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Abstract— In wireless communication channels fading phenomenon imposes serious limitations upon the system 
performance. Diversity combining is a well known fading compensation technique. In this paper we propose a 
diversity combining technique based on a nonlinear Hammerstein type filter to mitigate the destructive fading effect. 
In the present work, frequency selective Rayleigh fading channels in presence of additive white gaussian noise are 
considered and m-ary PAM modulation is employed. We first present a theoretical analysis to justify our proposed 
system. Then the system performance for different power delay profiles and different m-ary PAM modulations are 
investigated. Comparison of simulation results based on our proposed technique with the results obtained when linear 
equalizing filters are employed, shows that our technique leads to a considerably higher BER performance at higher 
SNRs. We also show that our method has a lower complexity than the linear structure. Also, a relative reliability 
factor for the system is defined and investigated. 
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I. INTRODUCTION  
Wireless communication systems suffer from the 

destructive effects of channel fading on the received 
signal. Diversity combining is a well known technique for 
combating the effects of fading phenomenon. Space, 
frequency, time and coding diversities, and also the 
combination of two or more of these, have been used in 
different systems. Various techniques have been 
suggested for combining the multiple received signals [1]-
[6]. In presence of additive white gaussian noise, maximal 
ratio combining (MRC), which is a linear technique, is the 
optimum diversity receiver for flat fading channels [2]. 

In  frequency selective channels, the received signal 
is perturbed by intersymbol interference (ISI) as well as 
noise. In this case the optimum receiver employs 
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maximum likelihood sequence estimation (MLSE) 
method [1]. However, MLSE is a nonlinear method with 
a high computational complexity that increases 
exponentially with the channel memory length. 

 There are also suboptimum receivers that employ 
various types of equalization methods for compensating 
the ISI effect. Linear equalizer and decision feedback 
equalizer (DFE) are the most usual methods for 
equalization [1]. Linear equalizer utilizes a simple linear 
transversal filter and therefore has a very low complexity. 
Also in DFE, linear transversal filters are employed as 
feedforward and feedback blocks. Furthermore, in  
single-input multiple-output (SIMO) frequency selective 
channels, linear and decision feedback equalizers can be 
employed in each diversity branch [1]. 

In this work we offer a low complexity, nonlinear 
diversity combining technique for SIMO frequency 



selective Rayleigh fading channels, which is based on 
Hammerstein type filters. Hammerstein filter is a 
nonlinear polynomial filter used in many applications 
such as system identification [7]-[9], modeling [10], [11], 
echo cancelation [12], [13], and noise cancelation [14]. 
Hammerstein decision feedback equalization (HDFE) has 
been employed in fiber-wireless channel to compensate 
for nonlinear distortion in the electrical-to-optical 
converter [15], [16]. HDFE has also been proposed for 
GSM receivers as an alternative to the existing methods 
[17]. Moreover blind HDFE has been proposed in order 
to enhance the spectral efficiency of the system [18]. In 
these works, single-input single-output (SISO) model is 
assumed for their communication systems and the fading 
effect is not discussed. 

This paper is organized as follows. In section 2 we 
present the system model. Section 3 introduces our 
nonlinear Hammerstein diversity combining technique. 
Theoretical analysis of our proposed system is presented 
in section 4. Section 5, provides the simulation results 
followed by a discussion. The complexities of nonlinear 
and linear techniques are compared in section 6, before 
concluding the paper in section 7.  

 

II. SYSTEM MODEL 
The equivalent low-pass discrete time model of the 

system is illustrated in Fig. 1. In this work we employ  
m-ary PAM modulation, and the transmitted sequence 

( )nx  is drawn from an i.i.d. source with equi-probable 
symbols. The symbol amplitudes, iA , take the discrete 
levels: 

 
midmiA i ,...,2,1)12( =−−=   (1) 

 
where m is the number of possible symbols and 2d is the 
distance between adjacent symbol amplitudes.  
The SIMO channel consists of M  diversity branches. 
Each branch is assumed to be a frequency selective 
Rayleigh fading channel, modeled by a tapped delay line 
with L  taps. Hence the channel tap gains can be 
presented by an LM ×  matrix as: 
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where jih  is the complex Rayleigh distributed random 
gain of the jth tap of the ith channel: 
 

jiQjiIji hjhh +=  (3) 
 

jiIh  and jiQh  are the real and the imaginary component 
of the channel gain respectively. These two components 
are independent, zero mean, gaussian random variables 
with variance 2

ijhσ . Furthermore, the tap gains are 
assumed uncorrelated and normalized to unity, i.e. : 
 

{ } ljorkiforhhE klij ≠≠=∗ 0   (4) 
and: 
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In this work the channel fading is assumed sufficiently 
slow, such that the tap gains do not vary during one data 
frame. We also assume that all of the M  frequency 
selective channels have identical power delay profiles 
(PDP). PDP is the profile of the mean square values of the 
tap gains. Examples of these profiles used in our 
simulations are presented in section 5. 

The received signal from the ith channel which is 
corrupted by ISI and noise is given by: 
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where ( )nw i  is the complex additive white gaussian 
noise at the ith receiver branch: 
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Fig. 1. System model 



 

)()()( nwjnwnw iQiIi +=  (7) 

 
( )nw iI  and ( )nw iQ  are uncorrelated, zero mean, gaussian 

random variables with variance 2
wσ . Equation (6) can be 

expressed in matrix form: 
 

( ) ( ) ( )nnn WXHY +=  (8) 
 

where H  is the channel matrix and ( )nY  , ( )nX  and 

( )nW  are the received data vector, the transmitted data 

vector and the noise vector respectively. These vectors are 
defined as follows: 
 

( ) ( ) ( )[ ] TY nynyn M�1=  (9) 
 

( ) ( ) ( ) ( )[ ] TX 11 +−−= Lnxnxnxn �   (10) 

 
( ) ( ) ( )[ ] TW nwnwn M�1=  (11) 

 
As shown in Fig. 1, the receiver consists of two 

correlators banks, namely, inphase and quadrature 
correlators. The complex received signal )(nyi  from each 
branch is applied to both correlators. The outputs of the 
inphase and quadrature correlators are the real part 

( )( )ny iI  and the imaginary part ( )( )ny iQ  of )(nyi  

respectively. According to equations (3) and (7), we can 
write: 
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We define the 12 ×M  real vector ( )nY~  as: 
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This model is very convenient for computational 
purposes, as we deal with real values only. It is in fact 
similar to having M2  real diversity branches. As shown  

in Fig. 1, ( )nY~  is the input to the diversity combining 

filters. Then, the output of the combiner, ( )nz , is applied 

to a hard detector for making the output decision ( )nx̂ . 

 
III. NONLINEAR HAMMERSTEIN COMBINING 

TECHNIQUE 
Hammerstein Diversity Combining (HDC) system is 
shown in Fig. 2. In this approach a Hammerstein filter of 
order D , is employed for each diversity branch. The 
output polynomial of the ith filter is: 
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where kig  is the kth coefficient of the output polynomial 

of the ith filter, and ( )nyi
~  is defined by equation (14). 

Note that since our system is memoryless, no delay term 
appears in equation (15). Also note that only odd powers 
exist in the summation of equation (15). We will prove in 
the next section that the terms corresponding to the even 
powers are equal to zero. 

The filters outputs are summed to produce the 
combiner output ( )nz , i.e. : 
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Equation (16) can be expressed in matrix form: 
 

( ) ( )nnz H
T

H YG=  (17) 
 
where HG  is a ( ) 11 ×+DM  vector that consists of 

coefficients kig , and ( )nHY  is a ( ) 11 ×+DM  vector 

defined as: 
 

( ) ( ) ( ) ( ) ( ) ,n n n n n D odd 
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where ( )npY~  is defined as the pth power of ( )nY~ : 
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Fig. 2. Hammerstein Diversity Combining Technique (HDC) 
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( )nz  is an estimate of the transmitted symbol ( )nx . Our 
goal is to find the coefficients kig  such that the mean 
square error is minimized. 

The coefficients of the Hammerstein filters are found 
from the training mode by using the MSE criterion. In this 
mode, the transmitter sends a training sequence that is 
assumed to be known to the receiver as the desired signal 

( )nd . The error signal is defined as difference between 
the desired and estimated values:  
 

( ) ( ) ( ) ( ) ( )nznxnzndne −=−=  (20) 
 
The cost function is defined as below: 
 

( ){ }neE 2=ζ  (21) 
 
where { }.E  denotes the statistical expectation. Then, the 
coefficients of HDC system can be computed such that to 
minimize ζ : 
 

H
1

HH PRG −=
opt

 (22) 

 
where HP  is the ( ) 11 ×+DM  crosscorrelation vector: 
 

( ) ( ){ }nxnE HH YP =  (23) 

 
and HR  is the ( ) ( )11 +×+ DMDM  autocorrelation 

matrix: 
 

( ) ( ){ }nnE T
HHH YYR =  (24) 

 
Since we would like to compare our system with the 

linear structure, a brief review of linear combining 
technique is presented here. Linear Diversity Combining 
system (LDC) is shown in Fig. 3. In this technique, a 
linear transversal filter with qeL  taps is employed for each 
diversity branch. These filters are designed based on the 
minimum mean square error (MSE) criterion. The output 

( )nzi  of the ith filter is: 
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where kiĝ  is the kth coefficient of the ith filter. The output 
of the linear combiner can then be written as: 
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Equation (26) can be expressed in matrix form: 
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Fig. 3. Linear Diversity Combining Technique (LDC) 

 
 
where LG  is a 12 ×eqML  vector that consists of 
coefficients kiĝ , and ( )nLY  is a 12 ×eqML  vector defined 
as: 
 

( ) ( )
T

TTT
L YYYY

�
�
	




�
�
�


���

�
���

� −
−���

�
���

� −
+=

2
1~~

2
1~ qeqe L

nn
L

nn ��  (28) 

 
where ( )nY~  is defined in equation (13). We can obtain 
the coefficients of LDC by using the MSE criterion: 
 

L
1

LL PRG −=
opt

 (29) 

where LP is the crosscorrelation vector: 

 
( ) ( ){ }nxnE LL YP =  (30) 

and LR  is the autocorrelation matrix: 
 

( ) ( ){ }nnE T
LLL YYR =  (31) 

 

IV. THEORETICAL ANALYSIS 

A. Analysis of the Coefficients 
In this subsection we prove that the even coefficients in 

equation (16) are equal to zero. To do so, we consider the 
case where 2=M , 3=D , and the channel length 2=L , 
and assume real channel and noise for simplicity. 
However, these assumptions do not change the generality 
and our proof is valid for all cases.  

In this case the two received signals are: 
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Also, from our basic assumptions in this work, we have: 
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where ... vzn  is a none-zero value. From equations  
(32)-(34), it is easy to show that: 
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For real values of channel and noise we have: 

( ) ( )nyny 11
~ = , and ( ) ( )nyny 22

~ = . Hence, equation (18) 
becomes: 
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Substituting equations (35) and (37) in (24), the following 
form for the autocorrelation matrix is obtained: 
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where the blocks of the matrix are alternatively zero and 
none-zero. It is easy to show that the inverse matrix 1

HR −  
has also a similar form. 

On the other hand, substituting equations (36) and (37) 
in (23), the following form for the crosscorrelation vector 
is obtained: 

 
[ ] T

HP ......00...... vznvznvznvzn=  (39) 
 

If we substitute 1
HR −  and HP  in equation (22), we have: 

 
[ ] T

HG ......00...... vznvznvznvzn
opt

=  (40) 
 

Hence, the even coefficients of the filter are zero. This 
proof can be easily generalized for arbitrary values of M , 
D  and L . 
 

B. Average Minimum MSE 
In this subsection we evaluate the average minimum 

mean square error (MMSE) for a HDC system, for 
frequency selective Rayleigh fading channels. Using 
equations (21), (20) and (17), the MSE value for HDC 
system can be expressed as: 
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For a particular channel occurrence, the optimum 
coefficients of the Hammerstein filters are obtained from 
equation (22). Replacing HG  by 

opt
HG  in equation (41), we 

have: 

( ){ } H
1

H
T
H PRP −−= nxE 2

min	  (42) 
 
This is the minimum MSE that can be achieved by a 
HDC system for a particular channel occurrence. 

Next, we would like to evaluate the average MMSE, 
averaged over all possible channel realizations. We first 
consider the case where 2=M , 3=D , and the channel 
length 2=L , and assume real channel and noise and also 
2-PAM modulation. In this case the two received signals 
are: 
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Using equations (43), (18), (23) and (24), the 14 ×  
crosscorrelation and 44 ×  autocorrelation matrixes are 
computed as: 
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and: 
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Substituting these matrixes in equation (42), the MMSE 
can be obtained as a function of particular channel tap 
gains and the noise variance 2

wσ : 
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and: 
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Note that in equations (47) and (48) we use this 
approximation: 
 
( ) 102 >≈ kforK

wσ  (49) 
 

Then, equation (46) must be averaged over all possible 
channel realizations. Based on our basic assumptions in 
this work and using equations (2)-(4), the joint PDF of the 
channel tap gains is: 
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Finally, the average MMSE is computed as below: 
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It is difficult to obtain a close-form for this equation. 
Therefore, we should compute it by numerical methods. 

Generalization of this approach for arbitrary values of 
M , D , L  and m-ary PAM, leads to similar equations. In 
the next section we will present an example of this 
numerical solution for evaluating the average MMSE. 
 

V. SIMULATION RESULTS AND DISCUSSIONS 
In this section the average error rate is evaluated for 

HDC and LDC techniques, by the simulation results. 
Also, the average MMSE for a HDC system is evaluated 
numerically and is compared with the simulation result. 
The reliability of HDC technique is discussed, too. The 
simulations are performed for four different frequency 
selective Rayleigh channels with power delay profiles 
shown in Fig. 4. These are the examples of common 
profiles used in wireless communication channels [2], 
[20], [21]. We generate 200,000 random realizations of 
the channel and obtain the average system performance 
by Monte Carlo simulations. We also use a 100-bit 
sequence for training mode. 

 
 

A. Average System Performance 
In this subsection the average system performance for 

HDC and LDC systems using the channel profile (a), is 
presented. 

First, we consider 2-PAM (BPSK) modulation. In  
Fig. 5, the average bit error rate (BER) versus SNR is 
shown for HDC and LDC techniques. In these 
simulations, which are performed for three different 
number of diversity branches { }4,3,2∈M , we choose the 
order of Hammerstein filter 5=D  and the number of 
linear filter taps 5=eqL . From this figure, we observe that 
at higher SNRs HDC has a considerable better 
performance than LDC. For example, for 4=M , when  
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Fig 4. Four examples for channel PDP 
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Fig. 5. Average BER for the channel (a) 

 
the dBSNR 40= , the average BER of HDC is almost 
10000 times lower than LDC, which is a valuable 
advantage of our proposed technique. However, the 
disadvantage of HDC at lower SNRs, is due to the 
inherent property of all nonlinear systems at low signal to 
noise ratios. Examples of these behaviors are observed in 
decision feedback equalizers and FM modulators, in 
which their superiority over linear techniques appears 
when SNR is above a threshold. 

To prove the validity of the above comparison when 
the number of taps in LDC is increased, we evaluate the 
average BER of this technique for different number of 
taps { }11,5,3∈eqL  and 3=M . As can be seen from  
Fig. 6, the performance dose not change considerably 
when eqL  is increased. Hence, increasing the number of 
taps in LDC, does not change the superiority of HDC. 

To see the effect of the polynomial order D  on the 
performance of HDC, simulations are performed for three 
different values of { }7,5,3∈D  when 3=M . The results 
of these simulations are presented in Fig. 7. As can be 
seen from this figure, when 5>D , the system 
performance dose not change notably. Hence, in this work 
we choose 5=D . 

Next, the results for different m-ary PAMs are 
presented. We consider equal average energy for 
transmitted symbols. Hence, from equation (1), we need 
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Fig. 6. The effect of increasing the number of taps in LDC 
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Fig. 7. The effect of increasing polynomial order in HDC 
 
to choose 1=d , 51=d  and 211=d  for 2=m , 

4=m  and 8=m , respectively. In other words, as m is 
increased, the distance between adjacent symbol 
amplitudes decreases.  

Figs. 8 and 9 show the average symbol error rate 
(SER), for 4-PAM and 8-PAM respectively. The 
system parameters are taken as { }5,4,3∈M , 5=D , 
and 5=eqL  in Fig. 8, and { }6,5,4∈M , 5=D , and 

5=eqL  in Fig. 9. Comparing these figures with Fig. 5, we 
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Fig. 8. Average SER for the channel (a)_ 4-PAM modulation 
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Fig. 9. Average SER for the channel (a)_ 8-PAM modulation 
 



 
observe that the superiority of HDC to LDC is valid for 
any m. In Fig. 10, the results of our simulations are shown 
for three different PAMs with { }8,4,2∈m , when 4=M , 

5=D , and 5=Leq . 
To see another aspect of HDC and LDC techniques, we 

investigate the effect of the number of diversity branches 
on the average performance of HDC and LDC 
techniques, when m-arry PAM modulation is employed. 
In Fig. 11 we show the average SER of these techniques 
for three different values of M  for dBSNR 35= . As can 
be seen from this figure, the system performance of LDC 
dose not change considerably when M  is increased, 
especially for higher values of m. On the other hand, the 
system performance of HDC is improved by increasing 
the number of diversity branches. 

In Fig. 12, the average MMSE for a HDC system is 
evaluated numerically, based on equation (51), and the 
obtained result is compared with the simulation result. In 
this case, the channel (a) is employed and the parameters 
are 2=M , 2=m  and 5=D . From this figure, we 
observe that the two curves are close together. This means 
that the approach presented in subsection 4-2, verifies our 
simulation results. 
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Fig. 10. Average SER for three different PAMs 

 

2 3 4 5 6
10-14

10-12

10-10

10-8

10-6

10-4

Number  of  Diversity  Branches

A
ve

ra
ge

  S
ym

bo
l  

Er
ro

r 
 R

at
e 

 (S
ER

)

HDC: SNR=35 dB, D=5, 2-PAM
HDC: SNR=35 dB, D=5, 4-PAM
HDC: SNR=35 dB, D=5, 8-PAM
LDC:  SNR=35 dB, Leq=5, 2-PAM
LDC:  SNR=35 dB, Leq=5, 4-PAM
LDC:  SNR=35 dB, Leq=5, 8-PAM channel (a)

 
 

Fig. 11. The effect of the number of diversity branches on the 
average SER for three different PAMs 
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Fig. 12. The average MMSE for HDC system 
 

B. Results for Different PDPs 
The power delay profile (PDP) reflects the propagation 

environment. Here, we investigate the effect of different 
PDPs on the performance of LDC and HDC techniques. 
 

The channel profiles (a), (b), (c), and (d) in Fig. 4 are 
the examples of exponentially decaying profiles [2], 
gaussian profiles [20], triple spike profiles [20], and 
composite profiles [21], respectively. The system 
performance for the channel (a) was shown before in  
Fig. 5. Figs. 13 and 14 show the results of similar 
simulations for the channel profiles (b) and (c) 
respectively. In these simulations the system parameters 
are chosen as { }5,4∈M , 2=m , 5=D , and 9=eqL . In 
Fig. 15, the performances of LDC and HDC techniques 
are compared for the channel (d). The parameters are 
taken as { }5,4∈M , 2=m , 5=D , and 15=Leq . From 
Figs. 5, 13, 14 and 15, it is observed that the superiority of 
HDC to LDC is valid for all different PDPs. 

 

C. Reliability 
In the previous subsections, we evaluated the average 
BER and SER performance; averaged over all possible  
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Fig. 13. Average BER for the channel (b) 
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Fig. 14. Average BER for the channel (c) 
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Fig. 15. Average BER for the channel (d) 
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Fig. 16. Relative reliability factor 
 

 
channel realizations. There are some rare channel 
realizations that cause significant error rate. These 
infrequent occurrences reduce the average system 
performance. However, in many practical situations like 
voice communications, the important factor for the user is 
the system performance for any individual channel 
occurrences rather than the average system performance.  

 
Here we focus on individual channel realizations and 

compare the performance of HDC and LDC. Based on 
the above discussions, we define Relative Reliability 
Factor (RRF) as the probability that for a particular 
channel occurrence H , the error rate of HDC is less than 
or equal to the error rate of LDC, i.e.: 

 
)( HSERSERrobPRRF LDCHDC ≤=

Δ
 (52) 

 
RRF is calculated for the channel (a) and the result is 

shown in Fig. 16. In this figure, the parameters are 2=m , 
3=M , 5=eqL  and 5=D . We observe that for 

dBSNR 25≥ , in almost 100 percent of the times, the 
performance of HDC is equal to or better than LDC. Also 
as observed from this figure, for dBSNR 20= , although 
the average BER of HDC is worse than LDC (Fig. 5), we 
can still trust the system in almost 98 percent of the 
channel realizations. We conclude that at moderate and 
higher SNRs, HDC technique offers a high relative 
reliability. 

 

VI. COMPARISON OF HDC AND LDC 
COMPLEXITIES 

In this section we compare the complexity of HDC and 
LDC techniques and show that HDC has a considerably 
less complexity. 

 

A. Memory Usage 
HDC is a memoryless system. This property provides 

many benefits, like low cost, low power consumption and 
low hardware complexity. On the other hand, LDC 
technique requires )1(2 −× eqLM  memories. Especially, 
for long impulse response channels (high values of eqL ) 
and high values of M , the number of required memories 
is significant, and therefore the cost and the complexity of 
the system are increased. 

 

B. Computational Complexity 
The computational complexity of HDC and LDC 

techniques is proportional to the number of coefficients of 
their filters. To present a quantitative comparison for 
computational complexity, we define the complexity ratio 
as: 

 

HDCintapsofnumberThe
LDCintapsofnumberTheCxr

Δ
=  (53) 

 
If we assume that the number of diversity branches is the 
same for both techniques, we have from equations (22) 
and (29): 
 

)1(
2

+
=

D
L

Cxr eq  (54) 

 
As an example, for 5=D  and 15,9,5=eqL , the 

complexity ratio is 5,3,66.1=Crx  respectively. This  



means that the computational complexity of HDC is 
almost 5,3,66.1  times lower than LDC respectively. 
This is a significant advantage for HDC technique, 
especially for long impulse response channels. 

  

C. Equipments 
Another valuable advantage of HDC technique over 

LDC is that in this system, we need a lower number of 
diversity branches. As we can observe from Fig. 5, at 
higher SNRs the performance of HDC for a lower 
number of diversity branches M , is even better than LDC 
performance with a higher values of M . From this figure 
we observe that the performance of HDC for the channel 
(a) with 3=M , is better than the performance of LDC 
with 4=M  when dBSNR 5.27≥ . Also we observe that in 
this case the performance of HDC with 2=M  is better 
than the performance of LDC with 4=M  
when dBSNR 37≥ . 

Hence, we can save the number of diversity branches, 
by using HDC technique. Consequently the number of 
antennas (in spatial diversity), correlators and other 
equipments required in the receiver are decreased. 

At the end of this section, we consider a demonstrative 
example. In Fig. 17, the results of our simulation for HDC 
with 5=M , 4=m  and 5=D  are compared with LDC 
with 8=M , 2=m  and 9=eqL  for the channel (c). 
Conclusions obtained from this comparison are 
summarized in Table 1. 

 

VII. CONCLUSION 
In this paper we presented a nonlinear low complexity 

memoryless combining technique based on Hammerstein 
type filters. We employed m-arry PAM modulation and 
assumed frequency selective Rayleigh fading channels 
with different power delay profiles. The performance of 
our proposed system was evaluated for different number 
of diversity branches and polynomial orders. Comparison 
of our simulation results with the results that we obtained 
from linear combining technique, shows that: 
a- At higher SNRs, the system performance of HDC is 
superior to LDC 
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Fig. 17. Average SER for HDC with 55 == MD and 4-PAM, 

and LDC with 89 == MLeq and 2-PAM, for the channel (c) 

 
 
b- At higher SNRs, in contrast to LDC, the system 
performance of HDC can be improved considerably by 
increasing the number of diversity branches 
c- The superiority of HDC to LDC at higher SNRs, is 
valid for different power delay profiles 
d- At moderate and high SNRs and for any channel 
occurrence, there is a high probability that the error rate of 
HDC is better than or equal to LDC 
e- Analysis of the average minimum MSE performance of 
HDC system, verifies our simulation results 
f- HDC provides a considerable low complexity 
technique as it needs less number of diversity branches, 
memories and computations than LDC 
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Table 1. Comparison of HDC with 5=D  and LDC with 9=eqL  for the channel (c) 

 
 Average 

BER 
RRF 

(percent) 
Number of 
Coefficients 

Number of 
Diversity 
Branches 

Number of 
Correlators 

Memory 
Usage 

Bandwidth 
Usage 

HDC at SNR = 22 dB 2 e -5 98.23  
30 

 
5 

 
10 

 
0 

 
W 

HDC at SNR = 26 dB 7.22 e -7 99.81 

HDC at SNR = 35 dB 1.7 e -9 100 

LDC at SNR = 22 dB 8 e -7 -----  
144 

 
8 

 
16 

 
128 

 
2 W 

LDC at SNR = 26 dB 7.22 e -7 ----- 

LDC at SNR = 35 dB 6.8 e -7 ----- 
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