
1The 4th Applied Mathematis Conferene, 19-21 Esfand, 1388 (Marh 10-12, 2010), Zahedan, Iran.Adaptive method for approximation phase �eld equationAli R.Soheili1, Fateme Amiri2soheili�math.usb.a.ir1, Amiri.math86�yahoo.om2University of Sistan and BaluhestanDepartment of Mathemathis, ZahedanAbstratA moving mesh method is developed for the solution of phase-hange prob-lems modelled by the phase-�eld equation. Numerial result is given for lassialStefan problem and demonstrate the auray and e�etiveness of the proposedalgorithm.Mathematis Subjet Classi�ation: 65M60Keywords:Phase �eld equation, Adaptive Mesh Redistribution, moving bound-ary problem.1 IntrodutionNumerial study of the free boundaries an be grouped broadly into two ategories:one is to solve sharp-interfae problems, and the other is phase �eld equation. Mostnumerial methods to solve the phase-�eld equation have used stationary uniformmeshes,see,e.g, [1℄. However, it is important that the di�used interfae is well re-solved if the orret dynamis are to be reprodued. As the phase interfae moves intime it is lear that an e�ient numerial approah must involve some form of meshadaptivity.The objetive of this work is to develop moving mesh method for solving one dimen-sional phase-�eld equation.2 Modi�ed Stefan ModelThe modi�ed Stefan model desribes a heat ondution problem and evolution ofa sharp interfae �(t) within 
 � Rn. The objetive is to �nd a temperature �eldu(x; t) and a urve �(t) � 
 that solve the nondimensional equations�u�t = K�u x 2 
n�(t); (1)L� = �K [ru℄+� x 2 �(t); (2)
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2 Ali R.Soheili, Fateme Amiriu = � ��s(�+ ��) x 2 �(t): (3)Equations (1) and (2) desribe the di�usion of heat within the domain and therelease of latent heat aross the phase-hange interfae. Here L is the latent heatper unit mass, K is the thermal di�usivity, � is the normal veloity of the interfae,and [ru℄+� is the jump in the normal omponent of the temperature gradient at theinterfae. The parameter � is the surfae tension, � denotes a kineti underoolingoeÆient, �s is the entropy di�erene between the two phase, and � is the sum ofthe priniple urvatures at a point of the interfae. The lassial Stefan model isobtained by setting � = 0.3 Phase-Field(PF) ModelThe PF equation are derived using the idea of a phase order parameter p and Landau-Ginzburg theory. A free energy funtional F is onstruted in terms of the phaseorder parameter and other thermodynami variables. For example,F (p; u) = Z
 �12�2(rp)2 + f(p; u)� dx; (4)where � is a length sale and f(p; u) is a free energy density. Various hoies of thepreise hoie of f have been suggested, the most studied of whih is the Caginalppotential[1℄: f(p; u) = 18a (p2 � 1)2 � 2up: (5)Both parameters � ans a are length sales related to the marosopi physis. Inpartiular, the surfae tension � and the interfaial thikness � are related by� = 23"/a = 23�Æpa; " = �pa (6)A kineti equation for the phase �eld is obtained by requiring that F monotoniallydereases in time. The simplest hoie of this requirement leads to the phase-�eldequation ��2 �p�t = �ÆFÆp ; (7)where ��2 is a relaxation time. Diret alulation from the above equation gives��2 �p�t = �2�p� 12a(p3 � 1)� 2u: (8)The phase equation is onjoined with the heat equation, modi�ed to take into a-ount the liberation of latent heat by the inlusion of an appropriate soure term:�u�t + L2 �p�t = K�u; (9)
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Adaptive method for approximation phase �eld equation 34 Numerial ResultsWe now present numerial result in the setion. The results are obtained withODE15S software and adaptive mesh redistribution method whih developed in [3℄.Consider a lassial freezing problem in a semi-in�nite plan. We briey desribe theexample, the details an be found in [2℄. The Neumann solution of the lassialStefan problem has the following formu(s)(x; t) = 8>>><>>>: 1 [erf(�/2)� erf(xÆ(2pt+ t0))℄erf(�/2) x 6 s(t)2 [erf(�/2)� erf(xÆ(2pt+ t0))℄1� erf(�/2) x > s(t)where t0 is a starting time and 1 and 2 are onstants. The position of the interfaeis given by s(t) = �pt+ t0;with t0 = 0:15, 1 = �0:085, 2 = �0:015, L = K = 1, � = 0:396618. The initialand boundary onditions for the temperature areu(0; t) = 1; u(1; t) = u(s)(1; t) and u(x; 0) = u(s)(x; 0)Also the initial and boundary onditions for the phase �eld arep(0; t) = minp f(p; 1); losest to � 1p(1; t) = minp f(p; u(s)(1; t)); losest to 1and p(x; 0) = 8><>: p(0; 0) tanh(s(0)� x2" ); x 6 s(0)p(1; 0) tanh(x� s(0)2" ); x > s(0)We an see that the mesh points move smoothly and the predit interfae positionis very aurate. To plotting auray the moving grid results are indistinguishablefrom the Neumann solution. The numerial results are in good agreement withpreviously published results of Tan et. al. [2℄Pres
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Figure 1: (1): temperature(left) and phase �eld (right) at t = 0:2. (2): temper-ature(left) and phase �eld (right) at t = 1. (3): mesh trajetories with N = 50(left)and interfae position (right).Referenes[1℄ G.Gaghinalp, E.A.Soolovsky, Computation of sharp phase boundaries byspreading: the planar and spherially symmetri ases , J. Comput.Phys.95(1991)85-100[2℄ Z.Tan, T.Tang, Z.Zhang, A simple moving mesh method for one-and two -dimensional phase-�eld equations, J. Computational and Applied Mathematis.190 (2006), 252 - 269.[3℄ Z.R. Zhang, T. Tang, An adaptive mesh redistribution algorithm for onvetion-dominated problems .Commun. PureAppl. Anal.1 (2002), 341 - 357.
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