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Abstract

A new concept called the dominance of equidistribution is introduced forranalyzing moving mesh
partial differential equations for numerical simulation of blowup in' reaction diffusion. Theoretical
and numerical results show that a moving mesh works successfully when the employed moving mesh
equation has the dominance of equidistribution.
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1 Introduction

Moving mesh methods have been proved to be wvery efficient in resolving singular solutions to reaction-
diffusion equations. In this paper, we are interested ‘in the solution of blowup problems and focus
particularly on the MMPDE (moving mesh/PDE) developed in [1].

An outline of the paper is as follows: Inithe section 2, we describe the MMPDE method for classic
problem with blowup solutions. Theoretical and numerical analysis of MMPDES for constant 7 is given
in section 3. Additional conclusiens are contained in the final section.

2 Moving meshl PDE method

We study the moving mesh method for classic a blowup problem:

up = Ugy +exp(u), u(0,t) =u(l,t) =0, u(z,0)=wug(z) > 0. (1)

Theorem 2.1 Let u(z,t) be the solution of (1); then

lim [u (g;* +n[(T —t)(a—log(T — t))]1/2 t) + log(T — t)] = —log (1 + M) )
t—T , I

uniformly on compacts in 7, where a is a constant depending only the initial solution.

The theorem shows that the blowup profile can best be shown in the so-called kernel coordinate n =
n(xz,t), which is fixed as t— T and defined as

n=(z—a") (T —t)(c—log(T — )] "/?. (3)
Define a one-to-one coordinate transformation by

z=uzx(,t), &£€]0,1], =z(0,t) =0, =z(1,t)=1. (4)
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Transforming (1) from the physical coordinates (z,t) to the computational ones (¢,t), we have

The MMPDED, which is considered in this paper, as

. 0 oz
= g (M) )

We consider the monitor function in the form
M () = exp(u). (7)

MMPDES is by adding a mesh speed term to the equidistribution principle that takes the form

subject to the boundary conditions (4). The resulting coordinate transformation takes the form
w(&,1) = 2" + (T =) [ og(T— )7 2(&, 1), (9)
with the property
z(§:1) = zo() +0(1) +o(1). (10)

3 Moving mesh PDEs with constant 7

As mentioned in Section 2, the solution profile in the peak region of blowup can be properly resolved in
the computational coordinate ¢ when the coordinate transformation is of form (9) with property (10).
The MMPDESD has the form (6). Expanding the derivative on the right-hand side gives

%r  OM Oz

(11)

We seek a.coordinate transformation in form (9). By differentiating (9) with respect to t and £, we have

&= (T — ) Y2 [a~ log(T — 1)]'/? [—1 + o —log(T — )] 24+ (T — )2 [ — log(T — 1)]*/? 2,
(12)
ze = (T =)' [a—log(T — 1)]"? z¢, mge = (T — t)"/2 [or = log(T — 1)]"/? 2. (13)
Using the exact form (2) for the solution u(z,t), from (9) and (7) we have
Els
(e, ) = ~log(1 + 1) ~log(7 — 1), (14)
1 -2
M= 5 Mg = = 2 - (15)
(T =01+ ) AT —0)(1+ )2
Inserting these results into (11) and after simplification yields
T 4 —2222 Zee
B —1+Ja—log(T—1t)] | z+7(T—1t)z = +o0(1), (16)

2 2
e+
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It is not difficult to see that (16) permits a formal expansion for zy(£) as

z(€,t) = 20(£) + o(1), (17)

where 2 (&) satisfies the ordinary differential equation

d?z T 22 22 dzg 2
2 2
df 2 4 4(1 4 %) dg
This, combined with expansion (17) and the fact that (9) is valid only in the blowup region, suggests
2(E") =2, w(E") = 2, (19)

where &8, ¢R, zé and z(lf are bounded constants with —oc < zé, z(lf < oo and 0 < €l < E”8°< 1. Hence,
¢! is close to zero and ¢ close to 1, i.e.,

o0, fxl. (20)

In form (9), they must correspond to the limits of large |z|:z(0, #) = “+oorand 2(17%) = oo. From (17) and
(20) 2§ and z{ , although bounded, should be very large, viz.,

2h ~ —00, 2 = o0 (21)
Letting v = %0, (18) becomes
dv 2zv T P W j|
2 L 20y -
g 1+ o 2 N5
This gives
92012 _ (4T log([4 + 22]) + C 22
(217 = (o) M3 Lol 4+ 4]) + ), (22)

where C is an integration constant. For large 7, we consider the ODE (22) with boundary conditions (19).
Since the approximation (21) is valid, the eomstant C must be positive and large to keep the right-hand
side term of ODE (22) positive. Therefore, the ODE (22) with boundary conditions (21) has no solutions.
Next, we consider the situation when 7 is/sufficiently small. The boundary conditions (19) then imply
zOL <z < zé%. Thus, when 7lisSufficiently small such that

G108+ (=)°) <1, Zlog(4+ (+)?]) < 1.

(22) can bedwritten as

d _ _
ﬁ =[C+O(n)] M (a+20)! (23)
Integrating this equation about zy from ZOL to zéz and applying the boundary conditions (19) give
¢—¢L arctan 2 — arctan 20
¢R _¢L = ZQR ZQL + O(7) (24)
arctan - — arctan =

Using the approximations (20) and (21), we obtain

20(6) ~ 2tan(m (€ — 3)) + O(r) (25)

Then the coordinate transformation and the physical solution in the peak region of blowup satisfy

2(&t) = 2" + (T — )" [a — log(T — 1)]'/? <2 tan (¢ — %)) + 0(7)) : (26)

le(6,0).0) =~ log (7= 01+ (a6 — 1) +0(0)). (27
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3.1 Numerical examples

The initial solution is taken as ug(x) = 5sin(mz). We also plot |z; — z*| against e*™+= in logarithmic scale.
To explain these functions, we take (26) and (27). Then we have e¥maz ~ (T —t)~! or (T —t) & e~ ¥maz,
It follows that, as t — T,

1 1
et max y cos? (& — E))’ log |z; — z*| — —3 log(e"™=) + d;,

where d; is a constant depending on £&. Thus, when MMPDES works satisfactorily, the computed solution
e(u—tmaz) converges to a steady-state profile cos?(m(& — %)) while log |z; — z*| i becoming linear in
log(e¥maz) for most mesh points in the limit ¢ — T .
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Figure 2: MMPDES5, 7 = 102, M=exp(u)
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