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Abstract

It is well known that moving mesh and upwinding schemes are two kinds of tech-
niques for tracking the shock or wave front in the solution of PDEs. It is expected that
their combination should produce more robust methods. Several upwinding scheme
are considered for non-uniform meshes. Adaptive Mesh Redistribution method is also
described. Numerical examples are given to illustrate the accuracy and effectiveness of
the proposed algorithm.
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1 Introduction

In this paper we consider a simple one-dimensional convection-diffusion equation:

ut + f(u)x = ϵ(σ(u)ux)x,

where 0 < ϵ ≪ 1 is a (small) viscosity. Adaptive Mesh Redistribution (AMR) methods
have important application in a variety of physical and engineering areas. The physical
phenomena in these areas develop dynamically singular or nearly singular solutions in fairly
localized region. The numerical investigation of these physical problems may require ex-
tremely fine meshes over a small portion of the physical domain to resolve the large solution
variations. In this work, we will develop an efficient AMR algorithm to solve convection-
diffusion problems. Although the moving mesh method can place enough nodes in the wave
front and works very well for a convex flux function and sufficiently smooth initial conditions,
for nonconvex flux functions or piecewise initial conditions, there are still some oscillations
appearing in the solution. High-order upwinding schemes are needed in these cases.

2 Adaptive Mesh Redistribution method

The Adaptive Mesh Redistribution(AMR) scheme consists of two independent part: a PDE
evolution and a mesh-redistribution. We have following (explicit)finite volume method:
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where Fi is the numerical flux. We further describe the mesh redistribution at each time
step. The mesh generation equation, based on the standard equidistribution principle, is

(Mxξ)ξ = 0, ξ ∈ [0, 1]

where the function M is called monitor function. After obtaining the new grid {x̃i}, we
need to update u at the grid point x̃i+ 1

2
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}. We use the second-order conservation interpolation formula in the fol-

lowing:
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where ∆x̃i+ 1
2
= x̃i+1 − x̃i, ci = xi − x̃i. In the actual computation,the linear flux cu is

approximated by an upwinding scheme, see [2]:
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3 Second-Order MUSCL Scheme

In the section , we consider the second-order MUSCL (Monotonic Upstream-Centered Scheme
for Conservation Laws) method to reconstruct the numerical fluxes[3]. Thus
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where we used the Sweby’s notation to define slopes of the solution as
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and ϕ represents a slop limiter function chosen to be the Van-Leer limiter
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That λi is the characteristic speed as λ
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4 Second-Order Lax-Friedrich Scheme

second-order Lax-Friedrich method to reconstruct the numerical fluxes is:
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where the maximum is taken between u−
i and u+

i . in order to approximate the flux, we
reconstruct a linear approximation in each cell:
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5 Third-Order Piecewise Hyperbolic Method

The PHM (Piecewise Hyperbolic Method) constructs numerical flux function as
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let hi = xi − xi−1. then we have
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where B(ri) is a flux limiter defined by
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uu
i+1 = ui + (hi+1/2)((ui+1 − ui)/hi)

is the left upwinding term. Similarly,
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in the next section, we are going to used AMR method and upwinding schemes which was
introduced.
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6 Numerical Results

Example 6.1

ut + (u2/2)x = ϵuxx, x ∈ (−2, 2), t ∈ (0, 2.5)

with boundary conditions u(2, t) = 0, u(−2, t) = 1 and initial condition u(x, 0) = 1 if x ≤ 0

and u(x, 0) = 0 if x > 0, and the monitor function used is
√
1 + 80u2

ξ

Example 6.2

ut + f(u)x = ϵ(σ(u)ux)x, f(u) =
u2

u2 + (1− u)2
, σ(u) = 4u(1− u).

The initial function is

u(x, 0) =

{
1− 3x 0 ≤ x ≤ 1

3
0 1

3 < x ≤ 1

and the boundary value of u(0, t) = 1 is kept fixed.and the monitor function used is
√

1 + 50u2
ξ .
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Figure 1: (Up) Example 6.1: adaptive mesh solutions at t = 1.2 with upwind schemes and
mesh trajectory with N = 25, (Down) Example 6.2: adaptive mesh solution at t = 0.2 and
mesh trajectory with N = 30.
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As desired, considerable portion of grid points has been moved to steep gradient region,
the ability of the AMR method to capture and follow the moving large gradient is clearly
demonstrated. Also with comparison the obtained results from three schemes we notice, that
third-order PHM can resolve the large gradient very good and the results of the Lax-friedrich
method is better than the MUSCL method.
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