
International Journal of Computer Theory and Engineering, Vol. 1, No. 5, December, 2009
1793-8201
556
Abstract—In this paper we will implement a new version of
master-worker architecture that improves the previous ones.
The common Master-Worker paradigm consists of two entities:
a master and multiple workers. The master is responsible for
decomposing the problem into small tasks and managing them
until all tasks are completed. Therefore, the master should
[bookmark: _GoBack]endures heavy load either communication or computation. This
bottleneck in the master process typically occurs when the
number of workers increases because the master process will
not be able to keep all workers equally busy. The paper presents
a novel technique for hierarchically nesting the basic
master-worker scheme. This technique resolves the said
problem by presenting a hierarchical scheme and reduces the
communicational messages due to the usage of the Linda model.
The obtained results for large matrix multiplication case study
on a real cluster show the effectiveness of our model.
Index Terms—Hierarchical Master-worker, Linda model,
Linda-based Submaster, Communication overhead.
I. INTRODUCTION
Grid computing [1] has become an alternative to traditional
supercomputing environments for developing parallel
applications, in recent years. But, its building is more
complex than traditional parallel computing environments.
There are several high-level programming frameworks have
been proposed to simplify the development of large parallel
applications for Computational Grids (for example Netsolve
[8], Nimrod/G [9], MW [10]).
The Master-Worker paradigm is a common model to
evaluate a pool of tasks that is used by many scientific and
engineering applications like tree search algorithms, genetic
algorithms, training of neural networks, stochastic
optimization, parameter analysis for engineering design and
Monte Carlo simulation [2]. 
In the simplest version of master-worker model we just
have one master that produces tasks and many workers that
do these tasks. Therefore, the master will be busy all the time
while workers are idle. So the master is bottleneck. During
Manuscript received June 25, 2009.
Mohammad GhasemiGol is with the Department of Computer
Engineering, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
(phone: +98-915-9620831; fax: +98-561-4434070). 
Mostafa Sabzekar is with the Department of Computer Engineering,
Ferdowsi University of Mashhad (FUM), Mashhad, Iran (phone: +98-160;
fax: +98-561-4447178). 
Hossein Deldari is with the Department of Computer Engineering,
Ferdowsi University of Mashhad (FUM), Mashhad, Iran (phone:
+98-915-3101510). 
Amir-Hassan Bahmani was with the Department of Computer
Engineering, Islamic Azad University of Mashhad (IAUM), Mashhad, Iran
(phone: +98-915-1225532). 
the time some researchers struggle to improve this version.
These efforts led to Hierarchical Master-Worker Skeletons [3]
to decrease the load of master. In this model they investigate
techniques for hierarchically nesting the basic master-worker
scheme. It presents a skeleton implementation for nesting
several master-worker instances. With this scheme the
administrative load of task handling to a whole hierarchy of
masters. The hierarchies have been elegantly expressed as
foldings over the modified basic schemes.
But a problem is seen yet. If the number of workers or
submasters grows, the submasters also will be bottleneck
because many communications appear between workers and
their submasters. In this paper we introduce a new
architecture for hierarchical master-worker to decrease the
communication cost. For this purpose we define submasters
as shared spaces which can be accessed by their own workers.
We use the Linda space to implement these shared areas. In
this architecture, several workers can refer to a submaster
concurrently and many communications will be eliminated. 
In general, the performance of master-worker applications
will depend on the temporal characteristics of the tasks as
well as on the dynamic allocation and scheduling of
processors to the application.
In evaluating common master-worker architectures, two
performance measures of particular interest are speedup and
efficiency. Speedup is defined, for each number of processors
n, as the ratio of the execution time when executing a
program on a single processor to the execution time when n
processors are used. Ideally, we would expect that the larger
the number of workers assigned to the application the better
the speedup achieved. The efficiency measure is the
utilization of the n allocated processors. It is defined as the
ratio of the time that n processors spent doing useful work to
the time those processors would be able to do work.
Efficiency will be a value in the interval [0,1]. If efficiency is
becoming closer to 1 as processors are added, we have linear
speedup. This is the ideal case, where all the allocated
workers can be kept usefully busy. In this work we used these
measures to evaluate our proposed architecture.
The rest of this paper is organized as follows. In Section 2
we discuss the common master-worker models in the
literature. Section 3 reviews the Linda model at a glance. The
structure of our Linda-based master-worker is presented in
Section 4. We illustrate the effectiveness of our proposed
model in Section 5. The conclusion is given in Section 6.
II. REVIEW OF THE COMMON MASTER-WORKER MODELS
The master-worker model is a simple scheme in which
each processor is designated as number of workers, similar to
the system suggested by Andrews and Polychronopoulos [4].
A Linda-based Hierarchical Master-Worker 
Model
Mohammad GhasemiGol, Mostafa Sabzekar, Hossein Deldari and Amir-Hassan Bahmani 

	[bookmark: 2]Page 2


International Journal of Computer Theory and Engineering, Vol. 1, No. 5, December, 2009
1793-8201
557
Workers simply perform given operations, while masters are
responsible for preparing work for the workers and
correlating their output into a global result. Masters are
required to partition the problem-space, schedule work, and
balance the load of the workers to maintain efficiency [5].
Space-based architecture (SBA) is a tool for
implementation of a master-worker style application. The
activities of each worker process in the system are
coordination by a shared dependency graph. The dependency
graph stores the current state of an application's execution,
and is used by workers to determine which task should be
executed next. The graph itself is a directed acyclic graph,
with vertices representing an application's tasks, and the
edges denoting the data dependencies between them. So,
before a worker obtains a task for execution, it first takes the
dependency graph from the space to see which task it should
execute. The worker then takes this task from the space, and
marks the corresponding node in the dependency graph as
being in-progress. Also, a worker will use the graph to
determine if the task depends on the results of any previously
executed task, and, if so, will obtain these results before
executing the current task. When a worker has completed the
execution of a task, it will obtain the dependency graph and
mark the node as complete, before returning the results of the
task's execution to the space. Workers continue this process
until all nodes in the graph are marked as complete, at which
time the master process takes all of the results from the space
and assembles them into some meaningful whole, depending
on the particular application [6]. Fig.1 demonstrates a
detailed master-worker model in this implementation. 
Fig. 1: Master-worker implimentation in SBA
MW is another tool for making a master-worker style
application that works in the distributed, opportunistic
environment of Condor. MW applications use Condor as a
resource management tool, and can use either Condor-PVM
or MW-File a file-based, remote I/O scheme for message
passing. Writing a parallel application for use in the Condor
system can be a lot of work. Since the workers are not
dedicated machines, they can leave the computation at any
time. In MW the master class manages a list of uncompleted
tasks and a list of workers. The default scheduling
mechanism in MW is to simply assign the task at the head of
the task list to the first idle worker in the worker list.
However, MW gives flexibility to the user in the manner in
which each of the lists is ordered. For example, MW allows
the user to easily implement both a Last-In-First-Out policy
(LIFO) and a First-In-First-Out policy (FIFO) by simply
specifying the location at which new tasks are added to the
task list to be one of add at end or add at begin in the method
[7]. Details of this architecture are shown in Fig. 2.
Fig. 2: Relationships between Condor, PVM, and the
MWDriver
Berthold et al. proposed hierarchical master-worker
skeletons. In this model they investigate techniques for
hierarchically nesting the basic master-worker scheme. It
presents a skeleton implementation for nesting several
master-worker instances. With this scheme the administrative
load of task handling to a whole hierarchy of masters. The
hierarchies have been elegantly expressed as foldings over
the modified basic schemes. A simple structure of this
paradigm is shown in Fig. 3.
Fig. 3: Hierarchical master-worker system
The main problem of master-worker models is that the
master is busy all the time. Hierarchical master-worker model
use submasters to decrease the workload of the master. Fig. 4
shows a typical activity profile for a master-worker system
comprising 15 worker processes. It has been generated during
the evaluation of a Mandelbrot graphics with 1000*1000
pixels. The rows of the profile are showing the activity of the
processes over time. The worker processes inhabit the upper 

	[bookmark: 3]Page 3


International Journal of Computer Theory and Engineering, Vol. 1, No. 5, December, 2009
1793-8201
558
rows while the master activity is shown in the bottom bar.
Light areas indicate high activity and dark areas indicate low
activity.
Fig. 4: Activity profile of master-worker system with 15
workers
The profile clearly shows that the master is busy all the
time while the workers are waiting for new tasks most of the
time. This bottleneck in the master process typically occurs
when the number of workers increases. The master process
will not be able to keep all workers equally busy.
But a problem still exists. If the number of workers or
submasters grows, the submasters also will be bottleneck
because many communications appear between workers and
their submasters. In the next section we propose a
Linda-based architecture for hierarchical master-worker to
decrease the communication cost.
III. THE LINDA MODEL
Linda is a parallel programming model for creation and
coordination of multiple processes that run in one or more
processors. The Linda model is embedded in a computation
language (C, Lisp, etc.) and the result is a parallel
programming language [11, 12].
The tuple space is a logical associative shared memory, a
repository of elementary data structures, accessible only
through the four Linda operations. A tuple is simply a
sequence of values corresponding to typed fields. Linda
provides operators for dropping tuples into the tuple space,
removing tuples out of the tuple space and reading them
without removing them. Associative search is used to find
tuples in the tuple space. Templates, including values of a
subset of the fields of a tuple, are used to select tuples for
removal or reading. The Linda model defines four operations
on the tuple space. These are:
out(t): it causes tuple t to be added into the tuple space.
in(s): it causes an arbitrary tuple t that matches the
template s to be withdrawn from the tuple space. If
such tuple does not exist, the call blocks.
rd(s): it is the same as in(s) expect that the matching tuple
is not withdrawn from the tuple space.
eval(t): it causes a process to be created to evaluate the
fields of the tuple t. When the evaluation ends the
tuple t is put in the tuple space. Since the native
environment already offers process creation, this
operation was not implemented.
IV. LINDA-BASED HIERARCHICAL MASTER-WORKER
ARCHITECTURE
In this section we describe our proposed architecture (Fig.
4) for resolving the problems that were mentioned in previous
sections. Linda-based submasters provide a shared space
(tuple-space) to save the tasks of the master for the workers
and their results for the master.
Fig. 5: Linda-based hierarchical master-worker
architecture
Here, the workers can easily refer to their own submasters,
by using the simple Linda operations, to take a task and put
the results in/to the space. For large number of workers, if we
use traditional hierarchical master-worker system,
submasters will be under high workload. In this situation, a
long queue of workers is created. They want to get a task
from a submaster or give their result to it. On the other hand,
if we have several levels of submasters, the communication
between them is a critical problem. 
We found the solution in assuming each submaster as a
shared space in which each worker can easily access it, get a
task and give back the results. We implement this shared
space with Linad tuple spaces because it is easy to use and
has simple operations. Therefore, each Linda-based
submaster (LBSM) acts as a Linda tuple space.
In the next section we will report the effectiveness of our
proposed architecture.
V. EXPERIMENTAL RESULTS
For evaluating the effectiveness of our proposed
architecture, we execute a task on a cluster with 9 nodes. The
primary task is multiplication of two large matrices. We test
this experiment for four cases. At first, we execute this case
study on a node with one processor. Then we test this
experiment for common master-worker scheme with one
master node and eight worker nodes. Finally, hierarchical and
our Linda-based hierarchical models are examined with a
structure which is shown in Fig. 6. P0 is the master, P1 and P5
are the submasters and P2, P3, P4, P6, P7, and P8 are the
workers. 

	[bookmark: 4]Page 4


International Journal of Computer Theory and Engineering, Vol. 1, No. 5, December, 2009
1793-8201
559
Fig. 6: Structure of the hierarchical and Linda-based
master-worker systems in the experiment
The activity profiles for mentioned experiments are shown
in Fig. 7. Green areas indicate high activity and red areas
indicate low activity. White areas indicate wait on
communication (if the paper is printed in color). 
(a) Single processor
(b) Common master-worker system
(c) Hierarchical master-worker
(d) Linda-based hierarchical master-worker
Fig.7: The activity profiles of the experiment for different
architectures
As shown in Fig. 7, our proposed system performed the
task in shorter time. It happens because we eliminate some of
the communication overheads. When the master put a task on
the shared space placed in the submasters, all of their workers
can access the tuple space concurrently. As a result the blocks
of communication (white area) in Fig. 7.d are decreased
noticeably. As soon as a submaster receives a result from a
worker, the master can take it. On the other hand if the master
put a task on submaster shared space, the workers can take it
immediately. 
Also, the workload on submaster is decreased. This
experiment is done with small number of workers. Even
though the number of workers is increased, the efficiency of
the proposed architecture has not noticeable change. The
reason is that we implement each submaster as a shared
space. 
When evaluating a parallel system, we are often interested
in knowing how much performance gain is achieved by
parallelizing a given application over a sequential
implementation. Speedup is a measure that captures the
relative benefit of solving a problem in parallel. It is defined
as the ratio of the time taken to solve a problem on a single
processing element to the time required to solve the same
problem on a parallel computer with p identical processing
elements [13]. We denote speedup by the symbol S.
Therefore, speedup is defined as:
where Time(1) is the time taken to solve a problem on a
single processing element and Time(p) is the time required to
solve the same problem on a parallel computer with p
identical processing elements.
Only an ideal parallel system containing p processing
elements can deliver a speedup equal to p. In practice, ideal
behavior is not achieved because while executing a parallel
algorithm, the processing elements cannot devote 100% of
their time to the computations of the algorithm. 
Another parameter for evaluating a parallel system is
efficiency. Efficiency is a measure of the fraction of time for
which a processing element is usefully employed; it is
defined as the ratio of speedup to the number of processing 

	[bookmark: 5]Page 5


International Journal of Computer Theory and Engineering, Vol. 1, No. 5, December, 2009
1793-8201
560
elements [13]. In an ideal parallel system, speedup is equal to
p and efficiency is equal to one. In practice, speedup is less
than p and efficiency is between zero and one, depending on
the effectiveness with which the processing elements are
utilized. We denote efficiency by the symbol E.
Mathematically, it is given by
where S is speedup and p is the number of processing
elements.
We evaluate three master-worker architectures which are
introduced in this section with execution time and two
parameters speedup and efficiency. The task is multiplication
of two large matrices. The results are summarized in Table 1,
Table 2, and Table 3, respectively.
Table 1: Evaluation of common master-worker system with
one master and 8 workers
No. of
nodes
1
3
5
7
9
Speedup
1
2.44 3.88 4.49 5.51
Efficiency 1
0.81 0.78 0.64 0.61
Exec.
Time (sec)
391.91 160.67 100.92 87.23 71.09
Table 2: Evaluation of hierarchical master-worker system
with two submasters and 6 workers
Speedup
Efficiency
Exec. Time
(sec)
6.91
0.77
56.65
Table 3: Evaluation of Linda-based hierarchical
master-worker system with two submasters and 6 workers
Speedup
Efficiency
Exec. Time
(sec)
8.05
0.89
48.65
As we see our proposed Linda-based hierarchical
architecture shows better results in comparison to other
approaches.
VI. CONCLUSIONS
Master-worker is a high-level programming framework
that has been proposed to simplify the development of large
parallel applications for Computational Grids. A common
problem in traditional master-worker system is that the
master is responsible for giving the tasks to the workers and
gathering the results. Therefore, the master is bottleneck. For
solving this problem a hierarchical master-worker model was
presented. But with large number of workers, the submasters
also become a bottleneck.
We proposed architecture in which each submaster as a
shared space in which each worker can easily access it, get a
task and give the result. We implement this shared space with
Linad tuple spaces because it is easy to use and has simple
operations. Therefore, each Linda-based submaster (LBSM)
acts as a Linda tuple space. Evaluation of the proposed
method showed the superiority of it in practice.
REFERENCES
[1] Foster and C. Kesselman, “The Grid: Blueprint for a New Computing 
Infraestructure”, Morgan-Kaufmann, 1999.
[2] J. Pierre G. J. Linderoth, M. Yoder “Metacomputing And the
Master-Worker Paradigm”. ANL/MCS-P792-0200, Mathemathics and
Computer Science Division, Argonne National Labroratory, 2000.
[3] J, Berthold, M. Dieterle, R. Loogen, S. Priebe “Hierarchical
Master-Worker Skeletons”. LNCS 4902. Vol. 4902, pp. 248-264,
2008.
[4] J. B. Andrews, and C. D. Polychronopoulos, “An Analytical Approach
to Performance/Cost Modeling of Parallel Computers.” Journal of
Parallel and Distributed Computing 12(4): 343-56, 1991.
[5] J. E. Hickman “An Analysis of an Interrupt-Driven Implementation of
the Master-Worker Model with Application-Specific”. Master Thesis
submitted to the faculty of the Virginia Polytechnic Institute and State
University, 2007.
[6] M. A. Atkinson and Vishv “Coalescing idle workstations as a
multiprocessor system using javaspaces and java web start”. Internet
and multimedia systems and applications, Kauai, Hawai, USA, 
IASTED International Conferance, Vol. 18, pp. 233-238, 2004.
[7] W. Glankwamdee, J. T. Linderoth MW: “A Software Framework for
Combinatorial Optimization on Computational Grids”, 2005.
[8] D. Abramson, J. Giddy, and L. Kotler, “High Performance Parametric
Modeling with Nimrod/G: Killer Application for the Global Grid”, in
Proc. of IPPS/SPDP, 2000.
[9] J.-P. Goux, S. Kulkarni, J. Linderoth, M. Yoder, “An enabling
framework for master-worker applications on the computational grid”,
Tech. Report, University of Wisconsin – Madison, March, 2000.
[10] L. M. Silva and R. Buyya, “Parallel programming models and
paradigms”, in R. Buyya (ed.), “High Performance Cluster Computing:
Architectures and Systems: Volume 2”, Prentice Hall PTR, NJ, USA,
1999.
[11] S. Ahuja, N. Carriero, and D. Gelernter. Linda and Friends. IEEE
Computer, 18:26-34,August 1986.
[12] N. Carriero and D. Gelernter. Linda in context. Communications of the
ACM, 32, Number 4:444{558, April 1989.
[13] A. Grama, A. Gupta, G. Karypis, V. Kumar, “Introduction to parallel
Computing”, Addison Wesley, 2003.
Mohammad GhasemiGol was born in Birjand, Iran,
in 1984. He received the B.S. degree in Computer
Engineering from Payame Noor University (PNU),
Birjand, Iran, in 2006. He is currently an M.S.
student in Computer Engineering at Ferdowsi
University of Mashhad (FUM), Iran. He is a member
of Young Iranian Elites Association and High
Performance Computing Group of FUM. His
research interests include grid computing,
distributed systems, parallel algorithms and parallel programming,
distributed shared memory systems, machine learning, intelligent data
mining, intrusion detection, and optimization.
Mostafa Sabzekar was born in Birjand, Iran, in
1985. He received the B.S. degree in Computer
Engineering from Tarbiat Moallem University of
Tehran, Iran, in 2007. He is currently an M.S.
student in Computer Engineering at Ferdowsi
University of Mashhad, Iran. His research interests
include knowledge-based system, machine learning,
data mining, and optimization. 
Hossein Deldari received his B.Sc. degree in
Physics from University of Mashhad, Iran in 1976.
He received his Masters degree in Computer science
from University of Oregon, EUgene, Oregon, USA,
in 1979 and joined the Department of Computer
Engineering at Ferdowsi University of Mashhad. He
received his Ph.D. in Parallel and distributed
systems from University of Leeds, Leeds, England, 

	[bookmark: 6]Page 6


International Journal of Computer Theory and Engineering, Vol. 1, No. 5, December, 2009
1793-8201
561
in 1995. He has been involved in the research and development of parallel
and distributed systems for almost a decade. His research interests include
parallel algorithmic skeletons, parallel fuzzy genetic algorithms, and grid /
cluster computing.
Amir-Hassan Bahmani was born in 1986. He
received the B.S. degree in Computer Engineering
from Islamic Azad University of Mashhad (IAUM),
Mashhad, Iran, in 2009. He is a member of Young
Iranian Elites Association and IAENG. His research
interests include parallel and distributed algorithms,
database management systems, software development
methodologies. 

