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tionNumeri
al study of the free boundaries 
an be grouped broadly into two 
ategories:one is to solve sharp-interfa
e problems, and the other is phase �eld equation. Mostnumeri
al methods to solve the phase-�eld equation have used stationary uniformmeshes,see,e.g, [1℄. However, it is important that the di�used interfa
e is well re-solved if the 
orre
t dynami
s are to be reprodu
ed. As the phase interfa
e moves intime it is 
lear that an e�
ient numeri
al approa
h must involve some form of meshadaptivity.The obje
tive of this work is to develop moving mesh method for solving one dimen-sional phase-�eld equation.2 Modi�ed Stefan ModelThe modi�ed Stefan model des
ribes a heat 
ondu
tion problem and evolution ofa sharp interfa
e �(t) within 
 � Rn. The obje
tive is to �nd a temperature �eldu(x; t) and a 
urve �(t) � 
 that solve the nondimensional equations�u�t = K�u x 2 
n�(t); (1)L� = �K [ru℄+� x 2 �(t); (2)
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2 Ali R.Soheili, Fateme Amiriu = � ��s(�+ ��) x 2 �(t): (3)Equations (1) and (2) des
ribe the di�usion of heat within the domain and therelease of latent heat a
ross the phase-
hange interfa
e. Here L is the latent heatper unit mass, K is the thermal di�usivity, � is the normal velo
ity of the interfa
e,and [ru℄+� is the jump in the normal 
omponent of the temperature gradient at theinterfa
e. The parameter � is the surfa
e tension, � denotes a kineti
 under
ooling
oeÆ
ient, �s is the entropy di�eren
e between the two phase, and � is the sum ofthe prin
iple 
urvatures at a point of the interfa
e. The 
lassi
al Stefan model isobtained by setting � = 0.3 Phase-Field(PF) ModelThe PF equation are derived using the idea of a phase order parameter p and Landau-Ginzburg theory. A free energy fun
tional F is 
onstru
ted in terms of the phaseorder parameter and other thermodynami
 variables. For example,F (p; u) = Z
 �12�2(rp)2 + f(p; u)� dx; (4)where � is a length s
ale and f(p; u) is a free energy density. Various 
hoi
es of thepre
ise 
hoi
e of f have been suggested, the most studied of whi
h is the Caginalppotential[1℄: f(p; u) = 18a (p2 � 1)2 � 2up: (5)Both parameters � ans a are length s
ales related to the ma
ros
opi
 physi
s. Inparti
ular, the surfa
e tension � and the interfa
ial thi
kness � are related by� = 23"/a = 23�Æpa; " = �pa (6)A kineti
 equation for the phase �eld is obtained by requiring that F monotoni
allyde
reases in time. The simplest 
hoi
e of this requirement leads to the phase-�eldequation ��2 �p�t = �ÆFÆp ; (7)where ��2 is a relaxation time. Dire
t 
al
ulation from the above equation gives��2 �p�t = �2�p� 12a(p3 � 1)� 2u: (8)The phase equation is 
onjoined with the heat equation, modi�ed to take into a
-
ount the liberation of latent heat by the in
lusion of an appropriate sour
e term:�u�t + L2 �p�t = K�u; (9)
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Adaptive method for approximation phase �eld equation 34 Numeri
al ResultsWe now present numeri
al result in the se
tion. The results are obtained withODE15S software and adaptive mesh redistribution method whi
h developed in [3℄.Consider a 
lassi
al freezing problem in a semi-in�nite plan. We brie
y des
ribe theexample, the details 
an be found in [2℄. The Neumann solution of the 
lassi

alStefan problem has the following formu(s)(x; t) = 8>>><>>>: 
1 [erf(�/2)� erf(xÆ(2pt+ t0))℄erf(�/2) x 6 s(t)
2 [erf(�/2)� erf(xÆ(2pt+ t0))℄1� erf(�/2) x > s(t)where t0 is a starting time and 
1 and 
2 are 
onstants. The position of the interfa
eis given by s(t) = �pt+ t0;with t0 = 0:15, 
1 = �0:085, 
2 = �0:015, L = K = 1, � = 0:396618. The initialand boundary 
onditions for the temperature areu(0; t) = 
1; u(1; t) = u(s)(1; t) and u(x; 0) = u(s)(x; 0)Also the initial and boundary 
onditions for the phase �eld arep(0; t) = minp f(p; 
1); 
losest to � 1p(1; t) = minp f(p; u(s)(1; t)); 
losest to 1and p(x; 0) = 8><>: p(0; 0) tanh(s(0)� x2" ); x 6 s(0)p(1; 0) tanh(x� s(0)2" ); x > s(0)We 
an see that the mesh points move smoothly and the predi
t interfa
e positionis very a

urate. To plotting a

ura
y the moving grid results are indistinguishablefrom the Neumann solution. The numeri
al results are in good agreement withpreviously published results of Tan et. al. [2℄Pres
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Figure 1: (1): temperature(left) and phase �eld (right) at t = 0:2. (2): temper-ature(left) and phase �eld (right) at t = 1. (3): mesh traje
tories with N = 50(left)and interfa
e position (right).Referen
es[1℄ G.Gaghinalp, E.A.So
olovsky, Computation of sharp phase boundaries byspreading: the planar and spheri
ally symmetri
 
ases , J. Comput.Phys.95(1991)85-100[2℄ Z.Tan, T.Tang, Z.Zhang, A simple moving mesh method for one-and two -dimensional phase-�eld equations, J. Computational and Applied Mathemati
s.190 (2006), 252 - 269.[3℄ Z.R. Zhang, T. Tang, An adaptive mesh redistribution algorithm for 
onve
tion-dominated problems .Commun. PureAppl. Anal.1 (2002), 341 - 357.
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