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The tuned liquid column damper (TLCD) is a passive control device that consists of tube like con-
tainers filled with liquid, preferably water. The damping in a liquid column is amplitude-dependent 
and consequently nonlinear. Most of the previous studies concentrated on the equivalent lineariza-
tion technique and replace the nonlinear damping term with the linear one. This may cause that the 
prediction of the optimal parameters for the TLCD design does not be accurate. 

In this study He’s homotopy perturbation method (HPM) and variational iteration method (VIM) 
are applied to find better approximate solution for the structure-TLCD equations. This new method 
is utilized to solve the equation of motion of a building modeled as a single degree of freedom 
(SDOF) system coupled with the equation of motion of the liquid in the column of the TLCD and 
subjected to a harmonic type of wind excitation. This new technique leads to achieve more reliable 
solution for the TLCD design. Present solution gives an expression which can be used in wide range 
of time for all domain of response. After that the Citicorp Center which has a very flexible structure 
is used as an example to illustrate the design procedure of the TLCD and demonstrate the perfor-
mance of the TLCD in effectively reducing vibrational response under the wind excitation.  

1. Introduction 
The current trend towards structure with increasing height and advanced construction tech-

niques has led to lighter and highly flexible civil engineering structures in many urban areas, such 
as PETRONAS Twin Tower in Malaysia, and Shanghai World Financial Center and Jin Mao Build-
ing in China [1]. These structures are vulnerable to dynamic loads, such as wind gusts, ocean waves 
and earthquakes. It is thus necessary to find a cost effective solution for suppressing the vibration of 
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structures. Among many varieties of control devices [2, 3] the tuned liquid column damper (TLCD) 
as an energy absorbing device which does not require an external power source for operation and 
utilizes the motion of the structure to develop the control forces is a good candidate. A TLCD con-
sists of tube like containers filled with liquid (commonly water) where energy is dissipated by the 
movement of the liquid through an orifice. It can provide the same level of vibration suppression as 
conventional tuned mass damper (TMD) systems [4, 5] but with following advantages:  
1) The TLCD parameters (frequency and mass) can be easily tuned by adjusting the height of the 
liquid in the tube. 
2) The required level of damping can be readily achieved and controlled through the orifice. 
3) It can utilize as a water storage facility at the top of the buildings for an emergency such as fire. 
4) Easy installation and little maintenance needed. 

  Moreover, TLCD can dissipate energy in vertical direction [6] similar to horizontal motion 
of structures [7]; also it can reduce rotational and pitching vibration of structures [8, 9].  

In the last two decades, there have been several studies under taken on the evaluation of 
TLCD performance in suppressing the vibration of structures under wind excitations [10-12]. Since, 
the damping of the liquid motion is nonlinear; most previous research uses linearization techniques 
and until now, there have been few studies examining the nonlinear vibrations of a structure 
equipped with the TLCD [13]. As an accurate prediction of the TLCD parameters is crucial in con-
trol problems, the nonlinear analysis of the TLCD is clearly needed. Hence, this research utilizes an 
analytical approach base on the homotopy theory and the perturbation technique known as the 
homotopy perturbation method (HPM) [14, 15]. Unlike the other analytical methods that are used in 
nonlinear analysis of engineering problems such as perturbation techniques [16, 17], HPM does not 
depend on small parameter and few iterations would acquire precise solutions. 

The intention of this paper is to find an analytical solution of a TLCD-structure system under 
a harmonic type of wind excitation. Due to inherent nonlinear damping, iterations is generally re-
quired in order to obtain the frequency domain response of a structure equipped with a TLCD. It 
would be quite a time consuming task to carry out a detailed design of the mass damper. Therefore 
to facilitate the design of the damper and to improve the approximate solution, the nonlinear equa-
tion of motion of the structure equipped with the TLCD is solved by using the homotopy perturba-
tion method and the variational iteration technique [18]. Finally the Citicorp Center is used as an 
example to illustrate the design procedure for the TLCD under the harmonic type of wind excita-
tion. 

2. Equation of motion 
Let it be assumed that the motion of a building modeled as a single degree of freedom 

(SDOF) system, is to be mitigated using tuned liquid column damper (TLCD). A structure-TLCD 
system under ground motion is shown in Fig. 1. r = Av/Ah is the cross sectional area ratio of the 
mass damper. It can be uniform (r = 1) which corresponds to the tuned liquid column damper and 
non-uniform (r ≠ 1) which corresponds to the liquid column vibration absorber (LCVA) [19], where 
Av and Ah are the vertical and horizontal column cross sectional area, respectively. In consideration 
of dynamic equilibrium condition and the interaction between the structure and the liquid column in 
TLCD, the equation of motion of a structure equipped with the TLCD for lateral vibration control 
under wind excitation expressed as 

 ( )tFYhrLhρAKXXCXLhρAXM e =++++ &&&&&&&               (1) 

 022
2
1 =+++ XrLρAgrYρAYYηrρAYrLρA hhhheh

&&&&&&    (2) 
 where M,C,K are the structural mass, damping and stiffness constant; X is the lateral dis-

placement of the structure; Y is the  motion of the liquid surface inside the TLCD; ( )tF  is the exter-
nal excitation force (of wind load type); hL and vL are the horizontal and vertical column length, 
respectively; ρ is the liquid density in the TLCD; g is the acceleration due to gravity; hve rLLL += 2  
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is defined as the effective length which means the length of an equivalent  uniform liquid column 
having the same circular frequency, if r = 1 (for TLCD), then hve rLLLL +== 2  that represents the 
total length of the TLCD. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

It is convenient to work with dimensionless position and time, according to 
hL

Xx = ; 
hL

Yy = ; 

dT
tτ = . It is easily observed that the natural frequency of a TLCD is 

e
d L

g
ω

2
= , and accordingly the 

natural period is 
g

L
πT e

d 2
2= . In such a way Eq. (1) and Eq. (2) are rewritten in the following form 

 ( ) ( )τfxγπxπζγxµyµn =+′+′′++′′ 22441                                             (3) 
 04 2

2
1 =′′++′′+′′ xnyπyyrnηy  (4) 

where the notation prime (") stands for differentiation with respect to the scaled time τ, and 
the following abbreviation were introduced 

M

LhρA
µ e=  is the mass ratio of the liquid column to the structure. 

sMω
Cζ

2
= is the damping ra-

tio of the structure. 
M
Kωs = is the natural frequency of the structure. 

d

s
ω
ω

γ = is the frequency ratio 

of the structure versus TLCD and for the TLCD (r = 1) 
L

L
n h= .  

3. Homotopy perturbation method 
To explain the basic ideas of the homotopy perturbation method, we consider the following 

nonlinear differential equation: 
                                                          ( ) ( ) Ω,   r=r-fuA ∈0                                                              (5) 
with boundary conditions: 
                                                         ( ) Γ,   r=nu/u,B ∈∂∂ 0                                                            (6) 
where A , B, f (r) and Γ  are a general differential operator, a boundary operator, a known ana-

lytical function and the boundary of the domain Ω , respectively. 
The operator A can be divided into a linear part L and a nonlinear part N. Therefore, Eq. (5) 

can be written as follows 
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Figure 1: structure equipped with the tuned liquid column damper (TLCD) 
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                                                         ( ) ( ) ( ) 0=r-fu+NuL                                                                 (7) 
 By the homotopy technique, we construct a homotopy ( ) [ ] ℜ→1,0, ×: prυ Ω  which satisfies                            

                                                 (8) 
or 
                                                   0=] )(-)([+) L(u+) (-)(=),( 00 rfvNppuLvLpvH                       (9)                   
where [0,1]∈p  is an embedding parameter, 0u  is an initial approximation of Eq. (5), which sat-

isfies the boundary conditions. Obviously, Eq. (8) results in: 
                                                            0=) (-)(=,0)( 0uLvLvH                                                 (10) 
                                                           0=)(-)(=,1)( rfvAvH                                                    (11)  
Due to the fact that 10 ≤≤ p , the embedding parameter p can be used as a small parameter. 

Applying the perturbation technique [14], the approximation of Eq. (8) can be written as a power 
series in p: 

                                                          L+v+p+pvv=v 2
2

10                                                            (12)  
When 1→p , Eq. (12) leads to the approximate solution of Eq. (7). The combination of the 

perturbation technique and the homotopy method not only can eliminate the limitations of the tradi-
tional perturbation methods, but also take full advantage of the traditional perturbation techniques. 

4. Variational iteration method 
Another analytical technique called the variational iteration method (VIM) based on the use of 

restricted variations and correction functions, is described by He in 1999 [19] and is used to give 
approximate solutions of nonlinear ordinary and partial differential equations. In this method the 
solution of a linearization assumption is used as an initial estimation, and then a more highly precise 
approximation is obtained via the variational theory. 

To clarify the basic concept of He’s variational iteration method, let us consider the following 
general nonlinear system: 

                                                          ( ) ( ) ( )tguNuL =+                                                              (13)                   
where L is a linear operator, N is a nonlinear operator and g(t) is a known analytical function. 
According to VIM, the general Lagrange multiplier method is modified into an iteration 

method, in the following way [19]: 

                                                       τdτgτuNτLuλtutu nnnn } )(-)(~+)( {+)( =)(
t

0
 1+ ∫                        (14) 

where λ is a general Lagrange multiplier which can be determined optimally via the varia-
tional theory. The subscript n denotes the nth approximation and nu~  is considered as a restricted 
variation, i.e. 0~ =nuδ .                                         

Eq. (14) is called a correction functional. Since λ can be exactly identified for linear problems, 
the exact solutions can be obtained by only one iteration step. This method is also very effective and 
accurate for nonlinear problems [20, 21]. 

5. Analytical solution to wind loading 
According to the homotopy perturbation, after separating the linear and nonlinear parts of Eq. 

(4), a homotopy can be constructed which satisfies Eq. (9). 
in which 

                                                ( ) ( ) ( ) 0,
2
1,,4, 22 =′=+′′+′′= rfyηrnyxNyπxnyyxL                       (15)  

Replacing Eq. (15) into Eq. (9) results in 
                                   0=] )(-),([+) ,L(+) ,(-),(=),,( 0000 rfvuNpyxpyxLvuLpvuH                 (16) 

Ω∈∈ rprfvApuvLppvH [0,1], 0,=] )(-)([+] )L(-)()[-(1=),( 0
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 [0,1]∈p  is the embedding parameter. As the embedding parameter increases from 0 to 1, x 
and y vary from the initial guesses ( )tx0 and ( )ty0  to the exact solutions ( )tx  and ( )ty . Assumes that 
the approximations of Eq. (17) can be expressed as a series of the power of p, 

                                                        
⎪⎩

⎪
⎨
⎧

L

L

+v+p+pvv=v

+u+p+puu=u

2
2

10

2
2

10                                                           (18)  

Substituting Eq. (18) into Eq. (17) and rearranging the resultant equation based on power of 
p-terms, one has: 

                                                      044: 0
2

000
2

00
0 =−′′−′′−+′′+′′ yπxnyvπunvp                            (19a)  

or 
                                                           0) ,(-),( 0000 =yxLvuL                                                   (19b) 

                                                    0
2
144: 2

00
2

001
2

11
1 =′++′′+′′++′′+′′ vηrnyπxnyvπunvp                  (20a) 

 or 

                                                           0
2
1) ,(),( 2

00011 =′++ vηrnyxLvuL                                    (20b) 

Then by seperating the linear and nonlinear parts of Eq. (3) and using the homotopy perturba-
tion technique, Eqs. (22) and (23) would be obtained.  

                                     ( ) ( ) ( ) ( ) frfyxNxγπxπζγxµyµnyxL ==+′+′′++′′= ,0,,441, 22                   (21) 
                 ( ) ( ) 0441441: 0

22
0000

22
000

0 =−′−′′+−′′−+′+′′++′′ xγπxπζγxµynµuγπuπζγuµvnµp           (22a) 
 or 
                                                           0) ,(-),( 0000 =yxLvuL                                                   (22b) 
                   ( ) ( ) fxγπxπζγxµynµuγπuπζγuµvnµp =+′+′′++′′++′+′′++′′ 0

22
0001

22
111

1 441441:          (23a) 
 or 
                                                          fyxLvuL =+ ) ,(),( 0011                                                   (23b)  
With the effective initial approximation, the solution of Eqs. (19) and (22) may be written as 

follows: 
                                                          ( )tωyxvu cos0000 ====                                                (24)  
Using trigonometric relations and substituting Eq. (24) into Eqs. (20a) and (23a) result in: 

                      
( ) ( ) ( )[ ] ( )

( )[ ] ( ) ( )⎪
⎩

⎪
⎨

⎧

=+−++−++′′+′′

=+++−+−+′+′′++′′

0
4
12cos

4
1cos414

cos41sin4441

2222
1

2
11

222
1

22
111

ηωrntωηωrntωπnωvπunv

ftωγπnµµωtωπζγωuγπuπζγuµvnµ
(25) 

 
The solution of Eq. (25) can be readily obtained by the so-called variational iteration method 

which mentioned before. 
To solve Eq. (25), following assumption should be considered: 
                                                       ywywxwxw ′==′== 4321 ;;;                                       (26) 
                                                      

( ) ( ){ 23
22

42
1

4431
22

24221 4,,441, wnwπrnηnwwwτfwγππζγwwµnwµww ′−−−=′=′+−−′−=′+=′          (27) 
Then the correction functionals can be written as follows: 
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      (28) 

 Making the above correction functionals stationary and knowing that δ v (0) = 0: 
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Thus the stationary condition can be obtained as follows: 
 
                                                                ( ) 01,0 11 =+=′ =tττλλ                                               (30) 
                                                                ( ) 01,0 22 =+=′ =tττλλ                                              (31) 
                                                                ( ) 01,0 33 =+=′ =tττλλ                                              (32) 

                                                              ( ) 0
1

11,0 44 =
+

+=′ =tττλ
µ

λ                                         (33) 

Solving the systems of Eqs. (30)-(33) yields: 
                                                       1,1,1,1 4321 −−=−=−=−= µλλλλ                                        (34) 
As a result the following variational iteration formula can be obtained: 

                                          ( ) ( )[ ] ( ) ( ){ }∫ −−+++−−=
t

τdftωπζγωtωγπnµµωu
0

222
1 sin4cos411            (35) 

 

                                  ( ) ( )[ ] ( ) ( )∫
⎭
⎬
⎫

⎩
⎨
⎧ +−++−−=

t
τdηωrntωηωrntωπnωv

0

2222
1 4

12cos
4
1cos411             (36) 

Therefore the first order approximate solution can be obtained: 
                                                      1010 , vvyuux +=+=                                                           (37) 

6. Design procedure 
In this section the process of designing the TLCD is investigated . To illustrate the design 

procedure of this mass damper, the Citicorp Center [22] which has a very flexible structure is used 
as an example in this study. A TLCD is to be installed at the top of the building to abating the vibra-
tion induced by the harmonic type of wind excitation. The mass, stiffness and damping constants of 
this building are,  m

sN 27 .108.1 × , m
N71082.1 ×  and  m

N.s. 610360 × ( )010.ζ =  respectively. 
These properties represented the first mode of natural frequency. The step by step procedure 

for the TLCD design is stated as follows: 
1) The first step of designing a TLCD is to select a proper mass ratio. The larger mass ratio, 

results on better control performance but by increasing the mass ratio, the geometry of the TLCD 
becomes larger and may require a stronger supporting system at the top of the structure, which 
would increase the installation cost. In this example, a mass ratio of 0.025 is selected and with a 

horizontal length ratio, n, chosen as 0.6, the tuning frequency ratio 
d

s
ω
ωγ =  of 1 is selected. There-

fore, the total length, L, the horizontal length, Lh and the vertical length, Lv, of the TLCD, can be 
obtained as follows: 

mL
L
g

sradωωsrad
M
Kω sds 4.19,006.1

2
,/006.1,/006.1 ======  

mL
L

L
L

L
n h

hh 6.11,6.0, ===  
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( ) mLTLCDtheforrrLLL vvh 88.3,1;2 ==+=  

 
Figure 2: Effect of the TLCD on reducing the vibration of buildings 

2) By  
( )

M
LLhA vh 2+

=
ρ

µ  and knowing that the density of the water is about 997 kg/m3, a cross 

section A=23.26 m2 is thus determined. This huge cross section is due to the large first modal mass 
and the mass ratio that is chosen. One possible solution to create a space for such a huge TLCD is to 
divide it into few smaller TLCDs with identical configurations. 

Fig. 2 shows the effects of the TLCD on reducing the vibration of the Citicorp Center build-
ing when subjected to the external loading (wind excitation) with the amplitude f = 0.053. 

7. Conclusion 
The main objective of this paper is to develop some analytical formulas and closed form solu-

tion to obtain more accurate response of a building equipped with the tuned liquid column damper 
(TLCD) for suppressing horizontal vibration of the structure under a harmonic type of wind excita-
tion. The TLCD is a passive control device that dissipates energy by the movement of the liquid 
through an orifice and improves dynamics of structures. The damping in a liquid column is regu-
lated by the orifice and consequently nonlinear. Most of the researchers have been focused on using 
the linearization or numerical techniques and try to find an equivalent term for the inherent nonlin-
ear damping. This may cause that the obtained response of the structure do not be accurate enough 
to decide whether the TLCD is effective or not and since the prediction of optimal parameters such 
as mass ratio, frequency tuning ratio, head loss coefficient and damping ratio that minimize the 
structural response is dependent to the solution of the equation of motion, determining the precise 
answers is essential.  

Hence, the homotopy perturbation method (HPM) and variational iteration method (VIM) are 
applied to obtain an analytical approximate solution for the coupled equation of motion of the build-
ing that is modeled as a single degree of freedom (SDOF) system and the TLCD that is installed on 
top of the building. 

  Finally, the Citicorp Center, a flexible skyscraper is used as an example to illustrate the de-
sign procedure for the TLCD under the harmonic type of wind excitation and to demonstrate the 
influence of the TLCD on mitigating the oscillation of super tall buildings. 
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