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STABILITY OF THE MONOMIAL FUNCTIONAL EQUATION
IN QUASI NORMED SPACES

Alireza Kamel Mirmostafaee

Abstract. Let X be a linear space and Y be a complete quasi p-norm
space. We will show that for each function f : X → Y , which satisfies
the inequality

||∆n
xf(y)− n!f(x)|| ≤ ϕ(x, y)

for suitable control function ϕ, there is a unique monomial function M
of degree n which is a good approximation for f in such a way that
the continuity of t 7→ f(tx) and t 7→ ϕ(tx, ty) imply the continuity of
t 7→ M(tx).

1. Introduction

The concept of stability of a functional equation arises when one replaces
a functional equation by an inequality which acts as a perturbation of the
equation. In 1940, Ulam [18] posed the first stability problem. In 1941, D.
H. Hyers [10] gave the first significant partial solution to his question. Hyers’
theorem was generalized for additive mappings by T. Aoki [3] in 1950 and D. G.
Bourgin [5] in 1951. In 1978, Th. M. Rassias [17] solved the problem for linear
mappings by considering an unbounded Cauchy difference. The phenomenon
that was introduced and proved by Th. M. Rassias in the year 1978, is called
the Hyers-Ulam-Rassias stability.

Let X and Y be linear spaces and Y X be the vector space of all functions
from X to Y . Following [11], for each x ∈ X, define ∆x : Y X → Y X by

∆xf(y) = f(x+ y)− f(y), f ∈ Y X , y ∈ X.
Inductively, we define

∆x1,...,xnf(y) = ∆x1,...,xn−1(∆xnf(y))

for each x1, . . . , xn, y ∈ X and f ∈ Y X , we write

∆n
xf(y) = ∆x1,...,xnf(y)
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if x1 = · · · = xn = x. By induction on n, it can be easily verified that

(1.1) ∆n
xf(y) =

n∑

k=0

(−1)n−k

(
n

k

)
f(kx+ y), n ∈ N, x, y ∈ X.

It can be easily verified that every polynomial of degree at most n satisfies the
functional equation ∆n+1

x f(y) = 0. Hence the functional equation ∆n
xf(y) = 0

is called the polynomial functional equation of degree n − 1. The functional
equation

∆n
xf(y) = n!f(x)(1.2)

is called the monomial functional equation of degree n, since the function
f(x) = cxn is a solution of the functional equation. Every solution of the
monomial functional equation of degree n is said to be a monomial mapping
of degree n. In particular additive, quadratic, cubic and quartic functions are
monomials of degree one, two, three and four respectively.

The research on the stability of polynomial or monomial equations was ini-
tiated by D. H. Hyers in [11]. The problem has been recently considered by
some authors see e.g. M. H. Albert and J. A. Baker [1], L. Cãdariu and V.
Radu [6], A. Gilányi [8, 9], Z. Kaiser [13], Y.-H. Lee [14] and D. Wolna [19].

In Section 3, we use the fixed point alternative theorem to prove the Hyers-
Ulam-Rassias stability of monomial functional equation of an arbitrary degree
in complete quasi-normed spaces. More precisely, we will show that if a function
f from a linear spaceX to a complete p-normed space Y for some n ∈ N satisfies
the inequality

||∆n
xf(y)− n!f(x)|| ≤ ϕ(x, y), x, y ∈ X

for suitable control function ϕ, then f can be suitably approximated by a
unique monomial M : X → Y of degree n. In Section 4, we will show that,
for each x ∈ X, the continuity of s 7→ f(sx) and s 7→ ϕ(sx, sy) guarantee the
continuity of s 7→ M(sx). It follows that in this case, M(tx) = tnM(x) for
each t ∈ R and x ∈ X.

2. Preliminaries

In this section, we give some preliminaries, which will be used in this paper.
We start by the following definition.

Definition 2.1. The pair (X, d) is called a generalized complete metric space
if X is a nonempty set and d : X2 → [0,∞] satisfies the following conditions:

(a) d(x, y) ≥ 0 and the equality holds if and only if x = y,
(b) d(x, y) = d(y, x),
(c) d(x, z) ≤ d(x, y) + d(y, z),
(d) every d-Cauchy sequence in X is d-convergent.

Note that the distance between two points in a generalized metric space is
permitted to be infinity.
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Definition 2.2. Let (X, d) be a generalized complete metric space. A mapping
Λ : X → X satisfies a Lipschitz condition with Lipschitz constant L ≥ 0 if

d(Λ(x),Λ(y)) ≤ Ld(x, y), x, y ∈ X.
If L < 1, then Λ is called a strictly contractive operator.

In 2003, Radu [15] employed the following result, due to Diaz and Margolis
[7], to prove the stability of Cauchy additive functional equation. Using such
an elegant idea, several authors applied the method to investigate the stability
of some functional equations, see [6, 12, 16].

Proposition 2.3 (The fixed point alternative principle). Suppose that a
complete generalized metric space (E , d) and a strictly contractive mapping
J : E → E with the Lipschitz constant 0 < L < 1 are given. Then, for a
given element x ∈ E, exactly one of the following assertions is true: either

(a) d(Jnx, Jn+1x) = ∞ for all n ≥ 0 or
(b) there exists some integer k such that d(Jnx, Jn+1x) <∞ for all n ≥ k.
Actually, if (b) holds, then the sequence {Jnx} is convergent to a fixed point

x∗ of J and
(b1) x∗ is the unique fixed point of J in F := {y ∈ E , d(Jkx, y) <∞};
(b2) d(y, x∗) ≤ d(y,Jy)

1−L for all y ∈ F .

Remark 2.4. The fixed point x∗, if it exists, is not necessarily unique in the
whole space E ; it may depend on x. Actually, if (b) holds, then (F , d) is a
complete metric space and J(F) ⊂ F . Therefore the properties (b1) and (b2)
follow from “The Banach fixed point theorem”.

Definition 2.5. A quasi-norm on a real vector space X is a function x 7→ |||x|||
from X to [0,∞) which satisfies

(i) |||x||| > 0 for every x 6= 0 in X,
(ii) |||tx||| = |t|.|||x||| for every t ∈ R and x ∈ X,
(iii) there is k ≥ 1 such that |||x+y||| ≤ k(|||x|||+ |||y|||) for every x, y ∈ X.

Aoki [2] (see also [4]) has shown that every quasi-normed space (X, ||| · |||)
admits an equivalent quasi-norm || · || such that for some 0 < p ≤ 1,

(2.1) ||x+ y||p ≤ ||x||p + ||y||p, x, y ∈ X.
In this case, (X, || · ||) is called a quasi p-normed space. In special case, when
p = 1, (X, ||| · |||) turns into a normed linear space.

3. Stability of monomial functional equations

Throughout the remainder of this paper, unless otherwise stated, we will
assume that 0 < p ≤ 1 and q = 1

p , X is a real vector space and Y is a complete
quasi p-norm space.

In 2006, D. Wolna in [19] proved the following result:
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Lemma 3.1. For every mapping f : X → Y and m, k ∈ N, the following
identity holds:
(3.1)

f(2x)− 2mf(x) =
1
m!

[(m
0

)
F1(x) + · · ·+

(
m

m

)
Fm+1(x)−H(x)

]
, x ∈ X,

where
Fi(x) = ∆m

x f(ix)−m!f(x), x ∈ X; i = 1, . . . ,m+ 1
and

H(x) = ∆m
2xf(x)−m!f(2x), x ∈ X.

Proof. [19, Lemma 2, page 102]. ¤
Corollary 3.2. If f : X → Y is a monomial of degree m, then

(3.2) f(2x) = 2mf(x), x ∈ X.
Proof. If f is a monomial of degreem, then F1(x) = · · · = Fm+1(x) = H(x) = 0
for each x ∈ X. Hence the result follows from Lemma 3.1. ¤
Lemma 3.3. Let ψ : X → [0,∞) be a function and E = Y X . Define

d(g, h) = inf{a > 0 : ||g(x)− h(x)|| ≤ aqψ(x) ∀x ∈ X}, g, h ∈ E .
Then d is a generalized complete metric on E .
Proof. Clearly d(f, g) ≥ 0 for each f, g ∈ E and the equality holds only when
f = g. By the definition, d is symmetric. Let g, g′, g′′ ∈ E , d(g, g′) < a1 and
d(g′, g′′) < a2. Then

||g(x)− g′(x)|| ≤ aq
1ψ(x) and ||g′(x)− g′′(x)|| ≤ aq

2ψ(x)

for each x ∈ X. It follows that

||g(x)− g′′(x)||p ≤ ||g(x)− g′(x)||p + ||g′(x)− g′′(x)||p

≤ (a1 + a2)
(
ψ(x)

)p

, x ∈ X.
Therefore d(g, g′′) ≤ a1 + a2. Since this holds for each a1, a2 with d(g, g′) < a1

and d(g′, g′′) < a2,
d(g, g′′) ≤ d(g, g′) + d(g′, g′′).

Let {fn} be a Cauchy sequence in E . Then for each ε > 0, there is some n0 ∈ N
such that

d(fn, fm) < ε, n,m ≥ n0.

By the definition, for each n,m ≥ n0,

(3.3) ||fn(x)− fm(x)|| ≤ εqψ(x), x ∈ X.
Hence, for each x ∈ X, {fn(x)} is a Cauchy sequence in complete space Y .
It follows that f(x) = limn→∞ fn(x) exists for each x ∈ X. By (3.3) for each
n ≥ n0,

||f(x)− fn(x)|| = lim
m→∞

||fm(x)− fn(x)|| ≤ εqψ(x), x ∈ X.
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Therefore d(f, fn) ≤ ε for each n ≥ n0. Hence limn→∞ d(f, fn) = 0. This
completes the proof of the lemma. ¤

Theorem 3.4. Let ϕ : X ×X → [0,∞) and f : X → Y satisfy the inequality

(3.4) ||∆m
x f(y)−m!f(x)|| ≤ ϕ(x, y), x, y ∈ X

for some m ∈ N. Define

(3.5) ψ(x) =
1

2mm!

( m∑

i=0

[(m
i

)
ϕ(x, (i+ 1)x)

]p

+
[
ϕ(2x, x)

]p)q

, x ∈ X.

If for some L < 1,

2−mψ(2x) ≤ Lψ(x), x ∈ X(3.6)

and limn→∞ 2−mnϕ(2nx, 2ny) = 0 for all x, y ∈ X, then there exists a unique
monomial mapping M : X → Y of degree m such that

||M(x)− f(x)|| ≤ ψ(x)
(1− Lp)q

, x ∈ X.(3.7)

Proof. By Lemma 3.1

(3.8) ||2−mf(2x)− f(x)|| ≤ ψ(x), x ∈ X.
Let E = Y X and define

d(g, h) = inf{a > 0 : ||g(x)− h(x)|| ≤ aqψ(x), ∀x ∈ X}, g, h ∈ E .
By Lemma 3.3, d is a complete generalized metric on E . Define J : E → E by
J(g)(x) = 2−mg(2x) for each g ∈ E and x ∈ X. Let ε > 0 and a = d(g, h) + ε.
Then by the definition,

||g(x)− h(x)|| ≤ aqψ(x), x ∈ X.
Thanks to (3.6), for each x ∈ X,

||J(g)(x)− J(h)(x)|| = ||2−mg(2x)− 2−mh(2x)||
≤ 2−maqψ(2x)

≤ Laqψ(x).

By the definition, d(J(g), J(h)) ≤ Lp a = Lp(d(g, h) + ε). Since ε > 0 was
arbitrary,

d(J(g), J(h)) ≤ Lp d(g, h), g, h ∈ E .
This means that J is a contractive mapping with Lipschitz constant Lp < 1.
By (3.8), d(f, J(f)) ≤ 1, therefore, by Proposition 2.3, J has a unique fixed
point M : X → Y in the set F = {g ∈ E : d(f, g) <∞}, where M is defined by

(3.9) M(x) := lim
n→∞

Jn(f)(x) = lim
n→∞

2−mnf(2nx), x ∈ X.
Moreover,

d(f,M) ≤ d(f, J(f))
1− Lp

≤ 1
1− Lp

.
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This means that (3.7) holds. Thanks to (1.1) and (3.9), for each x, y ∈ X, we
have

||∆m
x M(y)−m!M(x)||

= ||
m∑

j=0

(−1)m−j

(
m

j

)
M(jx+ y)−m!M(x)||

= lim
n→∞

2−mn||
m∑

j=0

(−1)m−j

(
m

j

)
f(2njx+ 2ny)−m!f(2nx)||

= lim
n→∞

2−mn||∆2nxf(2ny)−m!f(2nx)||
≤ lim

n→∞
2−mnϕ(2nx, 2ny) = 0.

Hence M is a monomial of degree m.
To prove the uniqueness assertion, let us assume that there exists a monomial

M ′ : X → Y of degree m, which satisfies (3.7). Thanks to Corollary 3.2, M ′

is a fixed point of J in F . However, by Proposition 2.3, J has only one fixed
point in F , hence M ′ ≡M . ¤

The following result can be obtained by imitating the proof of Theorem 3.4.

Theorem 3.5. With the notations of Theorem 3.4, let (3.4) hold for some
m ∈ N. If for some positive L < 1,

2mψ(2−1x) ≤ Lψ(x), x ∈ X
and limn→∞ 2mnϕ(2−nx, 2−ny) = 0. Then there exists a unique monomial
M : X → Y of degree m such that

||M(x)− f(x)|| ≤ Lψ(x)
(1− Lp)q

, x ∈ X.

4. Continuity behavior of monomial mappings

In this section, we investigate continuity of monomial mappings in quasi p-
normed spaces. In fact, we will show that under some conditions on f and ψ,
the monomial mapping s 7−→M(sx) is continuous.

Theorem 4.1. Let the conditions of theorem 3.4 (or Theorem 3.5) hold. If for
each x ∈ X, the function s 7→ f(sx) from R to Y is continuous at some point
s0 and for some x0 ∈ X, the function s 7→ ψ(sx0) from R to [0,∞) is bounded
in a neighborhood of s0, then s 7−→M(sx0) from R to Y is continuous at s0.

Proof. We prove the theorem under conditions of Theorem 3.4. The proof for
the other case is similar. Let α > 0 and δ1 > 0 be such that

|s− s0| < δ1 ⇒ ψ(sx0) < α.
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Given ε > 0, choose some n0 so that
Ln0α

(1− Lp)q
<

ε

3q
.

Since 0 < L < 1, such a choice is possible. By the continuity of s 7→ f(2n0sx0),
we can find positive δ ≤ δ1 such that

(4.1) |s− s0| < δ ⇒ ||f(2n0sx0)− f(2n0s0x0)|| < ε

3q2−mn0
.

Let |s− s0| < δ. Then

||M(sx0)−M(s0x0)||p
= ||2−mn0M(2n0sx0)− 2−mn0M(2n0s0x0)||p

≤ 2−mn0p
(
||M(2n0sx0)− f(2n0sx0)||p + ||f(2n0sx0)− f(2n0s0x0)||p

+ ||f(2n0s0x0)−M(2n0s0x0)||p
)

<
εp

3
+
εp

3
+
εp

3
= εp.

That is
|s− s0| < δ ⇒ ||M(sx0)−M(s0x0)|| < ε.

The above inequality proves continuity of s 7→M(sx0) at s0. ¤
Corollary 4.2. If s 7→ f(sx) and s 7→ ψ(sx) from R to Y and R+ respectively
are continuous, then s 7→M(sx) is continuous. In this case, M(tx) = tmM(x)
for each t ∈ R and x ∈ X.

Proof. Follows from Theorem 4.1 and [13, Lemma 5]. ¤
Corollary 4.3. Let

(
X, ||| · |||) be a normed space. Let for some ε > 0 and

positive real number β 6= m, f : X → Y satisfy the inequality

||∆m
x f(y)−m!f(x)|| ≤ ε

(
|||x|||β + |||y|||β

)
, x, y ∈ X.

(i) If β < m, there is a unique monomial M : X → Y of degree m such
that

||f(x)−M(x)||

≤ ε |||x|||β

2mm!
(
1− 2(βp−mp)

)q

( m∑

i=0

[(m
i

)
(1 + (i+ 1)β)

]p

+ (2β + 1)p
)q

, x ∈ X.

(ii) If β > m, there is a unique monomial M : X → Y of degree m such
that

||f(x)−M(x)||

≤ ε 2(m−β) |||x|||β

2mm!
(
1− 2(mp−βp)

)q

( m∑

i=0

[(m
i

)
(1 + (i+ 1)β)

]p

+ (2β + 1)p
)q

, x ∈ X.
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Furthermore, if f is continuous, then M is continuous and M(tx) = tmM(x)
for each t ∈ R and x ∈ X.

Proof. Let ϕ(x, y) = ε
(
||||x||||β + |||y|||β

)
and ψ be defined by (3.5). Then

(4.2) ψ(x) =
ε |||x|||β
2mm!

( m∑

i=0

[(m
i

)
(1 + (i+ 1)β)

]p

+ (2β + 1)p
)q

, x ∈ X.

If β < m, then
2−mψ(2x) = 2−m+βψ(x), x ∈ X.

Hence for L = 2−m+β < 1, the conditions of Theorem 3.4 hold. Therefore, we
can find a unique monomial function of degree m such that

||f(x)−M(x)|| ≤ ψ(x)
(1− 2(βp−mp))q

, x ∈ X.

This proves (i). In case (ii), when β > m, by (4.2), we can write

2mψ(2−1x) = 2m−βψ(x), x ∈ X.
By Theorem 3.5 for L = 2m−β , there is a unique monomial functionM : X → Y
of degree m such that

||f(x)−M(x)|| ≤ 2(m−β)ψ(x)
(1− 2(mp−βp))q

, x ∈ X.

The last assertion follows from Theorem 4.1. ¤
Corollary 4.4. Let for some ε > 0, f : X → Y satisfy the inequality

||∆m
x f(y)−m!f(x)|| ≤ ε, x, y ∈ X.

Then there is a unique continuous monomial mapping M : X → Y of degree
m such that

||f(x)−M(x)|| ≤
ε

( ∑m
i=0

(
m
i

)p + 1
)q

(2m m!)(1− 2−mp)q
, x ∈ X.

Furthermore if f is continuous, then M is continuous and M(tx) = tmM(x)
for each t ∈ R and x ∈ X.

Proof. Apply Theorem 3.4 for L = 2−m and ϕ(x, y) = ε, x, y ∈ X. ¤
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[6] L. Cǎdariu and V. Radu, Remarks on the stability of monomial functional equations,
Fixed Point Theory 8 (2007), no. 2, 201–218.

[7] J. B. Diaz and B. Margolis, A fixed point theorem of the alternative, for contractions
on a generalized complete metric space, Bull. Amer. Math. Soc. 74 (1968), 305–309.
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