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Abstract

A moving mesh method is developed for the solution of phase-change prob-
lems modelled by the phase-field equation. Numerical result is given for classical
Stefan problem and demonstrate the accuracy and effectiveness of the proposed
algorithm.
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1 Introduction

Numerical study of the free boundaries can be grouped broadly into two categories:
one is to solve sharp-interface problems, and the other is phase field equation. Most
numerical methods to solyéwthé phase-field equation have used stationary uniform
meshes,see,e.g 1. Howeyer, it is important that the diffused interface is well re-
solved if the/correct dymamics are to be reproduced. As the phase interface moves in
time it 18 clear that an effcient numerical approach must involve some form of mesh
adaptivity.

The objective of this work is to develop moving mesh method for solving one dimen-
sional phase-field equation.

2 Modified Stefan Model

The modified Stefan model describes a heat conduction problem and evolution of
a sharp interface I'(¢) within  C R™. The objective is to find a temperature field
u(z,t) and a curve T'(¢t) C Q that solve the nondimensional equations

ou
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u=—"(k+av) zel({). (3)
As

Equations (1) and (2) describe the diffusion of heat within the domain and the
release of latent heat across the phase-change interface. Here L is the latent heat
per unit mass, K is the thermal diffusivity, v is the normal velocity of the interface,
and [Vu]? is the jump in the normal component of the temperature gradient at the
interface. The parameter o is the surface tension, o denotes a kinetic undercooling
coefficient, As is the entropy difference between the two phase, and & is the sum of
the principle curvatures at a point of the interface. The classical Stefangmodel is
obtained by setting o = 0.

3 Phase-Field(PF) Model

The PF equation are derived using the idea of a phase order parameter-pand Landau-
Ginzburg theory. A free energy functional F' is constriicted imyterms of the phase
order parameter and other thermodynamic variables.” For,example,

Pl = [ 57502 Ry iy, (@)

where 7 is a length scale and f(p,u) is@ifree energy density. Various choices of the
precise choice of f have been suggested, thexmost studied of which is the Caginalp
potential[l]:

1

fl.uy= 8—@(192 — 1)* — 2up. (5)

Both parameters 7 ans 4 are length scales related to the macroscopic physics. In
particular, the surface temsion o \and the interfacial thickness e are related by

a:ge/ang/\/a, e=rT1va (6)

3
A kinetic equation for the phase field is obtained by requiring that F' monotonically
decreases in time, "The simplest choice of this requirement leads to the phase-field
equation

dp oF
2
o 7
ar’— 7L (7)
where a7? is a relaxation time. Direct calculation from the above equation gives
Op 1
2 2 3
—=7"Ap— —(p°—1) — 2u.
oL = 2ap— — (5 — 1)~ 20 0

The phase equation is conjoined with the heat equation, modified to take into ac-
count the liberation of latent heat by the inclusion of an appropriate source term:

9L 2D _ kA, 9)
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4 Numerical Results

We now present numerical result in the section. The results are obtained with
ODE15S software and adaptive mesh redistribution method which developed in [3].
Consider a classical freezing problem in a semi-infinite plan. We briefly describe the
example, the details can be found in [2]. The Neumann solution of the classiccal
Stefan problem has the following form

erf(8/2) — erf(z/ 2VTF )]

u(S)(:E t) = . erf(3/2) =0
; . [exf(B/2) — erf(w/(Q\/t-i-—to))] z > s(t)
2 1 —erf(8/2) y

where tg is a starting time and ¢; and ¢y are constants. The position of the interface

is given by
s(t) = BVt + to,

with o = 0.15, ¢; = —0.085, ¢co = —0.015, L = Ko= 1, #=/0.396618. The initial
and boundary conditions for the temperature are

w(0,t) =1, u(l,t) =u®(1,8) hand “ulx,0) = u'¥(z,0)
Also the initial and boundary conditions for,the phase field are

p(0,t) =minf (p.ey), * closest to — 1
P

p(1,4)= minf(p,u(® (1,1)), closest to 1
p

and

s(0) —z
2¢e

x — s(0)

p(0,0) tanh( )y o < s(0)
p(x,(]) y-

p(1,0) tanh( ), x> s(0)

We can see that thé mesh points move smoothly and the predict interface position
is veryrvaccurate. To plotting accuracy the moving grid results are indistinguishable
from the:Neumann solution. The numerical results are in good agreement with
previously published results of Tan et. al. [2]
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Figure 1: (1): temperatuare(left) and phase field (right) at ¢ = 0.2. (2): temper-
ature(left) and phase field«(right) at ¢ = 1. (3): mesh trajectories with N = 50
(left)and interface position (right).
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