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REDUCED-ORDER OBSERVER CONTROL

FOR TWO-AREA LFC SYSTEM AFTER

DEREGULATION
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Abstract

In this paper, a reduced-order state observer with a practical point

of view for load frequency control (LFC) problem in a deregulated

power system is proposed. In the practical environment, there is

limited access to all state variables of system and measuring all

of them is usually impossible. So when the available sensors are

less than the number of states or when it may be undesirable,

expensive or impossible to measure directly all of the states, a

reduced-order state observer can be applied as proposed in this

paper. The proposed strategy is tested on a two-area power system

and compared with the optimal full-state feedback method by using

computer simulation. The results show that the proposed method

improves the dynamic response of system and provides a control

system that satisfies the LFC requirements.
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Nomenclature

ACE area control error

AGC automatic generation control

APF area participation factor

cpf contract participation factor

DISCO distribution company

DPM disco participation matrix

GENCO generation company

ISO independent system operator

LFC load frequency control

TRANSCO transmission company

VIU vertically integrated utility
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B frequency bias

R droop characteristic

KP power system equivalent gain

TP power system equivalent time constant

TG governor time constant

TT turbine time constant

ΔPL contracted demand of DISCO

ΔPM power generation of GENCO

T12 tie-line synchronizing coefficient
between areas

1. Introduction

In the last decade, a worldwide trend towards restructur-
ing and deregulating of the power industry is seen. It was
to develop effectiveness in the operation of the system by
means of restructuring the industry and prepare a private
competition. That is a worldwide trend and similar basic
changes in other industries, i.e. in the airline transporta-
tion and telecommunications industries have appeared. It
means that the transmission, generation, and distribution
systems must now adapt to a new set of policies ordered
by open markets. The electric power utilities in many
countries have been, or are being, restructured.

Automatic Generation Control is a way of automat-
ically controlling the outputs of power generating units
to perform economic dispatch, and keep system frequency
and power flows over tie-lines at preferred levels. AGC
is performed at energy control centers or energy coordi-
nation centers using energy management systems. It was
necessary to improve the AGC system for adjustment to
the market environment with numerous kinds of the bid-
ding strategies. Its fundamental theory is greatly discussed
and well-known [1–5]. With the deregulation of electric
markets, automatic generation control necessities should
be expanded to comprise the market contracts and plan-
ning functions. So AGC is one of the ancillary services
conventionally related with the activity of electricity gen-
eration and the further modifications were prepared at the
AGC controller to meet the requirements of deregulation
processes. Thus, the AGC system follows the temporary
active power imbalance, detects and corrects it and
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Figure 1. The configuration of the power system.

transfers an adequate amount of the balance energy ac-
cording to the market operating system.

During the last decade, several proposed AGC sce-
narios attempted to adapt traditional AGC schemes for
changing environment in the power systems under dereg-
ulation [6–13]. Some of these studies modified the con-
ventional AGC system to take into account the effect of
bilateral contracts on the dynamics [6, 7] or to improve the
dynamical transient response of system under competitive
conditions [8–13]. The conventional control strategy for
the load frequency control (LFC) problem is to take the
integral of the area control error (ACE) as the control
signal. An integral controller provides zero steady-state
deviation, but it exhibits poor dynamic performance. To
improve the transient response, various control strategies,
such as linear feedback, optimal control and Kalman es-
timator method, have been proposed [8, 9]. There have
been continuing efforts in designing LFC with better per-
formance using intelligence algorithms or robust methods
[10–13]. Despite the proper dynamical responses, some of
them had complex and high-order dynamical controllers.

Figure 2. Modified LFC system in a deregulated environment.

In this paper, the dynamical response of the AGC
problem in the competitive environment improved with
a functional sight. In the real world, there is limited
access to all state variables of system and little possibility
of measuring all of them. Therefore, when the available
sensors are less than the number of states or when it
may be undesirable, expensive, or impossible to measure
directly all of the states, a reduced-order state observer
can be applied as proposed in this paper. The proposed
method is evaluated on a two-area power system under
contracted scenarios. The results of the proposed controller
are compared with the optimal full-state feedback control
by means of computer simulations. Results show that
the proposed method improves the dynamic response of
system and provides a control system that satisfies the
LFC requirements.

2. Restructured Power System for AGC with Two
Areas

In a competitive environment, vertically integrated utili-
ties (VIU) no longer exist, instead there are three kind of
entities such as GENCOs, DISCOs and transmission com-
panies (TRANSCOs). However, the common AGC goals,
i.e. restoring the frequency and the net interchanges to
their preferred values for each control area, still remain
[14]. The power system is assumed to comprise two areas
and each area includes two GENCOs and also two DISCOs
as shown in Fig. 1 and the block diagram of the generalized
LFC scheme for a two area deregulated power system is
shown in Fig. 2.
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In the deregulated power system, GENCOs may or
may not participate in the AGC task. On the other hand,
DISCOs have the liberty to contract with any available
GENCO in their own or other areas. Thus, there can be
various combinations of the possible contracted scenarios
between DISCOs and GENCOs [14].

So, a DISCO can contract individually with any
GENCO for energy and these transactions are made un-
der the supervision of ISO. To make the visualization of
contracts easier, the concept of a “DISCO participation
matrix” (DPM) is used [7]; essentially, DPM gives the
participation of a DISCO in contract with a GENCO. In
DPM, the number of rows has to be equal to the number
of GENCOs and the number of columns has to be equal
to the number of DISCOs in the system. Any entry of
this matrix is a fraction of total load power contracted
by a DISCO with a GENCO. So, summation of entries in
each column of DPM which is related to DISCOj is one
and

∑
i cpfij =1. The corresponding DPM for the studied

power system have two areas and each of them includes two
DISCOs and two GENCOs, which is given as follows [14]:

DPM =
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where cpf represents “contract participation factor” which
include information that determines which GENCO has
the responsibility of following a load demanded by each
DISCO. The actual and scheduled steady-state power flows
on the tie-line are given as:

ΔPtie1–2,scheduled =
2∑

i=1

4∑
j=3

cpfijΔPLj −
4∑

i=3

2∑
j=1

cpfijΔPLj

(1)

ΔPtie1–2,actual = (2π · T12/s) · (Δf1 −Δf2) (2)

Andat anygiven time, the tie-line powererrorΔPtie1−2,error

is defined as:

ΔPtie1–2,error = ΔPtie1–2,actual −ΔPtie1–2,scheduled (3)

This error signal is used to generate the respective ACE
signals as in the traditional scenario [7]:

ACE1 = B1Δf1 +ΔPtie1−2,error (4)

ACE2 = B2Δf2 +ΔPtie2−1,error (5)

where B1, B2 are the frequency bias of areas 1 and 2,
respectively. The closed-loop system in Fig. 2 is

characterized in state space form as:

ẋ = A · x+B · u (6)

y = C · x (7)

A fully controllable and observable dynamic model
for a two-area power system is proposed, where x is the
state vector and u is the vector of power demands of the
DISCOs [15].

u = [ΔPL1 ΔPL2 ΔPL3 ΔPL4 ]
T

x = [Δf1 Δf2 ΔPm1 ΔPm2 ΔPm3 ΔPm4

∫ ACE1 ∫ ACE2 ΔPtie1–2,actual ]T

where ΔPL is contracted demand of DISCOs and the
deviation of frequency, turbine output and tie-line power
flow within each control area are measurable outputs, other
states are not measurable and should be estimated by
applying reduced-order observer. The dashed lines in Fig. 2
show the demand signals based on the possible contracts
between GENCOs and DISCOs. They include information
that determines which GENCO has the responsibility of
following a load demanded by each DISCO. These new
information signals were absent in the traditional LFC
scheme. As there are many GENCOs in each area, the
ACE signal has to be distributed among them due to their
ACE participation factor in LFC and

∑
j apfji =1.

3. Controller Design

In this paper, to improve the dynamical response of system
pragmatically, reduced-order observer method is proposed,
but to have a complete research, optimal full-state feedback
control is designed and the results are compared. When
feedback control law is u=−K · x, and some of the state
variables in vector x are not measurable, using the observer
to estimate the unmeasurable states is an option [16, 17].
A full-order observer estimates all the states in a system,
regardless whether they are measurable or not but when
some of the state variables are measurable using a reduced-
order observer is so better.

3.1 Reduced-Order Observer Controller

For the system defined by (6) and (7), feedback control
law is:

u = −K · y (8)

In practical environments, only some of the state vari-
ables are measurable. These are defined as output variables
such as:

yp×1 = Cp×n · xn×1, p < n (9)

The interesting case is when we have less sensors available
(p) than the number of states (n), p<n.
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Suppose we can measure some of the state variables
contained in x, and the state vector x is partitioned into
two sets,

x1: variables that can be measured directly,
x2: variables that cannot be measured directly.

⎧⎨
⎩
ẋ1 = A11 · x1 +A12 · x2 +B1 · u
ẋ2 = A21 · x1 +A22 · x2 +B2 · u

(10)

and the observation equation is:

y = C1 · x1 (11)

where C1 is square and non-singular matrix. The full-order
observer for the states is then:⎧⎪⎨
⎪⎩

˙̂x1 = A11 · x̂1 +A12 · x̂2 +B1 · u+ L1 · (y − C1 · x̂1)

˙̂x2 = A21 · x̂1 +A22 · x̂2 +B2 · u+ L2 · (y − C1 · x̂1)

(12)

But we do not need to solve first observer equation for
x1 because these states can be solved directly using (11):

x̂1 = x1 = C−1
1 · y (13)

In this case, the observer for those states that cannot be
measured directly is designed as follows:

˙̂x2 = A21 · C−1
1 · y +A22 · x̂2 +B2 · u (14)

The block diagram of this reduced-order observer is
shown in Fig. 3. This is a dynamic system of the same order
as the number of state variables that cannot be measured
directly. The dynamic behaviour of this reduced-order
observer is governed by the eigenvalues of A22, this is a
matrix that the designer has no control on it. As there is

Figure 3. Block diagram of reduced-order observer.

no assurance that the eigenvalues of A22 are suitable, we
need a more general system for the reconstruction of x2.
We take:

x̂2 = L · y + z (15)

where:

ż = F · z +G · y +H · u (16)

Define the estimation error as follows:

e = x− x̂ =

⎡
⎣x1 − x̂1

x2 − x̂2

⎤
⎦ =

⎡
⎣e1
e2

⎤
⎦ =

⎡
⎣ 0

e2

⎤
⎦ (17)

and we get:

ė2 = ẋ2 − ˙̂x2 = A21 · x1 +A22 · x2 +B2 · u− L · ẏ − ż

= A21 · x1 +A22 · x2 +B2 · u− LC1 · ẋ1 − F · z
−G · y −H · u

= A21 · x1 +A22 · x2 +B2 · u− LC1(A11 · x1 +

A12 · x2 +B1 · u)− F (x̂2 − L · y)−G · y −H · u
(18)

As:

x̂2 − L · y = x2 − e2 − L · y = x2 − e2 − LC1 · x1 (19)

We have:

ė2 = Fe2 + (A21 − LC1A11 −GC1 + FLC1)x1

+(A22 − LC1A12 − F ) · x2 + (B2 − LC1B1 −H)u

(20)

In order for the error to be independent of x1, x2, and
u, the matrices multiplying x1, x2, and u must vanish:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

F = A22 − LC1A12

H = B2 − LC1B1

G = (A21 − LC1A11)C
−1
1 + FL

(21)

Then:

ė2 = F · e2 (22)

For stability of the observer dynamic system, the eigen-
values of F must lie in the left-hand side of s plane. There-
fore, we see that the problem of reduced-order observer
is similar to the full-order observer with (A22 −LC1A12)
playing the role of (A−LC).

In this paper, for application of this reduced-order
state observer to the LFC problem, x1 and x2 are specified
and as shown in Fig. 4, a reduced-order observer estimates
unmeasurable states such as ∫ACE1 and ∫ACE2. More
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Figure 4. Schematic diagram of applied reduced-order
observer for LFC.

details about this implementation are presented at the end
of Section 4.

x1 = [Δf1 Δf2 ΔPm1 ΔPm2 ΔPm3

ΔPm4 ΔPtie1−2,actual]
T

x2 = [∫ACE 1 ∫ACE 2]
T

4. Simulation Results

In this section, to illustrate the performance of the pro-
posed controller against load variations, simulations are
performed for one scenario of possible contracts under

A11 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.05 0 5.1 5.1 0 0 −5.10

0 −0.04 0 0 4.08 4.08 4.08

−0.1745 0 −2.6316 0 0 0 0

−0.1675 0 0 −2.6316 0 0 0

0 −0.1768 0 0 −2.7778 0 0

0 −0.1511 0 0 0 −2.5641 0

0.0390 −0.390 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A12 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

−1.3816 0

−0.4605 0

0 −0.9722

0 −0.8974

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, A21 =

⎡
⎣0.0676 0 0 0 0 0 1.00

0 0.0631 0 0 0 0 −1.0

⎤
⎦, A22 =

⎡
⎣0 0

0 0

⎤
⎦

B1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−5.1000 −5.1000 0 0

0 0 −4.0800 −4.0800

1.3158 0.6579 0 0.7895

0 0 0 0

0 1.3889 2.7778 1.9444

1.2821 0.6410 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B2 =

⎡
⎣ 0.500 0.750 0 −0.300

−0.500 −0.750 0 0.300

⎤
⎦

various operating conditions and large load demands. In
this scenario, the performance of the proposed controller is
compared with optimal full-state feedback controller. The
simulations are performed with MATLAB platform and
the power system parameters are given in Tables 2 and 3.

Based on the information given in Section 3, the system
can be expressed in the following partitioned form:

A =

⎡
⎣A11(n−r)×(n−r)

A12(n−r)×r

A21r×(n−r)
A22r×r

⎤
⎦
n×n

B =

⎡
⎣B1(n−r)×d

B2r×d

⎤
⎦
n×d

where:
n=9 is the number of variables of system;
r=2 is the number of unmeasurable variables;
d=4 is the number of inputs of system.

Also according to the design procedure discussed in
previous section, the state space values of these matrices
are obtained as follows:
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Note that the observer has to be slightly faster than
the process, so the error becomes zero after a short time
period [16]. This behaviour is obtained by placing the
poles of the matrix (A22 −LC1A12) to the left of the poles
of the uncontrolled system.

The observer gains, entries of Matrix L, have a di-
rect effect on observer responses. By properly selecting
the observer gains, one can arrange the observer eigen-
values in such a way that the system dynamic response
becomes stable. More proofs about this fact can be
found in [16].

The observer gain is chosen in a manner that the
observer poles are placed at the desired locations, but it
is important to note that the observer gains are usually
small to enhance the observer robustness against noise [18].
So a set of matrix equations presented by (21) must be
solved simultaneously using an iteration algorithm or LMI
approach [18]. This calculated observer gain is presented
as below:

L =

[
1.6712 −2.1985 −1.8106 1.8344 1.3519 −2.3150 −0.8492

−1.6778 1.3643 0.2292 0.3247 −2.9504 1.0938 1.4516

]

Then the eigenvalues of (A22 −LC1A12) are
{−1.7717+0.5852 i,−1.7717− 0.5852 i} and dynamic of
designed observer is stable:

F = A22 − L · C1 ·A12 =

⎡
⎣−1.6567 −0.7632

0.4661 −1.8868

⎤
⎦

Figure 5. GENCOs power change (puMW): solid (with reduced-order observer control), dotted (without controller), dot-
dashed (optimal full-state feedback).

4.1 Scenario: Transaction Based on Free Contracts

In this scenario, DISCOs have the freedom to have a
contract with any GENCO in their or other areas. So in
this scenario, all the DISCOs contract with the GENCOs
based on following DPM:

DPM =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.5 0.25 0 0.3

0 0 0 0

0 0.5 1 0.7

0.5 0.25 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

Second row of the above DPM shows that GENCO2

does not have any contract with other DISCOs. So, it
is assumed that each DISCO demands 0.1 puMW total
power from other GENCOs as defined by entries in DPM
and these GENCOs participates in AGC as defined by the
following apfs:

apf1 = 0.75, apf2 = 1− apf1 = 0.25

apf3 = 0.5, apf4 = 1− apf3 = 0.5

If uncontracted loads are absent, ACE participation
factors affect only the transient behaviour of the system,
not steady-state behaviour.

As shown in Fig. 5, in the steady state, any GENCO
generation must match the demand of the DISCOs in
contract with it, as expressed as follows:

ΔPmi =
∑

j
cpfijΔPLj (23)
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Figure 6. (a) Frequency deviation in area 1 (rad/s) and (b) frequency deviation in area 2 (rad/s): dotted (without controller),
solid (reduced-order observer control), dot-dashed (optimal full-state feedback).

Figure 7. Deviation of tie line power flow (pu MW): dot-
ted (without controller), solid (reduced-order observer con-
trol), dot-dashed (optimal full-state feedback).

So for this scenario, we have:

ΔPm1 = 0.5(0.1) + 0.25(0.1) + 0 + 0.3(0.1) = 0.105 puMW

ΔPm2 = 0.0 puMW

ΔPm3 = 0.22 puMW

ΔPm4 = 0.075 puMW

The results for this case are given in Figs. 5–7. Using
the proposed method, the frequency deviation of each area
and the tie-line power have a good dynamic response in
comparing with initial system without controller. The
results of frequency deviations and tie-line power flow are
shown in Figs. 6 and 7, respectively. These figures also
show comparison between the performance of the proposed
controller and the optimal full-state feedback.

The off-diagonal blocks of the DPM correspond to the
contract of a DISCO in one area with a GENCO in another

Figure 8. The frequency deviation in area 2 (rad/s): dot-
ted (without controller), solid (reduced-order observer con-
trol), dot-dashed (optimal full-state feedback).

area. As shown in Fig. 7, the tie-line power flow properly
converges to the specified value of (1) in the steady state,
i.e., ΔPtie1−2,scheduled =−0.095 puMW.

4.2 Additional Property of the Proposed Method
on Trajectory Sensitivity

In this section, to examine the effectiveness of the proposed
method on reduction of trajectory sensitivity to plant-
parameter variations, another case is simulated. In this
case, previous scenario in Section 4.1 is simulated with 25%
increase in system parameters, i.e., GENCOs parameters
and 25% increase in demanded load by area 2. The
frequency deviation of second area, with 25% increase in
system parameters, is depicted in Fig. 8. It is observed
that, by using the reduced-order observer method, the
oscillations are damped out in around 30 s, whereas the
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Table 1
Eigenvalues of the System

Modes System without Full-State Feedback Controller with a

Controller Reduced-Order Observer

Δf1 0.0029+0.8341i −0.1853+0.2031i −0.1597+0.8161 i

Δf2 0.0029− 0.8341i −0.1613− 0.1140 i −0.1597− 0.8161 i

ΔPm1 −0.2019+0.6056i −0.2360+0.01 i −0.2136+0.6101 i

ΔPm2 −0.2019− 0.6056i −0.2211− 0.6101 i −0.2136− 0.6101 i

ΔPm3 −0.4758 −0.4506 −0.4475

ΔPm4 −1.6640 −1.7301 −1.7273

∫ACE1 −1.9190 −2.1024 −2.5102

∫ACE2 −2.1849 −2.4678 −2.4431

ΔPtie −2.2316 −2.2573 −2.1820

initial system is unstable. Table 1 shows the eigenvalues
of the power system for this simulated case described in
Section 2. It can be seen that two of the eigenvalues are on
the right-hand side of s-plane, which means that without
any control, the system is unstable.

5. Conclusion

In this paper, one of the most useful functions of a local
reduced-order state observer for LFC problem in a dereg-
ulation power system is presented. In a practical environ-
ment, some of the state variables in the LFC system such
as ACE or integration of ACE are not measurable. To
solve this problem, a reduced-order state observer is pro-
posed for estimation of these unmeasurable states. This
controller allocates generating unit’s output according to
contracted scenarios. The performance of the proposed
controller is evaluated through the simulation of two-area
power system.

Analysis reveals that the proposed technique gives
good results and usages of this method reduce the peak
deviations of frequencies, tie-line power and time error.
It can be concluded that the application of reduced-order
observer to LFC of interconnected power system will be
provided a practical sight. Also, this method can be
used in a large AGC power system as a local estimator.
The following conclusions can be drawn about the some
advantages of proposed method:

1. The main advantage of this kind of reduced-order state
observer is the capability of estimating unmeasurable
states in a practical condition. In the case of LFC
problem, there is a limitation for measuring some of
states (∫ACE1 and ∫ACE2), so this method can be
used as a local controller for each area in a large power
system.

2. Another important feature of the proposed strategy
is that the separation property for design. In fact,

based on the information presented in Sections 3 and 4,
the design of controller and observer are independent.
This behaviour is obtained by placing the poles of the
matrix F to the left of the poles of the uncontrolled
system. Based on the simulation results and the data
in Table 1, it is clear that suitable allocating of observer
poles result in improving the dynamic response of the
system.

Appendix

A. Parameter values of the studied power system are given
in Tables 2 and 3:

Table 2
GENCOs Parameters

GENCOs Area 1 Area 2
Parameters

GENCO1 GENCO2 GENCO3 GENCO4

TT (s) 0.32 0.30 0.03 0.32

TG (s) 0.06 0.08 0.06 0.07

R (Hz/pu) 2.4 2.5 2.5 2.7

Table 3
Control Area Parameters

Control Area Parameters Area 1 Area 2

KP (pu/Hz) 102 102

TP (s) 20 25

B(pu/Hz) 0.425 0.396

T12(pu/Hz) 0. 245
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