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An ensemble Monte Carlo simulation has been used for the simultaneous evaluation of the electronic 
steady-state transport in n+nn+ ZnS and ZnO diode. The anode voltage ranges from 0 to 4 V. Electronic 
states within the conduction band valleys are based on a three-valley model which are represented by 
nonparabolic ellipsoidal valleys centered on the important symmetry point of the first Brillouin zone. 
Our calculation shows that the saturation mean drift velocity for electrons in the channel of ZnO and 
ZnS are about 2 × 105 and 1.25 × 105  ms-1, respectively at a bias voltage of 4 V. It is shown also that the 
mean drift velocity in channel decrease sharply with increasing temperature in both structure and reach 
to saturated value about 1 × 105 and 0.6 × 105 ms-1  for ZnO and ZnS, respectively.  
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INTRODUCTION 
 
The interest to study electron transport in semiconductor 
devices at very high electric field has been increased in 
the last decades (Albrecht et al., 1998). The sub-
micrometer structure is one of the most favored devices 
in the construction of large scale integrated circuits 
because of its simplicity of construction (Brennan et al., 
2002), the comparative lack of doping diffusion problems 
and the resultant high packing densities possible 
(O’Leary et al., 2006). 

Non-equilibrium electron transport aspect in small 
semiconductor devices have arisen many efforts to 
improve efficiency of methods that, by solving the 
Boltzmman transport equation (BTE), deal with the pro-
blem of carrier transport at a microscopic level (Bhapkar 
et al., 1997). The drift diffusion model is not accurate 
enough to simulate submicrometers semiconductor 
devices, because it assumes a thermal equilibrium of 
mean carrier energy (Farahmand et al., 2001; Brennan, 
1998). The approaches based on the  hydrodynamic  and 
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energy transport balance can not give a self consistent 
description of the carrier transport (Fischetti et al., 1991). 
The microscopic model based on the Monte Carlo 
method to solve BTE seems to the most adequate for 
complete study of submicrometers devices (Izuka, 1990; 
Meinerzhagen et al., 1988).  

The transport properties of ZnS and ZnO have been a 
subject of extensive investigation in recent years 
(Sandbom et al., 1989). Currently these materials are 
used in many electronic and optoelectronic applications 
such as light emitting diodes (LED's), laser systems and 
hetero-junction solar cells, gas sensors and MEMS (Tang 
et al., 1989; Kavasoglu et al., 2008). 

There has been a great interest in the study of charge 
carrier transport of ZnS and ZnO due to the wide band 
gap, which has become one of the most applied semi-
conductors in the fabrication of electronic devices. Most 
of the previous theoretical work has been carried out on 
bulk transport properties of ZnS and ZnO (Öztas et al., 
2008) and there is no significant research have been 
reported on electron transport characteristic in ZnS and 
ZnO n+nn+ (Gomeza et al., 2005). We investigate effect 
of applied voltage and temperature upon electron 
transport  in  ZnS  and  ZnO  n+nn+  diodes  (Han  et  al.,  
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Figure 1. Geometry of n+nn+ diode. 

 
 
 

Table 1. Important band parameters used in our simulation for 
ZnS and ZnO. 
 

 Valley Egap(eV) m* Nonparabolicity 
(eV-1) 

ZnO 
� 3.4 0.17 0.66 
U 7.8 0.42 0.15 
K 8.0 0.70 0.0 

ZnS 
� 3.60 0.28 0.69 
U 5.04 0.22 0.65 
K 5.05 0.64 0.36 

 
 
 
Table 2. Material parameter selections for ZnS and ZnO. 
 

  ZnO ZnS 
Density �(kgm-3) 5670 4070 
Longitudinal sound velocity vs(ms-1) 2200 5200 
Low-frequency dielectric constant �0 8.2 8.32 
High-frequency dielectric constant �� 3.7 5.13 
Acoustic deformation potential D(eV) 3.1 8.3 
Polar optical phonon energy  (eV) 0.05 0.04 
Intervalley deformation potentials (107 eVm-1) 1 1 

 
 
 
2009). In this paper we present simulation results for ZnS 
and ZnO n+nn+ diodes. The effects of bias voltage and 
temperature on electron drift velocity have been 
determined. The paper is organized as follows. The 
theoretical model is briefly surveyed in section 2. The 
application of the method to the case of ZnS and ZnO 
n+nn+ diodes are presented and discussed at in section 
3. Some concluding remarks are reported in section 4. 
 
 
Simulation models 
 
Monte Carlo simulation has proved to be a powerful 
technique in electron transport in semiconductor devices.  
This  model  is  based  on  the  knowledge  of  the  crystal 

 
 
 
 
structure and band structure parameters (Moglestue, 
1993; Jacoboni, 1983). In our Monte Carlo models over 
105 quasi particles spread out into more than a hundred 
meshes along device length. Dirichlet boundary condition 
has been taken into account and results are presented 
for steady-state of electron transport. The n+nn+ diodes 
has an active n-layers with a 0.2 �m length which is 
sandwiched between a 0.2 �m cathode and anode n+-
layers that are abruptly are doped to 5 × 1017 cm-3. 
Schematic view of devices has shown in Figure 1. 

Details of the workings of the Monte Carlo simulator 
have been exhaustively presented elsewhere (Arabshahi 
et al., 2008) and will not be repeated here; only the main 
features and relevant differences will be discussed. In 
order to calculate the electron drift velocity for large 
electric fields, consideration of conduction band satellite 
valleys is necessary. Here the � valley, the six equivalent 
U valleys and the three equivalent K valleys for wurtzite 
ZnO and ZnS were represented by spherical, non-
parabolic, ellipsoidal valleys expressions by the following 
form, 
 

*

22

2
)1(

m
k�=+αεε                                                           (1) 

 
where m* is the effective masses and �  is the 
nonparabolicity factors (Weng et al., 2003).  
 
The Monte Carlo model includes polar optical, acoustic 
phonon, ionized impurity and non-polar intervalley pho-
non scattering which are the most important mechanism 
that can affect on the electron transport properties. The 
electron-electron scattering is negligible because we 
worked with the low doped semiconductors.  

Self-consistently potential profiles have included by 
solving Poisson equation with the following form, 
 

ε
ρϕ −=∇2

 ��                                                                  (2) 

 
This equation was solved with consideration of electron 
transport in a large number period of time with appro-
priate boundary conditions. For one dimensional case we 
have,  
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where �i is the value of potential on each mesh and 	x2 
is the spatial mesh size21. The Ohmic boundary is 
assumed at the ends of diode with maintaining charge 
neutrality near each contact. The band structure and 
material parameters necessary for calculating the 
scattering probabilities used in the present Monte Carlo 
simulation are given in Tables 1 and 2. 
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Figure 2. Electron drift velocity obtained my Monte Carlo calculation in bulk 
ZnO and ZnS at 300 K. 
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Figure 3. The distribution of the electron density along ZnO and ZnS n+nn+ diode are plotted 
under different bias voltages of 0, 0.75, 1.75, 2.75, 3.75 V. 

 
 
 
RESULTS AND DISCUSSION 
 
Before applying our transport model to the simulation of 
ZnS and ZnO n+nn+ diodes, and in order to check its 
validity, we have carried out study of electron transport in 
bulk of these materials under a uniform applied electric 
field overall bulk. Such a study allows us to found deeper 
inside of electron behavior in n+nn+ diodes. Figure 2 
shows average electron drift velocity as a function of 
applied electric  field  in  the  room  temperature.  Both  of 

ZnS and ZnO exhibit a peak of drift velocity curves about 
150 and 300 kV/cm, respectively. After these thresholds 
fields, velocity curves decrease slightly and finally it 
saturate. Dashed and doted line reported by other 
authors for ZnS and ZnO, respectively, which is in fair 
agreement with our calculated results. 

Figure 3 show the free electron density as function of 
device length in bias voltages of 0 and 4 V for ZnS and 
ZnO n+nn+, respectively. Dashed lines demonstrate 
doping profile of device. It is  apparently  from  the  Figure  
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Figure 4. The distribution of the electrical potential along ZnO and ZnS n+nn+ 
diode are plotted under different bias voltages of 0, 0.75, 1.75, 2.75, 3.75 V. 
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Figure 5. The distribution of the electric field along ZnO and ZnS n+nn+ diode are 
plotted under different bias voltages of 0, 0.75, 1.75, 2.75, 3.75 V. 

 
 
 
that in absence of any external voltage, electrons diffuse 
from the n+ region into the channel. Diffusing of electrons 
is due to uniform doping profile along device length. This 
causes a dipole of charge at the two surface of each 
heterojunction which induces a field opposite to the 
diffusion of electrons from n+ region to the channel. 
When a voltage is applied to contacts, electrons are 
injected to the channel by anode and  cathode;  therefore 

the density of electron rises to its primitive value in this 
region. The electron density behavior in the channel 
leads to create a non-uniform potential profile and 
consequently electric field inside the channel24 as it 
shown in Figures 4 and 5, respectively. As we expect 
from Figure 2, potential have slightly decrease at first 
homojunctions, then it increase steeply until reach to a 
value of applied voltage near the  second  hemojunctions.  
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Figure 6. The distribution of the electron velocity along ZnO and ZnS n+nn+ diode are 
plotted under different bias voltages of 0, 0.75, 1.75, 2.75, 3.75 V. 

 
 
 

Electric field inside the devices is obtained by calculation 
of distinguish of the potential inside the devices. Also with 
increasing the applied voltage, higher electric field can be 
created inside the channel, since the electric field in 
almost all of the channel region is an accelerating field 
that provides a favorable transport condition for electrons.  

In Figure 6 electron drift velocity as function of applied 
voltage was reported at different voltages in both ZnS 
and ZnO n+nn+ diode. With increasing applied voltage, 
electron velocity increase inside the channel. The 
electrons mobility in ZnO diode is more than ZnS in the 
same voltage. It is partly due to heavy effective electron 
mass in ZnO in comparison to ZnS. Another effect that 
leads to exceed in velocity profile in ZnO diode is due to 
larger electric field in the channel region as it can be seen 
from Figure 5.  

In Figure 7 the mean electron velocity, which were 
evaluated by taking an average of the velocities of all the 
electrons in the channel region are presented for different 
applied voltages. With increasing applied voltage from 0V 
to 4 V, mean velocity in channel have a great variation at 
first and for voltages above 2V mean velocity increasing 
slightly and for higher voltage it reach to saturation value, 
for example, in ZnS n+nn+ diode, the mean velocity have 
increase about 0.7×105 ms-1 by increasing voltage from 0 
to 0.75 V but it have changed about 0.18×105 ms-1 by 
increasing voltage from 3 to 3.75 V. Also  it  is  apparently 

seen that electron gain more mean velocity in ZnO diode 
than ZnS for all voltages.  

Finally Figure 7 shows the calculated mean drift 
velocity of electrons as a function of temperature at a 
constant bias voltage 3 V. As it can be seen, with 
increasing temperature from 300 K, the mean drift 
velocity for both diodes is decreased. This is due to 
general increasing of total scattering with temperature, 
which suppresses the electron energy. 
 
 
CONCLUSIONS 
 
Electron transport in ZnO and ZnS n+nn+ diodes have 
been simulated at different bias voltages and tempe-
ratures, using an ensemble Monte Carlo simulation. Our 
theoretical model includes a 2D Monte Carlo transport 
kernal which is coupled to a 1D poisson solver. we find 
that the mean electron velocity is always more in ZnO 
n+nn+ diode at all of voltages range from 0 to 4 V and 
finally it reaches to a value about 2.0 × 105 and 1.25 × 
105 ms-1 for ZnO and ZnS, respectively.  
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Figure 7. The mean electrons drift velocity as function of applied voltage in ZnO and 
ZnS diode. 
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