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Abstract 

The main idea of developing Grid is to make effective use of the computation power distributed all over the world. 
Economical issues are the most vital motivations of resource owners to share their services. This means that users 
are required to pay for access to services based on their usage and level of QoS they need. Therefore total cost of 
executing an application is becoming one of the most important parameters in evaluating QoS, which users tend to 
decrease. 
Since, many applications are described in the form of dependent tasks, scheduling of these workflows has become a 
major challenge in grid environment. In this paper, a novel genetic algorithm called chaos-genetic algorithm is used 
to solve the scheduling problem considering both user’s budget and deadline. Due to the nature of chaotic variables 
such as pseudo-randomness, ergodicity and irregularity, the evolutional process of chaos-genetic algorithm makes 
individuals of subgenerations distribute ergodically in the defined space and circumvents the premature of the 
individuals of traditional genetic algorithms (TGA). The results of applying chaos-genetic scheduling algorithm 
(CGS) showed greater performances of CGS compared to traditional genetic algorithm (TGS) on both balanced and 
unbalanced workflows.  
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1. Introduction 

    Grid computing is based on local grid computing which is basically, a kind of distributed computing (such as 
cluster computing and, point- to-point computing) which is capable of supporting diverse computing services. This 
has been made possible by the extra high speed internet and powerful processors that can execute middle wares 
without distracting computer’s regular job. The main differences between Grid environment and traditional 
distributed systems are, 
 

- There is no central control over the computers. 
- General-purpose protocols are used. 
- The Quality of Services is usually very high. 

 
    As the internet speed increases, the difference between two PCs working next to each other in a single building, 
or far from each other in a city or country gradually fades out. Therefore, users are able to execute their tasks on 
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geographically distributed sources. The main idea behind introducing Grid was that we could utilize the computation 
power in the same way that we use water, electricity and gas power. In other words, we are searching for a way to be 
able to connect to the tremendous computational power of the whole universe, where the costs are directly 
dependent to the amount of energy being utilized. This has led to the idea of “economical Grid” which adds the 
concept of considering execution cost issues in computation algorithms. Therefore, taking into account the main 
objective of increasing the performance, our focus is no longer limited to raising the speed of the computation but 
also to reducing its execution cost. 
    In general, we can say that traditional models for scheduling Grid are pretty frail. Considering Grid 
characteristics, a user may request an application that can be executed on the other side of the world, where network 
properties such as bandwidth, management policies, computational capabilities and etc are totally different. 
Therefore Grid scheduling has turned to be a major challenge. Here’s a list of the most important challenges of 
scheduling in Grid environment: 
 

- Sources are usually shared between the users so there may be a competition among them. 
- The scheduler is not in control of the sources. 
- The number of available sources is constantly changing. 
- Sources are located on different management sites. 
- Sources are heterogeneous.  
- Most of the workflow applications are data-centric and therefore need a large amount of data transfer 

between two sites. 

 
    In this paper we investigate the problem of scheduling workflows considering the QoS constraints. Since this 
problem is an NP-complete one, we proposed a meta-heuristic algorithm based on genetic algorithms to solve the 
workflow scheduling problem with the objective of minimizing time and cost of the execution. 
   The cost of a service is normally related to the quality of the service it provides. Generally, service providers 
charge more money in response to higher quality of service. In addition, users may not always desire to complete 
workflows earlier than they require. Cheaper services with lower QoS that is sufficient to meet the user’s 
requirements are sometimes preferred. Therefore, a trade off between the time and monetary cost needs to be 
considered. 
    Given this motivation, we suggest a method considering time and cost simultaneously, when scheduling a 
workflow execution. The remainder of the paper is organized as follows. We introduce related work in the next 
section. Then a general overview of the scheduling problem is explained, followed by defining the basic concepts 
used in our algorithm. Our proposed chaos-genetic algorithm is presented in section 4. Experimental details and 
simulation results are presented in section 5. Finally, we conclude the paper with directions for further work in the 
last section. 

2. Related work 

    Several heuristics have been proposed to solve the workflow scheduling problem. Generally, scheduling 

algorithms can be classified into two major groups, in view of their main objectives. First, a group of works that 

only attempt to minimize workflow execution time, without considering user’s budget. Minmin, which sets the 

highest priority to tasks with the shortest execution time, and Maxmin, which sets the high priority to the tasks with 

the long execution times are two major heuristic algorithms employed for scheduling workflows on Grids. 

Sufferage, is another heuristic algorithm which sets high scheduling priority to tasks whose completion time by the 

second best resource is far from that of the best resource which can complete the task at earliest time. These 

algorithms have been used to schedule EMAN bio-imaging application in [1]. 

    Blythe et al [2] developed a workflow scheduling algorithm based on Greedy Randomized Adaptive Search 

Procedure (GRASP) [3] and compared it with Minmin in different scenarios. In [4], another heuristic algorithm 

based on genetic algorithms was proposed which takes into account the information of the entire workflow. Another 

workflow level heuristic is a Heterogeneous-Earliest-Finish-Time (HEFT) algorithm proposed by Wieczorek et al. 

in [5]. Second, a group of works which address scheduling problems based on user’s budget constraints. Nimrod-G 

[6] schedules independent tasks for parameter-sweep applications to meet user’s budget. More recently, Tsiakkouri 

et al [7] developed scheduling approaches, LOSS and GAIN, to adjust a schedule which is generated by a time 

optimized heuristic and cost optimized heuristic to meet user’s budget constraints. Our aim is to introduce a new 
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method based on genetic algorithms to solve the scheduling problem considering the budget and deadline of entire 

network.  

 

3. Problem description 

 
    A workflow application can be modelled as a Directed Acyclic Graph (DAG). There is a finite set of tasks Ti ( i = 

1,2, …, n) and a set of directed arcs of the form ( Ti ,Tj ), where Ti is the parent task of Tj , and Tj  is the child of Ti. A 
child task can never be executed unless all of its parent tasks have been completed. Let B be the cost constraint 
(budget) and D be the time constraint (deadline), specified by the user’s workflow execution.  

Let m be the total number of services available. There’s a set of services ���� � = 1,2, … , � ,  = 1,2, … , �� , �� ≤�� capable of executing task�� , but each task can only be assigned for execution one of these services. Services 

have varied processing capability delivered at different prices. We denote ��� as the processing time, and ��� as the 

service price for processing ��  on service ���. 

    The scheduling problem is to map every ��  onto a suitable ��� in order to improve the execution time and cost of a 

workflow according to the user’s budget and deadline. In the next section, we’ll introduce the main concepts used to 
design the algorithm. 
 
3.1. Genetic Algorithms  

 
    Genetic Algorithms were introduced by John Holland in early seventies as a special technique for function 
optimization. Genetic algorithms are based on the biological phenomenon of genetic evolution. The basic idea is as 
that the genetic pool of a given population potentially contains the solution, or a better solution, to a given adaptive 
problem. This solution is not active because the genetic combination on which it relies is split between several 
subjects. Only the association of different chromosomes can lead to the solution. During reproduction and crossover, 
new genetic combinations occur and, finally, a subject can inherit a good gene from both parents. The algorithm 
operates in an iterative manner and evolves a new generation from the current generation by application of genetic 
operators. A new generation is created by first increasing the population by random individual solutions and then 
selecting a constant number of solutions based on their fitness values [8]. 
Therefore given a clearly defined problem to be solved and strings of candidate solutions, a simple GA works as 
follows: 
 

1. Initialize the population. 
2. Calculate fitness for each individual in the population. 
3. Reproduce selected individuals to form a new population. 
4. Perform crossover and mutation on the population. 
5. Loop to step 2 until some condition is met. 

 
    In some GA implementations, operations other than crossover and mutation are carried out in step 4. Crossover, 
however, is considered by many to be an essential operation of all GAs. Termination of the algorithm is usually 
based either on achieving a population member with some specified fitness or on having run the algorithm for a 
given number of generations. 
 

3.2. Chaos 

 
    Chaos is a none-periodic, long-term behaviour in a deterministic system that exhibits sensitive dependence on 
initial conditions. Edward Lorenz irregularity in a toy model of the weather displays first chaotic or strange attractor 
in 1963. It was mathematically defined as randomness generated by simple deterministic systems. A deterministic 
structure can have no stochastic (probabilistic) parameters. Therefore chaotic systems are not at all equal to noisy 
systems driven by random processes. The irregular behaviour of the chaotic systems arises from intrinsic 
nonlinearities rather than noise. 
    In general, the most important defining property of chaotic variables is Sensitive dependence to Initial Conditions 
(SIC), which requires that trajectories originating from very nearly identical initial conditions diverge at an 
exponential rate. Pseudo-randomness and ergodicity are other dynamic characteristics of a chaotic structure [9]. The 
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latter ensures that the track of a chaotic variable can travel ergodically over the whole spa
variation of the chaotic variable has a delicate inherent rule in spite of the fact that it looks like a disorder.
 

3.3. Chaos-Genetic Algorithm 

 
   Recently, the idea of using chaotic systems instead of random processes has been noticed in several fields. One of 
these fields is optimization theory. In random-based optimization algorithms, the role of randomness can be played 
by a chaotic dynamics. Experimental studies assert that the benefits of using chaotic signals instead of random 
signals are often evident although it is not mathematically proved yet 
chaotic sequences increase the value of some measured algo
sequences. 
    In this paper a Chaos-Genetic Scheduling algorithm, CGS, is proposed that
genetic algorithms when looking for an optimal 
variable [11]. Firstly, CGS takes the advantages
of subgenerations distributed ergodically in the defi
individuals in the subgenerations. Secondly, CGS
to overcome the randomness of the chaotic process and hence to increase the probability of finding the global 
optimal solution. 
    The idea of combining chaos with Genetic Algorithm has also been studi
[12] a chaos-genetic based approach is proposed in order to solve the Network
field of neural networks, chaos search is used to accompany GA in order to overcome the weakness of Traditional 
Genetic Algorithm (TGA) [13]. In [14] a chaos-
and genetic algorithm, is presented to overcome premature local optimum and 
genetic algorithm. Simulation results indicate that the Chaos GA can improve convergence speed and solution 
accuracy, in all the literature mentioned above. 

4. The proposed algorithm 

    For a workflow scheduling problem, a feasible solution is required to meet several conditions. A task can only be 
started after all its predecessors have completed, every task appears once and only once in the schedule, and each 
task must be allocated to one available time slot of a service
 

   

Fig.1. Illustration of problem encoding, (a) sample workflow, (b) set of source

chromosome, (d) execution order of the sample chromosome.

    Each individual in the population represents a feasible solution to the problem, and consists of a vector of 
assignments. Each task assignment includes four elements (task ID, service ID, start time, end time).
parameters identify to which service each task is assigned. Since involving time frames during the genetic operation 
may lead to a very complicated situation [15], in this work we ignore the time frames. Therefore, the operation 
strings (chromosomes) encode only the service allocation for each task a
service. Different execution priorities of such parallel tasks within the workflow may impact the performance of 
workflow execution significantly. For this reason, the solution representation strings are required
of task assignments on each service in addition to service allocation of each task.
a 2D string to represent a schedule as illustrated in Fig.1. One dimension represen
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latter ensures that the track of a chaotic variable can travel ergodically over the whole space of interest.  The 
variation of the chaotic variable has a delicate inherent rule in spite of the fact that it looks like a disorder.

Recently, the idea of using chaotic systems instead of random processes has been noticed in several fields. One of 
based optimization algorithms, the role of randomness can be played 

erimental studies assert that the benefits of using chaotic signals instead of random 
signals are often evident although it is not mathematically proved yet [10]. For example in genetic algorithms, 
chaotic sequences increase the value of some measured algorithm-performance indexes with respect to random 

Genetic Scheduling algorithm, CGS, is proposed that combines the concept of chaos with 
 solution, in order to possess a joint advantage of GA and the cha
s of the characteristics of the chaotic variable to make the individuals 

of subgenerations distributed ergodically in the defined space and thus to avoid the premature convergence 
subgenerations. Secondly, CGS also takes the advantage of the convergence characteristic of GA 

to overcome the randomness of the chaotic process and hence to increase the probability of finding the global 

netic Algorithm has also been studied in other computer-related fields. In 
genetic based approach is proposed in order to solve the Network-on-Chip mapping problem. In the 

ed to accompany GA in order to overcome the weakness of Traditional 
-genetic algorithm based on the chaos optimization algorithm (COA) 

and genetic algorithm, is presented to overcome premature local optimum and increase the convergence speed of 
genetic algorithm. Simulation results indicate that the Chaos GA can improve convergence speed and solution 

 

a feasible solution is required to meet several conditions. A task can only be 
started after all its predecessors have completed, every task appears once and only once in the schedule, and each 
task must be allocated to one available time slot of a service capable of executing the task. 

Fig.1. Illustration of problem encoding, (a) sample workflow, (b) set of source-to-task assignments, (c) an example of a one-dimensional 

chromosome, (d) execution order of the sample chromosome. 

the population represents a feasible solution to the problem, and consists of a vector of 
assignments. Each task assignment includes four elements (task ID, service ID, start time, end time). The first two 

k is assigned. Since involving time frames during the genetic operation 
, in this work we ignore the time frames. Therefore, the operation 

strings (chromosomes) encode only the service allocation for each task and the order of the tasks allocated on each 
service. Different execution priorities of such parallel tasks within the workflow may impact the performance of 
workflow execution significantly. For this reason, the solution representation strings are required to show the order 
of task assignments on each service in addition to service allocation of each task. As it is also used in [15
a 2D string to represent a schedule as illustrated in Fig.1. One dimension represents the numbers of services 

ce of interest.  The 
variation of the chaotic variable has a delicate inherent rule in spite of the fact that it looks like a disorder. 

Recently, the idea of using chaotic systems instead of random processes has been noticed in several fields. One of 
based optimization algorithms, the role of randomness can be played 

erimental studies assert that the benefits of using chaotic signals instead of random 
For example in genetic algorithms, 

performance indexes with respect to random 

combines the concept of chaos with 
t advantage of GA and the chaotic 

of the characteristics of the chaotic variable to make the individuals 
convergence of the 

also takes the advantage of the convergence characteristic of GA 
to overcome the randomness of the chaotic process and hence to increase the probability of finding the global 

related fields. In 
Chip mapping problem. In the 

ed to accompany GA in order to overcome the weakness of Traditional 
genetic algorithm based on the chaos optimization algorithm (COA) 

increase the convergence speed of 
genetic algorithm. Simulation results indicate that the Chaos GA can improve convergence speed and solution 

a feasible solution is required to meet several conditions. A task can only be 
started after all its predecessors have completed, every task appears once and only once in the schedule, and each 

 

dimensional 

the population represents a feasible solution to the problem, and consists of a vector of task 
The first two 

k is assigned. Since involving time frames during the genetic operation 
, in this work we ignore the time frames. Therefore, the operation 

nd the order of the tasks allocated on each 
service. Different execution priorities of such parallel tasks within the workflow may impact the performance of 

to show the order 
15], we create 

ts the numbers of services whereas 
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the other dimension shows the order of tasks on each service. Two-dimensional strings are then converted into a 
one-dimensional string for genetic manipulations. 
    As stated earlier, the problem is to schedule a workflow execution considering both time and user budget 
constraints. The first decision to be made is how to represent the solution. Fig.1 shows an example of an individual 
in the initial population. Initializing the population is another important issue, which is usually done randomly. 
Therefore a random number generator is used to produce values between 1 to n. For each task, these random values 
are chosen from the sources that are capable of executing that task. The length of the chromosome depends on the 
number of tasks in the workflow. 
    A chaotic mapping operator is then applied to the initial population generating a new chaotic population. The 
evolution process of the chaotic variables could be defined through the following equation: 
 

�������� = 4�������1 − ������� ,         � = 1, 2, … , �                                                                                                                   �1�                   

 
in which ���  is the i-th chaotic variable and k and k+1 denote the number of iterations. Note that values of ���  are 
distributed in the range of (0,1). The chaotic mapping operator works as follows: 
 

1. Divide the interval (0,1) to m equal sub-intervals ( m denotes the number of resources capable of executing 
a special task). 

2. The value of each gene in the first randomly produced population is mapped to new values of  ��� in the 
range of (0,1). 

3. These values of �����
, i = 1,2,…, n  are  linearly mapped using the operator 

 

�����
�� = ������                                                                                                                                                                       �2�                                                                

 
where mi is the total number of resources capable of executing Ti.                                             

4. The next iteration chaotic variables ���� �
, will be produced through applying Equation.1 to the values of 

������
 , generated in the previous step. 

5. The chaotic variables ���� �
, are then used to produce ��� �

, using 

 

��� � =  !���� � × ��#                                                                                                                                                        �3� 

 

     Thus, we can continue to produce the values of �����
 for each chromosome, through the operators defined in (1) - 

(3).  
    At this stage, the fitness of all 20 individuals is evaluated. The fitness value is often proportional to the output 
value of the function being optimized according to the given objectives. As the goal of scheduling is to improve the 
performance of a workflow execution by minimizing the time and cost, the fitness function separates evaluation in 
two parts [15]: cost-fitness and time-fitness.  
    For the budget constrained scheduling, the cost-fitness component produces results with less cost. The cost fitness 
function of an individual I is defined by: 
 

%&'�(�)� = &�*�
+                                                                                                                                                                                    �4�                 

 
where c(I) is the sum of the task execution cost and data transmission cost of I and B is the budget of the workflow. 
    For the budget constrained scheduling, the time-fitness component is designed to produce individuals that satisfy 
deadline constraint. The time-fitness function of an individual I is defined by: 
 

%(��,�)� = (�*�
-                                                                                                                                                             (5) 

 
where t(I) is the completion time of I, D is the deadline of the workflow. The final fitness function combines the two 
parts and it is expressed as: 
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%�)� = .%&'�(�)� / %(��,�)�,        �0 %&'�(�)� 1 1
&�*�

�23&'�( × (�*�
�23(��, ,                                    

 
where maxcost is the most expensive solution of the current population and 
time of the current population. 
    Elitism is incorporated into the algorithm by t
generation. Crossover is performed on randomly selected individuals according t
even better individuals by combining the two fittest ones [
basic two-point crossover which works as follows:
 

1. Two random parents are chosen in the current population.
2. Two random points are selected from the schedule order of the first parent.
3. All tasks between these two points are chosen as successive crossover points.
4. The locations of all tasks of the crossover points between the two parents are exchanged.
5. Two new offsprings are generated by combining task assignments taken from two parents.

 
Fig.2. shows an example of the process explained above. 
 

Fig.2. Crossover operation 

       Finally, a constant mutation rate (0.05) is applied in our proposed algorithm.
alternative service to a task in an individual. An example of the muta
implemented as follows: 
 

1. A task is randomly selected in a chromosome.

2. An alternative service which is also capable of executing the task is randomly selected to replace the 

current task allocation. 

 

Fig.3. Mutation operation 

    The new population is now ready for another round of
another generation. So the initial population is replaced by these newly generated individuals. Obviously, more 
generations are produced until the stopping condition (a maximum number of generations 
chromosome is thus returned as a solution.  
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is the most expensive solution of the current population and maxtime denotes the largest completion 

Elitism is incorporated into the algorithm by transferring the single fittest individual directly to the next 
Crossover is performed on randomly selected individuals according to the idea that it may result in an 

even better individuals by combining the two fittest ones [10]. The crossover operator used in this algorithm is a 
point crossover which works as follows: 

Two random parents are chosen in the current population. 
selected from the schedule order of the first parent. 

these two points are chosen as successive crossover points. 
The locations of all tasks of the crossover points between the two parents are exchanged. 
Two new offsprings are generated by combining task assignments taken from two parents. 

ample of the process explained above.  

 

) is applied in our proposed algorithm. Mutation aims to reallocate an 
ice to a task in an individual. An example of the mutation process is illustrated in fig.3. 

A task is randomly selected in a chromosome. 

An alternative service which is also capable of executing the task is randomly selected to replace the 

 

The new population is now ready for another round of chaotic mapping, crossover, and mutation, producing yet 
another generation. So the initial population is replaced by these newly generated individuals. Obviously, more 

l the stopping condition (a maximum number of generations k) is met. The fittest 

                                                      (6) 

denotes the largest completion 

irectly to the next 
o the idea that it may result in an 

The crossover operator used in this algorithm is a 

Mutation aims to reallocate an 
tion process is illustrated in fig.3. It is 

An alternative service which is also capable of executing the task is randomly selected to replace the 

crossover, and mutation, producing yet 
another generation. So the initial population is replaced by these newly generated individuals. Obviously, more 

) is met. The fittest 



 Golnar Gharooni-fard / Procedia Computer Science 00 (2010) 000–000  

5. Experimental results 

 
   According to workflow projects, workflow applications can be categorized as either balanced structure or 
unbalanced structure.  Our proposed algorithm is applied to examples of both balanced and unbalanced structures. 
We use two common workflow applications for our experiments: A balanced application (fMRI workflow shown in 
fig.4 (a)) and an unbalanced structure (DNA workflow, shown in fig.4 (b)).  

 
                                     (a)                                                                       (b)   
   
Fig.4.(a) A balanced workflow (fMRI), (b) An unbalanced workflow (DNA) 

 
   The two metrics used to evaluate our algorithm (CGS), are execution time and cost. Table 1 show service speed 
and corresponding price (time and cost) for executing T1 on different sources, for fMRI workflow. First column of 
the table denotes the number of sources capable of executing T1. For example, in fMRI, T1 can be executed on five 
sources S1-S5. 
 
Table 1. Data samples for executing T1 in fMRI workflow 

 

Source ID Time Cost 

1 14 150 

2 11 144 

3 10 151 

4 16 119 

5 8 157 

 
    The following parameter settings are the default configuration for simulating both Genetic Algorithm and Chaos-
Genetic Algorithm. Population size of 10 normal chromosomes followed by 10 chaotic chromosomes, crossover 
probability of 0.98 and mutation probability of 0.05.In order to be able to evaluate the results of our proposed 
algorithm (CGS), we also implemented a traditional genetic algorithm to solve the workflow scheduling problem. 
Since GA is a stochastic search algorithm, each of the experiments was repeated 10 times and the average values are 
used to report the results.     

 
                                                            (a)                                                                                                                (b) 

 

Fig.5. Distribution of individuals when executing (a) TGS (b) CGS on DNA workflow 
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    As mentioned earlier, the major characteristic of CGS is that it prevents the premature convergence of the 
individuals of TGS and thus increases the probability of finding better s
of the individuals in our problem, we run our algorithm (CGS) to execute DNA workflow and compare the results 
with TGS. The distribution of the individuals of total 100 generations is illustrated in fig.5.
   As it is clear in Fig.5 (b), the individuals of subgenerations generated by CGS are almost evenly scattered over the 
defined space and do not concentrate to the centre
of solutions are considered in plotting both figures,
mostly very close to each other, and therefore the differences are not really clear
     In order to evaluate algorithm on reasonable budget and de
Genetic algorithm for scheduling workflow applications (TGS), so that it would be possible to compare the results 
obtained from CGS with the ones gained from TGS, for the same workflow applications.
 

                                                        (a)                                                                                                                 
                                                    
Fig.6. Comparison between the execution cost of TGS and CGS on balanced (fMRI) and unbalanced (DNA) structures

 
    In Fig.6 (a) the results are obtained under the assumption of D = 220
The values of these assumptions are made based on
divided by the user budget constraint, starting from G$3000 to G$8000. We observe that both TGS and C
satisfy the low budget constraint (about G$3000), and TGS sh
results are gradually improved under medium budget constraints (about G$5000). Obviously, the descending 
behaviour of the diagram shows that as the budget increases, it’ll be easier for the algorithms to
constraint. On the other hand, considering the differences between two approaches, it’s obvious that TGS takes 
much longer to complete even when the budgets are high. Therefore, CGS 
TGS in both applications. 
 

                                                        (a)                                                                                                              (b)

 
Fig.7. Comparison between the execution time of TGS and CGS on 
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As mentioned earlier, the major characteristic of CGS is that it prevents the premature convergence of the 
individuals of TGS and thus increases the probability of finding better solutions. In order to illustrate the distribution 
of the individuals in our problem, we run our algorithm (CGS) to execute DNA workflow and compare the results 
with TGS. The distribution of the individuals of total 100 generations is illustrated in fig.5. 

, the individuals of subgenerations generated by CGS are almost evenly scattered over the 
centre of the space anymore (see fig.5 (a)). Although the same 

in plotting both figures, the reason they look less in the case of TGS is that they are 
to each other, and therefore the differences are not really clear in Fig.5 (a). 

In order to evaluate algorithm on reasonable budget and deadline constraints, we also implemented a Traditional 
Genetic algorithm for scheduling workflow applications (TGS), so that it would be possible to compare the results 
obtained from CGS with the ones gained from TGS, for the same workflow applications. 

(a)                                                                                                                 (b) 

GS and CGS on balanced (fMRI) and unbalanced (DNA) structures 

the results are obtained under the assumption of D = 220(H) and in Fig.6 (b) we assume, D = 240(H).
are made based on [15]. The values in vertical axis are the result of the total cost 

tarting from G$3000 to G$8000. We observe that both TGS and C
satisfy the low budget constraint (about G$3000), and TGS shows the worst results in both applications. However,
results are gradually improved under medium budget constraints (about G$5000). Obviously, the descending 

r of the diagram shows that as the budget increases, it’ll be easier for the algorithms to meet the user budget 
ring the differences between two approaches, it’s obvious that TGS takes 

much longer to complete even when the budgets are high. Therefore, CGS shows better performance compared to 
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As mentioned earlier, the major characteristic of CGS is that it prevents the premature convergence of the 
olutions. In order to illustrate the distribution 

of the individuals in our problem, we run our algorithm (CGS) to execute DNA workflow and compare the results 
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    Fig.7 illustrates the comparison between the execution times of the two algorithms with the medium budget of 
5000. We change the user deadline values from 180(H) to 300(H) for DNA and 160(H) to 280(H) for fMRI, since 
the latter is a balanced workflow and takes less time to complete. It can be seen that TGS takes longer to complete in 
most of the conditions. The differences are better observed in the unbalanced workflow structure (see fig.7 (b)).  
    In all the above illustrations, there may be states where CGS and TGS show similar results (for instance in fig.6 
(a) under budget constraint of 7000). These are the conditions where, TGS solutions are not trapped in a local 
optimum so it works as well as CGS in finding the good results for a given problem. In those conditions, CGS does 
not do any good in saving the suitable solutions. In the rest of the states though, TGA, is stocked somewhere in a 
local optimum (as it usually does), which prevents the algorithm from producing better possible results. Our chaos-
genetic algorithm (CGS), takes the advantages of the characteristics of the chaotic variable to make the individuals 
of subgenerations distributed ergodically in the defined space and thus to avoid from the premature of the 
individuals in the subgenerations. It also takes the advantage of the convergence characteristic of TGA to overcome 
the randomness of the chaotic process and hence to increase the probability of finding the global optimal solution. 
 
7. Conclusion and future works 

 

    In this work we introduce a novel chaos-genetic based algorithm that uses chaotic sequences instead of random 
processes in traditional genetic algorithms. We evaluate our approach by employing it to both balanced and 
unbalanced workflow structures. The results show better performances of Chaos Genetic Scheduling (CGS) 
algorithm in both cases, when compared with Traditional Genetic (TGS). The reason is that, chaos-genetic algorithm 
uses the characteristics of chaotic variables in scattering the solutions among the whole search space and thus avoids 
the premature convergence of the solutions and produces better results within a shorter time. 
    We will be further enhancing our scheduling algorithm by considering other QoS properties such as reliability.  
The performance of the algorithm can be improved by using the properties of chaotic sequences in other random 
decisions made in traditional genetic algorithms such as specifying crossover points. We can also apply other one-
dimensional chaotic maps instead of Logistic map and compare the performance of our algorithm to find out which 
one works best for our scheduling problem. 
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