-
balanced linkage is zero. 
However, force balance does not eliminate shaking 
moments transmitted to the frame. To achieve total 
balance, moment-of-momentum equations are 
written for the system. When the vector sum of the 
moments of momentum becomes zero, the shaking 
moments are eliminated. This may be accomplished 
through the addition of inertia counterweights and 
restrictions on link configuration (when these 
changes are possible given space constraints of a 
specific application). 

As a linkage moves it transmits forces to its 
surroundings. Unless it is balanced, these forces 
result in vibration, noise, wear, and cause fatigue 
problems. When completely force balanced, the 
vector sum of the forces acting on the frame is zero. 
This is accomplished by making the total centre of 
mass for the mechanism stationary. One method to 
achieve this result is the method of linearly 
independent vectors introduced by Berkof and 
Lowen, which redistribute link masses so that time-
dependent terms of the equations of motion for the 
centre of mass become zero. This becomes possible 
if one can obtain a position equation which provides 
time-dependent vectors that linearly independent. 
Force balancing provides a zero vector sum of the 
inertia forces acting on the frame supports but does 
not provide zero forces at individual supports. The 
resultant of these forces will in general be a pure 
time-varying couple: the shaking moment. If the 

shaking moment also can be reduced to zero, the 
mechanism can be completely balanced, avoiding 
the unpleasant problems of vibrations, noise, wear 
and fatigue. Optimization techniques will permit 
minimization of shaking moments when complete 
balance is impossible because of conflicting 
requirements for force and moment balancing. 
 
Formulation of the problem  
Figure.1 is a four-bar linkage, BA ABOO , 
containing three moving links of arbitrary mass 
distribution. Consider an xoy  system associated 

with the linkage system with O  at AO . Since the 
centre of mass of entire mechanism is kept 
stationary, full force balance is maintained 
regardless of variation in input speed. According to 
Berkof and Lowen equations when both fixed pivot 
links (2 and 4) are chosen to receive counterweights 
we write: 
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Where: 

4,2=i  
ooo
iii rW ψ,, : parameters for the unbalanced linkage 
*** ,, iii rW ψ : parameters for counterweights 

iii rW ψ,, : parameters obtained from equations (3) 
and (4) (N) 

iW : Weight of link i (N) 
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iψ  : Angle between line from pin to pin and line 
from pin to centre of mass of link i (radian) 

′
3r : Distance from pin 3 to centre of mass of link 3 

(m) 
′

3ψ : Angle between line connecting pins 2 and 3 
and centre of mass of link 3 (measuring from pin 3) 
(radian)                                                            
 
Utilization of the concepts of inertia counterweights 
and the physical pendulum permits complete 
balance of all mass effects (both linear and rotary, 
but excluding external loads), independent of input 
angular velocity. Inertia counterweights permit any 
unbalanced planar moment, which is proportional 
to angular acceleration, to be balanced. Since no net 
inertia forces are introduced by this addition, the 
shaking force balance is unaffected. Unfortunately 
the driving torque must increase substantially to 
drive the now force- and moment-balanced system 
with the added counterweights. [3] 
Because we have changed the centre of mass of link 
2 and 4, we must calculate the new radius of 
gyration for those links. Because we have chosen 
circular counterweights, the contribution from the 
counterweights is given by: 
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The total weight is: 
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And the new position of the centre of mass is 
determined by vector addition: 
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The weight moments of inertia of the inertia 
counterweights using 1:1 gearing as in Figure.3 are 
given by: 
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Where: 
 

ia  : Length of link i (m) 

ir  : Distance from pin to centre of mass (m) 

ih  : Thickness of link i (m) 

iK  : Radius of gyration of i-th link (m) 
**

ii rW : Weight ×  Radius for force balance 

counterweights ( *
ir  measured from same pivot as 

the centre of mass of the i-th link) (N.m)         
γ : Density of moment balance counterweights 
(kg/m3) 

iρ   : The radius of the disk (m) 
*
ih : The thickness of counterweights (m) 

**
ih : The thickness of the disk (gear) (m) 

 
In a design optimization task the numerical 
quantities for which values are to be chosen will be 
called decision or design variables, or simply 
variables. There are some restrictions dictated by 
environment and process and/or resources, which 
must be satisfied in order to produce an acceptable 
solution. These restrictions are collectively called 
constraint functions or constraints. In the process of 
selection a good solution, which satisfy the 
constraints, there must be a criterion or some 
criteria, which allow these solutions to be 
compared.[4] 
In order to formulate the optimization problem 
mathematically we need to introduce the number of 
independent variables. We will see W*і, Ψ*і and ρі 
can be regarded as design variables of both force- 
and moment-balancing problems. 

321 ,, fff  are three appropriate objective functions 
that can be defined in the form: 
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It is obvious that the objective functions defined by 
equations (12), (13), (14) represent error functions 
which will be minimized. When these functions are 
minimized simultaneously, both force and moment 
balance conditions are satisfied. And *

iW , *
iψ and 

iρ  indicate the best circular counterweights, angle 
of counterweights and radius of gears values which 
added to achieve force and moment balance. 
 
Evolutionary algorithms for multi 
criteria design optimization 
The general formulation of this problem is: 
 

],,[ 321 xxxx =                                                (15) 
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],,[ 321 xxxx =  : The vector of decision variables 

],,[ 321 ffff = : The vector of objective 
functions 
 
Parameters of completely unbalanced linkage 
,shown in Figure.2 ,are given in Table.1.The links 
are steel of density 3/782.293 mKg=γ  
And: 
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Genetic Algorithm 
Genetic and Evolutionary algorithm based 
techniques can generate the whole set of Pareto 
optimal solution with single running on a computer 
program. This advantage provides the decision 
maker with a full picture of all possible compromise 
solutions and thus makes the decision process 
easier. For multicriteria optimization problems, 
each objective function achieves its minimum at 
different points. Thus, a Pareto optimality concept is 
introduced to solve the problem.[5] 
 
Pareto optimum: A point Xx ∈*  is called Pareto 
optimal if and only if there exists no Xx ∈ such 
that )()( *xfxf ii ≤ , for і = 1, 2, ..., I with 

)()( *xfxf jj <  for at last one j. [2] 

 
The method of selecting a set of Pareto optimal 
solutions which is used in this paper is based on the 
contact theorem [2], which is one of the main 
theorems in multi criterion optimization. This 
method was proposed by Osyczka, 1984 and 
extensively described in [2]. Selection method is 
based on Pareto set distribution method was 
proposed by Osyczka & Tamura, 1996.  
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* ,...,,= , be a vector of the r-

th Pareto optimal solution and )( *rxf be a vector 
of objective functions for the r-th Pareto solution 
where Rr ,...,2,1=  and R is the number of 

existing Pareto solutions. For each new solution jx  
that is generated by any method the vector of the 
vector of the objective functions )( jxf is evaluated 
and compared with the existing set of Pareto 
solutions. The new solution can fall in any of three 
categories: 
1-It is a new Pareto solution which dominates some 
or at least one solution in the set of Pareto solution 
found so far. In this case dominated solutions are 
removed from the set and the new Pareto solution is 
added to the set. 
2-It is a new Pareto solution, but it does not 
dominate any of the existing Pareto solutions. In 
this case the new solution is added to the set. 
3-It is not a new Pareto solution, and there is no 
change in the set of Pareto solutions. 
This idea is used in the method that used in this 
paper. 
Initial population is typically generated at random. 
Crossover operates on two chromosomes at a time 
and generates offspring by combining some features 
of both chromosomes. Mutation is an operator, 
which produces spontaneous random changes in 
various chromosomes and thus it introduces some 
extra variability into the population in order to 
avoid local minima. 
 
Results 
Initialization of a population to provide the program 
a starting point is done by generating random 
strings within the search space and this is the 
default behavior of the Genetic Algorithms. 
The results of running the program for both links (2 
and 4) are presented in Table.2 and Table.3 and the 
set of Pareto optimal solutions are illustrated in 
Fig.4 and Fig.5 for link 2 and Fig.6 and Fig.7 for 
link 4. 
The values of  *** ,, iii rW ψ  permit both force and 
moment balance with best solutions in the search 
space.     
Fig.3 shows the configuration for the force- and 
moment balanced linkage, shaded area is material 
added to achieve (a) force- and (b) moment-balance. 
The analytic results for defined for bar are[3]: 
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These results make it obvious that genetic algorithm 
optimization, which is used in this paper, generated 
acceptable results. Genetic algorithms have the 
ability to solve the other nonlinear problems in the 
same field as force and moment balance of six bars 
and synthesis. 
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Table 1- Parameters of unbalanced four-bar 

Parameters Link 2 Link 
 3 

Link 
4 

Link 
1 

)(mai  0.025 0.102 0.076 0.07 

)(md i  0.013 0.013 0.013 ---- 

)(mhi  0.005 0.005 0.005 ---- 

)(NWi
o  0.449 0.774 0.650 ---- 

 )(mri
o  0.013 0.051 0.038 ---- 

)(radi
oψ  0  0 0 ---- 

)(mK i
o  0.015 0.040 0.032 ---- 
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Table 2 – The set of Pareto optimal solutions 
(Link 2) 

1f  

)(

*
2

N
W

 2f  

)(

*
2

rad
ψ

 

3
3

10−×

f

 
)(

2

m
ρ

 

0.0001 1.033 0.0009 3.142 0.087 0.027 
0.0018 1.098 0.0009 3.142 0.005 0.027 
0.0002 1.038 0.0009 3.142 0.081 0.027 
0.0001 1.034 0.0009 3.142 0.086 0.027 
0.0000 1.032 3.1416 2.895 0.448 0.022 
0.0098 1.365 3.1416 1.051 0.000 0.027 
0.0005 1.049 0.0009 3.142 0.067 0.027 
0.0016 1.088 0.0009 3.142 0.017 0.027 
0.0006 1.052 0.0009 3.142 0.064 0.027 
0.0002 1.038 0.0009 3.142 0.082 0.027 
0.0000 1.032 0.0009 3.142 0.830 0.031 
0.0010 1.068 0.0009 3.142 0.042 0.027 
0.0008 1.062 3.1416 1.497 0.016 0.026 
0.0014 1.082 0.0009 3.142 0.025 0.027 
0.0000 1.032 0.0009 3.142 0.088 0.027 
0.0003 1.042 0.0009 3.142 0.076 0.027 
0.0017 1.093 0.0009 3.142 0.011 0.027 
0.0003 1.040 0.0161 3.157 0.078 0.027 
0.0008 1.061 3.1416 3.140 0.051 0.027 
0.0008 1.059 0.0009 3.142 0.054 0.027 
 

Table 3 – The set of Pareto optimal solutions 
(Link 4) 

1f  

)(

*
4

N
W

 2f  

)(

*
4

rad
ψ

 

3f  

)(
4

m
ρ

 
0.0631 2.085 0.9926 4.134 0.0000 0.04 
0.0033 2.201 0.0009 3.142 0.0001 0.04 
0.0026 2.186 0.0009 3.142 0.0001 0.04 
0.0038 2.210 0.0009 3.142 0.0001 0.04 
0.0002 2.130 0.0009 3.142 0.0003 0.04 
0.0004 2.135 3.1416 3.139 0.0002 0.04 
0.0034 2.202 0.0009 3.142 0.0001 0.04 
0.0003 2.133 0.0009 3.142 0.0003 0.04 
0.0001 2.128 0.0009 3.142 0.0003 0.04 
0.0044 2.224 0.0009 3.142 0.0000 0.04 
0.0028 2.188 0.0009 3.142 0.0001 0.04 
0.0023 2.177 0.0009 3.142 0.0001 0.04 
0.0022 2.176 0.0009 3.142 0.0002 0.04 
0.0039 2.214 0.0009 3.142 0.0001 0.04 
0.0024 2.180 0.0009 3.142 0.0001 0.04 
0.0038 2.212 0.0009 3.142 0.0001 0.04 
0.0014 2.159 3.1416 3.129 0.0002 0.04 
0.0005 2.139 0.0009 3.142 0.0002 0.04 
0.0004 2.136 0.0009 3.142 0.0002 0.04 

 
Fig.1  - Four-bar linkage with the arbitrary 

distribution of link masses. 
 

 
Fig.2 - Unbalanced four-bar linkage 

 

 
Fig. 3 - Fully force- and moment-balanced in-line 

four-bar 
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Fig. 4 – The set of Pareto optimal solutions for F1 
and F2 (Link 2) 

 

 
Fig. 5 – The set of Pareto optimal solutions for F1 

and F3 (Link 2) 
 

 
Fig. 6 – The set of Pareto optimal solutions for F1 

and F2 (Link 4) 
 

Fig. 7 – The set of Pareto optimal solutions for F1 
and F3 (Link 4) 
 
 

 
 

 
 
 
 
 
 
 
 
 


