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This paper presents an analytical solution for pressure-driven electrokinetic flows in planar micro-
channels with velocity slip at the walls. The NaviereStokes equations for an incompressible viscous fluid
have been solved along with the PoissoneBoltzmann equation for the electric double layer. Analytical
expressions for the velocity profile, average electrical conductivity, and induced voltage are presented
without invoking the DebyeeHückel approximation. It is known that an increase in the zeta-potential
leads to an increase in the flow-induced voltage; however, it is demonstrated that the induced voltage
reaches a maximum value at a certain zeta-potential depending on the slip coefficient and the
DebyeeHückel parameter, while decreasing rapidly at higher zeta-potentials. The present parametric
study indicates that liquid slip at the walls can increase the maximum induced voltage very significantly.

� 2010 Elsevier Masson SAS. All rights reserved.
1. Introduction

Microfluidic systems have become increasingly attractive in
a variety of engineering fields such as micro power generation and
biochemical processing due to recent advances in microfabrication
technologies. Precise control of such systems often requires
a complete understanding of the interaction between fluid
dynamics and the electrical properties of the microchannel; usually
referred to as electrokinetics. In every electrokinetic application,
finding the accurate distribution of the prevailing electric potential
is of fundamental importance, which is governed by the non-linear
PoissoneBoltzmann (PeB) equation in many cases. The linear form,
following the DebyeeHückel (DeH) approximation, is only valid
when the electrical potential is small compared to the thermal
energy of the ions.

Different methods have been developed for the solution of the
PeB equation. Exact solution of the PeB equation between two
dissimilar planar charged surfaces is presented by Behrens and
Borkovec [1] in terms of Jacobian elliptic functions. A similar
approach has been employed by other researchers [2e5] for the
evaluation of streaming current and electrokinetic energy conver-
sion. Although this semi-numerical scheme is capable of solving the
non-linear PeB equation, the resulting potential filed cannot be
expressed in a closed form solution, and therefore, it is not suitable
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for fully analytical investigations of the flow field. There have been
several attempts to extend the analytical solution of the PeB
equation for a single flat plate [6] to a planar microchannel with
overlapping electric double layers (EDLs) [7e10]. However, such
a treatment requires a detailed examination of the key parameters,
which has not received proper attention in the literature. Dutta and
Beskok [10] derived an analytical expression for the velocity
distribution in mixed electro-osmotic/pressure-driven channel
flows based on Hunter's solution [6] for a flat plate. Min et al. [9]
studied the electro-pumping effects in electro-osmotic flows and
determined the flow rates both analytically and experimentally. In
their analytical treatment, Hunter's solution is employed and
a criterion for the applicable range of the solution is developed.
Oscillating flows in two-dimensional microchannels were analyti-
cally studied by Wang and Wu [7]. Their analysis is also based on
Hunter's non-linear PeB solution and velocity profiles are pre-
sented for thin EDLs; however, the conditions for the validity of the
solution are not clearly discussed.

For highly overlapped EDLs, the use of the Boltzmann equation
may lead to inaccurate potential distributions as indicated by Qu
and Li [11]. Yet, there are various studies involving strongly over-
lapped EDLs (K < 10) in which the PeB equation has been used
[1e3]. For these cases, a new set of governing equations and
boundary conditions such as the charge regulation model have
been proposed [11e14], where chemical equilibrium conditions in
conjunctionwith overall charge and mass conservation of the ionic
species are considered. However, the analytical treatment of these
models is limited by the DebyeeHückel approximation [11,12].

mailto:metin@uwaterloo.ca
www.sciencedirect.com/science/journal/12900729
http://www.elsevier.com/locate/ijts


Nomenclature

B ratio of ionic pressure to dynamic pressure,
B ¼ kbTref n0=rU

2
ref

D species diffusion coefficient [m2/s]
e elementary charge, e ¼ 1:602� 10�19 ½C�
Ex induced voltage, Ex ¼ E*x=ðjref =HÞ
H microchannel height [m]
I electric current density, I ¼ I*=Iref
Iref reference current density, Iref ¼ re;ref Uref ½C=m2 s�
Js, Jc local streaming and conduction current densities,

J ¼ J*H=Iref
K dimensionless DebyeeHückel parameter, K ¼ kH
kb Boltzmann constant, kb ¼ 1:381� 10�23 ½J=K�
L microchannel length, L ¼ L*/H
no bulk ionic concentration [ions/m3]
P pressure, P ¼ P*=rU2

ref
qs surface charge density, qs ¼ q*s=Hre;ref
Re Reynolds number, Re ¼ rUref H=m
Sc Schmidt number, Sc ¼ m=rD
T absolute temperature, T ¼ T*=Tref
Tref reference temperature [298 K]
u axial velocity, u ¼ u*=Uref
Uref reference velocity, Uref ¼ ð�dP*=dx*ÞH2=8m ½m=s�
us slip velocity at the wall, us ¼ u*s=Uref
x,y Cartesian coordinates, x ¼ x*=H; y ¼ y*=H
z valance number of ions for a symmetric electrolyte,

z ¼ jzþj ¼ jz�j ¼ 1

Greek symbols
b slip coefficient, b ¼ b*=H
d electric potential gradient at mid-plane,

d ¼ ðdj=dyÞy¼1=2
30 permittivity of vacuum, 30 ¼ 8:854� 10�12 ½C=Vm�
3r relative dielectric constant of the electrolyte, 3r ¼ 78.5
f induced electric potential, f ¼ f*=jref
k DebyeeHückel parameter,

k ¼ zeð2n0=3r30kbTref Þ1=2 ½m�1�
m dynamic viscosity [Ns/m2]
r fluid density [kg/m3]
re net electric charge density, re ¼ r*e=re;ref
re,ref reference charge density, re;ref ¼ zen0 ½C=m3�
se local electrical conductivity, se ¼ s*e=sref
sav average electrical conductivity at cross-section,

sav ¼ s*av=sref
sref reference conductivity, sref ¼ Dz2e2n0=kbTref ½1=Um�
j electric potential, j ¼ j*=jref
J total electric potential, J ¼ J*=jref
jref reference electrical potential, jref ¼ kbTref =ze ½V�
z zeta-potential, z ¼ z*=jref

Superscripts and subscripts
* dimensional quantity
0 derivative d/dy
c mid-plane value
w at the wall
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Experimental studies, which are well reviewed by Neto et al.
[15], have shown the existence of significant liquid slip at the walls
when low-energy (hydrophobic) surfaces are involved even at low
Reynolds numbers (Re < 10) [16e20]. Although slip is expected to
occur preferentially over very smooth and poorly wetting surfaces,
experiments on a variety of solid/liquid interfaces provide evidence
of slip lengths up to micron levels in microchannels [17,18]. Slip
over rougher walls is attributed to the presence of nano-bubbles
trapped on the surface [15], and it is reported that hydrophobic
surfaces enhance bubble formation [21].

Recent molecular dynamics simulations of water/solid inter-
faces indicate that the charged distribution is well approximated
with the PoissoneBoltzmann equation in the presence of hydro-
dynamic slip [22]. Despite the fact that surface charge is expected
to promote wetting and reduce slip, experimental observations
indicate the presence of significant slip even over highly charged
surfaces [4]. Furthermore, Bouzigues et al. [23] presented exper-
imental evidence for slip-induced amplification effects on the
wall zeta-potential. It was demonstrated that slip leads to
amplification of the zeta-potential by a factor of (1 þ bK), which
indicates considerable increase in zeta-potential especially for
larger K. This fact is also confirmed by the theoretical model
presented by Chakraborty [24] based on the free energy for binary
mixtures.

Slip effects have been studied in microchannel flows, and the
results indicate an increase in the mass flow rate and considerable
reduction in the applied voltage for electro-osmotic flows [25].
Recently, Park and Choi [26] and Park and Kim [27] studied electro-
osmotic flows through hydrophobic microchannels employing an
experimentally determined slip velocity at the walls and developed
a method for the simultaneous evaluation of the zeta-potential and
the slip coefficient.

Electrokinetic flows have been mostly studied in the context of
electro-osmotic flows, which involve applied electric fields but no
externally applied pressure gradients. In electro-osmotic flows, the
induced electric potential due to fluid motion is negligible in
comparison to the applied electric potential. On the other hand, in
purely pressure-driven flows, a significant electric potential can be
generated due to the motion of charged fluid particles, which is
called the streaming potential. This potential serves as the basis for
possible micro-scale power generators or batteries. The efficiency
of such systems is generally low and depends on the fluid proper-
ties and the channel geometry [2,28e30]. Larger efficiencies can be
achieved when the overlapped EDL regime is considered. However,
as mentioned earlier, the PeB equation is not consistent with the
true physics of such problems, despite the fact that it has been used
by several researches [1e3].

Rather limited information is available in the literature
regarding the zeta-potential z effects on the streaming potential in
purely pressure-driven flows [31e33]. Mirbozorgi et al. [31] per-
formed analytical and numerical studies on the induced potential
in planarmicrochannels. Their results show that, in fully-developed
flow, the induced potential increases linearly along the micro-
channel at a fixed zeta-potential. However, the induced voltage
varies in a non-linear manner with z such that a maximum voltage
is developed with a certain zeta-potential. They have also used the
DebyeeHückel approximation in their analytical treatment, which
limits the validity of their results to relatively small zeta-potentials.
Similar behavior has been reported for flows with variable prop-
erties by the numerical study of Hwang and Soong [32]; however,
the effect of slip on the induced voltage was not considered in
above mentioned studies.

Slip effects on the streaming potential have been studied in
the context of electrokinetic energy conversion efficiency in nano-
channels with highly overlapped EDLs. Davidson and Xuan [2]
numerically studied the electrokinetic conversion efficiency with
slip in nanochannels using the Jacobian elliptic function for the
potential field. A similar study has been performed by Ren and Stein



J. Jamaati et al. / International Journal of Thermal Sciences 49 (2010) 1165e1174 1167
[4], where strong enhancement in the energy conversion efficiency
has been found in the presence of slip. It must be emphasized that
these studies have been carried out for cases where an external load
is applied and the net ionic current is not zero, in contrast to seeking
the maximum induced voltage with zero net ionic current.

In the present work, the effects of liquid slip at the walls on
the streaming potential are studied. Analytical expressions are
developed for the velocity field and the induced voltage without
invoking the DebyeeHückel approximation. The model used here
is based on the non-linear PeB solution for an electrolyte over
a single flat plate, which is extended to a planar microchannel.
This approach has been previously employed for channel flows,
while the precise validity conditions have not been thoroughly
examined in the literature. In addition, the commonly ignored
variation of electrical conductivity with zeta-potential is exam-
ined, and whenever appropriate, the consequences of using the
DeH approximation are assessed since it is widely used in the
literature.
Table 1
Solutions of the PoissoneBoltzmann equation j00ðyÞ ¼ k2f ðjÞ.

Case f(j) B.C. Potential distribution j(y) Limitations

1) DeH
Approx.

j
jð0Þ ¼ z
j0ð12Þ ¼ 0

zcoshðKy� K
2Þ

coshðK2Þ
jzj � 1

K

2. The PoissoneBoltzmann equation

Consider the pressure-driven laminar flow of an electrolyte
solution between parallel plates (planar microchannel) as shown in
Fig. 1. Electrically neutral liquids may have a distribution of elec-
trical charges near the microchannel walls, known as the electric
double layer (EDL). The EDL is primarily a surface phenomenon,
which tends to affect the flow field when the typical dimension of
the channel is comparable to the EDL thickness. According to the
theory of electrostatics, the relationship between the total electric
potential J and the local net charge density per unit volume re at
any point in an electrolyte solution is described by the Poisson
equation:

V2J ¼ �K2re=2 (1)

In general, the total electrical potential can be expressed as:

J ¼ jþ f (2)

where j is due to the EDL at an equilibrium state (i.e., no liquid
motion and no externally applied electric field) and f is the flow-
induced electric potential. It can be shown that for fully-developed
conditions, the electrical potential variation in the flow direction
can be at most linear [31]. Therefore, f ¼ �Exx where
Ex ¼ �vJ=vx is the strength of the electric field. Based on the
Boltzmann distribution of charges in the EDL, and in the absence of
non-electrical work, the net charge density is given by:

re ¼ �2 sinhðjÞ (3)

Substitution of Eq. (3) into the Poisson equation leads to the
well-known PoissoneBoltzmann equation:

d2j
dy2

¼ K2 sinhðjÞ (4)
y H

Bottom wall: β, ζ

Upper wall: β, ζ

x, u

Fig. 1. Planar microchannel geometry and the coordinate system.
where K ¼ kH ¼ zeHð2n0=3r30kbTref Þ1=2 is the dimensionless
DebyeeHückel parameter which is independent of the wall prop-
erties and is determined by the electrolyte and the geometric scale
of the problem. The electric potential distribution is obtained by
solving Eq. (4) subject to appropriate boundary conditions. Subse-
quently, the charge density distribution re is determined fromEq. (3).

3. The electric potential field

An explicit analytical expression for the electric potential field
is highly desirable in any electrokinetic flow problem. Yet, due to
the non-linear nature of the PoissoneBoltzmann equation,
a simple closed form solution even in simple microchannels has
not been developed. A very common simplification involves the
DebyeeHückel approximation sinhðjÞzj, which is obviously
reasonable only for small j. Hunter [6] developed a closed form
solution for flow between parallel plates using an overlapping
strategy based on the solution of the PeB equation for a single flat
plate. However, this solution requires the numerical evaluation of
some integrals, which prevent a simple closed form solution that
can be directly used in the calculation of the velocity and electric
fields. As a remedy, it will be shown here that the solution of the
non-linear PeB equation for a flat plate can be adjusted for planar
microchannel flows through some modifications to the boundary
conditions.

For completeness, some common solutions that are applicable
to flat microchannels are given in Table 1 along with the applied
boundary conditions and their validity requirements. The
DebyeeHückel approximation has been employed in the first and
second solutions, which limits their applicability to small zeta-
potentials. The second solution is further limited to very thin EDLs
or large values of the dimensionless DebyeeHückel parameter,
ensuring that the channel mid-plane potential is essentially zero.
The third solution is an adaptation of the idea proposed by Philip
and Wooding [34] for large zeta-potentials, which was originally
developed for the calculation of the potential distribution in
cylindrical geometry. Some comments about the accuracy of this
solution will be made later. The fourth one, which has been
reported by Hunter [6], is an explicit solution to the non-linear PeB
equation for a single flat plate subjected to the condition that the
potential distribution asymptotically goes to zero far away from the
plate. There is no limitation on the value of the zeta-potential. This
solution can also be expressed in the following form, which is more
useful for the present study:

tanhðj=4Þ ¼ tanhðz=4Þexpð�KyÞ (5)
2) DeH
Approx.

j
jð0Þ ¼ z
jð12Þ ¼ 0

zsinhð�Kyþ 2Þ
sinhðK2Þ

jzj � 1
K[1

3) Large z

Approx.
� e�j

2
jð0Þ ¼ z
j0ð12Þ ¼ d

2 ln½expðz2Þ þ Ky
2 � jzj[0

K[1

4) No DeH
Approx.

sinh (j)
jð0Þ ¼ z
j0ð12Þ ¼ d

2 ln

"
1þ tanh

�z
4

�
expð�KyÞÞ

1� tanh
�z
4

�
expð�KyÞ

#
Contour
maps in
Fig. 2

d ¼ �2K sinhðjc
2Þ
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For a planar microchannel with coordinates as shown in Fig. 1, it
is obviously required that dj=dy ¼ 0 at mid-plane (y ¼ 1/2) due to
symmetry. This condition is clearly not satisfied by this solution,
and therefore, some elaborations on the boundary conditions are
required tomake it approximately suitable for the present problem.
In general, the channel mid-plane electric potential jc is not zero
except for very thin EDLs. Therefore, modified boundary conditions
are considered here as:

y ¼ 1=2 : j ¼ jc and dj=dy ¼ d (6)

There are more boundary conditions than required; however,
these can be related using dj=dy ¼ �2K sinhðj=2Þ obtained from
Eq. (5). Hence, it follows that:

d ¼ �2K sinhðjc=2Þ (7)

Furthermore, a constraint on the physical parameters can be
obtained by applying Eq. (5) at the mid-plane; that is:

tanhðjc=4Þ ¼ tanhðz=4Þexpð�K=2Þ (8)

Equation (8) along with the Eq. (7) provides the required criteria
for the ranges of K and z where Eq. (5) can be applied with
reasonable accuracy to a channel flow. Equation (8) has been
plotted for three different values of jc in Fig. 2. From this figure,
bounds for the zeta-potential and the dimensionless
DebyeeHückel parameter can be determined when the mid-plane
j is specified. The region above each line indicates the applicable
values of the DeH parameter and zeta-potential for which the mid-
plane potential is less than the specified jc curve. For example, with
a zeta-potential of 100 mV, the dimensionless DebyeeHückel
parameter must be larger than 22 for the electric potential at the
mid-plane to be smaller than 0.001 mV. It is seen that the
constraint is almost independent of z for large wall potentials.

As mentioned earlier, Dutta and Beskok [10] employed Eq. (5)
for the potential distribution in a flat microchannel. However, the
range of zeta-potential where this solution is applicable was
restricted to jz*j < 25 mV. Fig. 2 indicates that the solution is
applicable for this geometry when jz*j < 25 mV if K is large enough.
Min et al. [9] proposed a similar contour map but there are some
|ζ*| (mV)
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⏐ψ*
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mV

Fig. 2. Contour map associated with Eq. (8).
uncertainties about their results since they have obtained a non-
zero mid-plane potential for z ¼ 0.

For this approximate solution, it is important to see how well
dj=dy ¼ 0 is satisfied at mid-plane. In Fig. 3, d ¼ dj=dy is plotted
as a function of K for different values of z*. It is observed that for
K> 10, d is essentially zero for all zeta-potentials, and thus, themid-
plane boundary condition is well-satisfied. In addition to the
boundary condition, the solution accuracy throughout the domain
has been examined. In Fig. 4, the normalized electric potential
distribution is plotted for K ¼ 10 and 20 for z* ¼ �75 mV. It is seen
that the solution expressed by Eq. (5) coincides with a full
numerical solution of the PoissoneBoltzmann equation (obtained
with a 4th order RungeeKutta method), except in the core region
for K ¼ 10. It is also notable that the DebyeeHückel approximation
ψ / ζ
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0

0.1
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Fig. 4. Comparison of different analytical solutions with the full numerical solution.
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leads to a clear deviation from the numerical solution throughout
the solution domain, while it satisfies the mid-plane boundary
condition of dj=dy ¼ 0. As indicated by Fig. 3, the analytical
solution (Eq. (5)) satisfies the mid-plane boundary condition at
larger values of K more accurately, which is also reflected in Fig. 4.
This is also confirmed by Fig. 5 where the mid-plane values of the
electric potential jc have been plotted for a wide range of the DeH
parameter. The calculated values of jc approach the numerical
predictions when K > 10, essentially independent of z.

In order to compare different solutions of the PeB equation
listed in Table 1 at large zeta-potentials, a value of z*¼�150mV has
been considered. The potential distributions across the channel for
K ¼ 20 are presented in Fig. 6. The solution offered by Oyanader
ψ / ζ

y

0 0.25 0.5 0.75 1

0

0.05
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0.15

0.2

Numerical [35]

Numerical (Runge-Kutta)

no D-H App.

D-H App. (Cosh)

ref

Fig. 6. Comparison of different solutions given in Table 1 with the numerical
predictions.
et al. [35] has been developed numerically following their proposed
iterative numerical procedure. Despite the fact that their solution is
claimed to be valid at high zeta-potentials, this figure shows that it
agrees well with accurate numerical solution only in the region
close to the wall, while in the core, it approaches the solution based
on the DeH approximation, which is known to perform poorly at
high zeta-potentials. However, their solution performs reasonably
well at zeta-potentials less than about 75 mV. Note that the
analytical solution given by Eq. (5) shows excellent agreement with
the full numerical solution of the non-linear PeB equation at high
zeta-potentials as well.
4. The flow field

The solution to the non-linear PeB equation discussed above
has been employed for the analytical treatment of slip effects in
pressure-driven flows. As will be shown later, the performance of
the DebyeeHückel approximation for the prediction of the induced
electric field and the associated velocity profile deteriorates further
in the presence of slip. For the case of a steady fully-developed
liquid flow through a planar microchannel, the equation of motion
reduces to:

m
d2u*

dy*2
� dP*

dx*
þ BreE

*
x ¼ 0 (9)

Using the classical Poiseuille-flow maximum velocity
Uref ¼ ð�dP*=dx*ÞðH2=8mÞ as reference, and introducing the charge
density from Eq. (1), the momentum equation takes the form:

d2u
dy2

¼ 2BReEx
K2

 
d2j
dy2

!
� 8 (10)

where B ¼ kbTref n0=rU
2
ref is the ratio of osmotic pressure to

dynamic pressure. Noting that Ex is constant under fully-developed
conditions, and solving Eq. (10) with slip at the walls ðu ¼ bdu=dyÞ
and symmetry at mid-plane ðdu=dy ¼ 0Þ, the following velocity
profile is obtained:

u ¼ 4yð1� yÞ � 4G
�
1� j

z

�
þ 4b

 
1� GK2qs

2z

!
(11)

where G ¼ BReExz=2K2 and qs ¼ R 1=2
0 reðyÞdy ¼ �2j0ð0Þ=K2 is the

charge density at the wall. The first term in Eq. (11) is due to the
applied pressure gradient. The second term represents the contri-
bution of the EDL to the velocity profile and the third term reflects
the slip effect. However, the coefficient G is indirectly related to the
slip effect through the resulting induced voltage. From Eq. (11), the
slip velocity at the wall is found to be:

uS ¼ 4b

 
1� GK2qS

2z

!
¼ 4b

�
1� BReExqS

4

�
(12)

For all cases considered here, the following parametric values
have been used unless otherwise stated: Re ¼ 1, K ¼ 40, 3r ¼ 78.5,
r¼103 kg/m3,m¼10�3Ns/m2,D¼2�10�9m2/s, e¼1.602�10�19 C,
n0¼ 6.022�1021 ions/m3, T¼ Tref¼ 298 K and z¼ 1. Using these, the
relevant parameters can be calculated according to Sc ¼ m/rD,
jref ¼ kbTref =ze; k ¼ zeð2n0=3r30kbTref Þ1=2,H*¼K/k, L*¼10H*,Uref¼
mRe/rH*, B ¼ kbTrefn0/rUref

2 , DP ¼ 8L/Re and P* ¼ PrUref
2 resulting

in Sc ¼ 500, jref ¼ 25:7 mV; k ¼ 1:04� 107 m�1, H* ¼ 3.85 mm,
L*¼ 38.48 mm, Uref¼ 0.26m/s, B¼ 0.37, DP¼ 80 and DP*¼ 5.40 kPa.

In Fig. 7, slip velocities have been plotted as a function of the
zeta-potential for three different slip coefficients b. The slip
velocities have their maximum values at z ¼ 0 and approach zero
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with increasing zeta-potential for all b. A similar behavior can be
observed in Fig. 8, where the velocity profiles are plotted for various
zeta-potentials and a slip coefficient of b ¼ 0.05 while the other
flow parameters remain the same as in Fig. 7. Mathematically, slip
reduction with increasing zeta-potential can be explained with the
help of Eq. (12). In this equation, it can be shown that the second
term in the brackets is always positive and approaches 1 at large z.
Physically, this effect can be attributed to a stronger binding of the
counter-ions to the wall at larger values of z, which reduces the
mobility of these ions and thus opposes the slip effect at the wall.
Fig. 7 also indicates that the slip velocity is almost independent of
b for zeta-potentials larger than about 150 mV, while for small jz*j,
the slip coefficient affects the slip velocity very significantly.

The performance of the DebyeeHückel approximation weakens
in the presence of slip as demonstrated in Fig. 9, where the slip
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Fig. 8. Effects of zeta-potential on the velocity profile.
velocity is plotted as a function of b for z* ¼ �75 mV. The solution
based on the DeH approximation over-predicts the slip velocity for
all b, while the solution given by Eq. (5) shows excellent agreement
with the full numerical solution of the non-linear PeB equation.

In Fig. 10, velocity profiles with and without the EDL and slip
effects are shown for z* ¼ �75 mV. A comparison between these
profiles indicates that the induced voltage opposes the pressure
effects, which is more striking in the presence of slip. Therefore, slip
can play a more significant role at lower K and higher z where
stronger EDL effects are present in the flow domain.
5. The induced electric potential

Fluid flow due to an applied pressure gradient in amicrochannel
results in a down-streamflowof counter-ions concentratednear the
channel walls. This causes an electric current (streaming current) in
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Fig. 10. Slip and EDL effects on the velocity profile.



Table 2
Average conductivity, surface charge density and induced voltage expressions corresponding to the potential distributions given in Table 1.

Case Average conductivity (sav) Surface charge density (qs) Induced voltage (Ex)

1 2 2z
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u
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"
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Fig. 11. Average electrical conductivity as a function of zeta-potential.
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the flow direction with a density of Js(y) ¼ re(y)u(y) per unit area.
The streaming potential, or the induced voltage associatedwith this
streaming current, establishes a current in the opposite direction
called the conduction current with a density of
JcðyÞ ¼ ðEx=ReScÞseðyÞ where seðyÞ ¼ 2 coshðjÞ is the electrical
conductivity. For steady fully-developed conditions, the cross-
sectional average of the electric current in the flow direction must
be equal to zero. That is, the streaming current density must be
balanced by the conduction current density, which can be expressed
in non-dimensional form as follows:

2
Z1=2
0

reðyÞuðyÞdyþ
Exsav
ReSc

¼ 0 (13)

where sav is the average electrical conductivity at any cross-section
given by:

sav ¼ 2
Z1=2
0

seðyÞdy ¼ 4
Z1=2
0

coshðjÞdy ¼ 2þ 2
Z1=2
0

�
j0

K

�2

dy

(14)

The last equality in Eq. (14) follows from the first integration of
Eq. (4). It can be also shown that coshðjÞ ¼ 1� ðj0=KÞsinhðj=2Þ,
which leads to:

sav ¼ 2þ 16
K

sinh2ðz=4Þ (15)

It should be noted that the second term in the Eq. (15) is
frequently neglected in literature and the dependency of sav on z is
generally ignored. Substituting u(y) into Eq. (13) and employing the
mathematical properties of the PeB equation similar to those used
in Eq. (14), the induced voltage Ex can be expressed as:

Ex ¼ 8K2

BRe

0
@ z�2

R 1=2
0 jdyþbK2qS=2þ dð1þ4bÞ=4

savK4

2BScRe2 þ4
R 1=2
0

�
j0�2dyþbK4q2S þ4d

�
jc�dþbK2qS

�
1
A

(16)

For K < 10, according to Figs. (3) and (5), both jc and d approach
zero. Thus, Eq. (16) becomes:

Ex ¼ 8K2

BRe

0
@ z� 2

R 1=2
0 jdyþ bK2qS=2

savK4

2BScRe2 þ 4
R 1=2
0

�
j0�2dyþ bK4q2S

1
A (17)

The final expression for the induced voltage is obtained
upon substitution of the potential distribution j from Table 1
into Eq. (17) and performing the integration. This final form
is given in Table 2 along with other important parameters
employed in Eq. (17).

In the literature, it is commonly assumed that sav ¼ 2 for small
values of z based on the first order approximation coshðjÞz1 in
Eq. (14). Fig. 11 indicates that this assumption is valid for zeta-
potentials up to about 50 mV. It should be noted that a closed form
expression for sav cannot be obtained when the DebyeeHückel
approximation is employed (case 1), while the analytical treatment
of the problemwithout this approximation leads to the closed form
expressions given in Table 2. Mirbozorgi et al. [31] have also
examined case 1 subject to the no-slip condition b¼ 0 and reported
that sav ¼ 2 is problematic in the calculation of Ex. It was found that
more accurate results can be obtained by evaluating sav through
a numerical integration of Eq. (14) using the potential distribution
associated with this case. A similar procedure has been adopted in
the present study for evaluating sav for case 1. As shown in Fig. 11,
sav based on the present solution (case 4) agrees well with the
numerical result even at large zeta-potentials. For zeta-potentials
higher than about 100 mV, electrical conductivity varies expo-
nentially with the zeta-potential. Fig. 11 also shows that the DeH
approximation leads to a very significant over prediction of elec-
trical conductivity at higher z.
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Fig. 12 shows the surface charge density qS as a function of the
zeta-potential with and without the DebyeeHückel approximation.
The surface charge density is introduced to the problem through
the slip boundary condition when expressed in the form of
a velocity gradient, us ¼ bdu=dyjw. Therefore, in the absence of slip
or when us is specified directly, qs does not appear in the velocity
profile, and consequently, in the induced voltage, Eq. (17). Fig. 12
shows that the DeH approximation leads to an accurate predic-
tion of qs only for zeta-potentials lower than about 50 mV.

In Fig. 13, the variations of induced voltage for two different
values of K have been compared to the solutions given in Table 2
when velocity slip is absent. Despite the differences in the math-
ematical expressions for cases 1 and 2, their numerical values are
essentially identical for K > 10. This figure shows that a larger
potential is induced with lower values of K (thicker EDL), and more
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Fig. 13. Induced voltage variations under the no-slip assumption.
importantly, Ex decreases rapidly with increasing zeta-potential
after reaching a maximum value. This reduction is due to the
exponential increase in electrical conductivity at higher zeta-
potentials (see Fig. 11) that opposes the induced voltage by
increasing the conduction current. At high zeta-potentials, strong
conduction currents basically cause the induced voltage to vanish.
It is also observed that as K decreases, maximum Ex occurs at
lower z.

Slip is expected to increase the induced voltage by enhancing
advection near the wall. In Fig. 14, the induced voltage variations as
a function of zeta-potential are plotted for the same conditions as
those in Fig. 13 for a slip coefficient of b ¼ 0.05. Almost an 100%
increase in the maximum induced voltage is observed at this slip
coefficient. Both figures indicate that the DebyeeHückel approxi-
mation deviates from the numerical solution at zeta-potentials
higher than 50 mV. The deviation occurs at even lower values of z
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Fig. 15. Induced voltage as a function of zeta-potential for various slip coefficients.
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when slip is present. It is seen that the induced voltage is under-
estimatedwith the DebyeeHückel approximation even in the range
of its validity.

To further clarify the effects of slip on the induced voltage, three
different slip coefficients have been considered in Fig. 15. The flow
parameters are the same as those in Fig. 14. As expected, slip
dramatically increases the induced voltage, which is also accom-
panied by shifting the point of maximum voltage to lower zeta-
potentials. For example, at z* ¼�100mV, this figure shows that the
non-dimensional induced voltages are 6.8 and 22 for cases without
andwith slip (b¼ 0.1), respectively. For themicrochannel data given
in section 4, these values correspond to 45.3 mV/mm and 147.2 mV/
mm; and for an applied pressure difference of DP* ¼ 54 kPa, the
induced voltages are found to be 1.74 V and 5.67V, respectively, over
the length of microchannel. From Figs. 14 and 15 it is clear that the
values of the maximum voltage and their locations are strongly
dependent on the slip coefficient as well as K. Increasing K reduces
the maximum induced voltage and shifts its location slightly to
higher zeta-potentials, which is in contrast to the slip effects.

Finally, the cross-sectional distribution of the electric current
density and its components are compared for cases with and
without slip in Fig. 16. The streaming current density Js depends on
the net charge density and the flow velocity according to
Js(y) ¼ re(y)u(y). For the no-slip condition, zero-velocity at the wall
leads to Js,w ¼ 0 despite the maximum charge density there. For
large K, the streaming current density vanishes rapidly away
from the wall as the net charge density vanishes. Therefore, for the
no-slip condition, the maximum streaming current density is
encountered close to the wall as seen in this figure. In the presence
of slip, the fluid at the wall is in motion, and hence, the maximum
streaming current density occurs in the immediate vicinity of the
wall. This leads to a major increase in the cross-sectional average of
the streaming current density as described earlier.
6. Conclusions

In this study, the conditions under which the non-linear PeB
solution for the electric potential field in an electrolyte solution
over a single flat plate can be extended to a planar microchannel
have been examined. The validity ranges of the key parameters
where this solution can be accurately applied have been identified.
Employing this solution, the NaviereStokes equations were solved
for pressure-driven flows in the presence of velocity slip at the
walls. Analytical expressions for the velocity profile, induced
voltage, average electrical conductivity, and surface charge density
are presented without invoking the DebyeeHückel approximation.

It is shown that the induced voltage reaches a maximum value
at a specific zeta-potential depending on the slip coefficient and the
dimensionless DebyeeHückel parameter, while decreasing at
higher zeta-potentials due to a rapid increase in the average elec-
trical conductivity, which is highly underestimated when the
widely used DebyeeHückel approximation is invoked. Present
study shows clearly that the induced voltage increases very
significantly with velocity slip at the walls, which indicates that the
efficiency of microfluidic power generators/batteries can be greatly
improved through the use of hydrophobic surfaces.
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