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Abstract—We propose a new equalization technique based on 

nonlinear Hammerstein type filters to mitigate the intersymbol 

interference (ISI) effect. This technique is a nonlinear 

generalization of the linear equalizer. In the present work, linear 

frequency selective fading channels in presence of additive white 

gaussian noise are considered and BPSK modulation is 

employed. Comparison of the simulation results based on our 

proposed technique with the results obtained when linear 

equalizer is employed, shows that our technique leads to a 

considerably better BER performance at moderate and higher 

SNRs. We also show that our method presents a better MSE 

estimator than the linear structure. 

 

Keywords— Channel Equalization, Frequency Selective Fading 

Channels, Hammerstein Filter, Nonlinear Signal Processing 

I. INTRODUCTION 

In frequency selective channels, the transmitted signal is 

corrupted by intersymbol interference (ISI) as well as noise. 

Hence, in these channels, the optimum receiver is based on the 

maximum likelihood sequence estimation (MLSE) [1]. 

However, MLSE is a nonlinear method with a high 

computational complexity that increases exponentially with 

the channel memory length. As an alternative to MLSE, 

suboptimum receivers for frequency selective channels have 

been proposed. Linear and decision feedback equalizers (DFE) 

are the most common techniques [1]. Linear equalizer (LE) is 

simply a linear transversal filter with a limited number of taps. 

Linear transversal filters are also employed in DFE as 

feedforward and feedback blocks. Many other equalization 

techniques have also been proposed. Examples of theses 

methods can be found in the recent published works [1-3]. 

In this work we offer a generalized nonlinear structure for 

channel equalization, which is based on Hammerstein type 

filters. We employ this technique for frequency selective 

fading channels. Hammerstein filter is a nonlinear polynomial 

filter used in many applications such as system identification [4], 

[5], modelling [6], [7], echo cancellation [8], [9], and noise 

cancellation [10]. Hammerstein decision feedback equalization 

(HDFE) has been employed in fiber-wireless channel for 

compensation of nonlinear distortion in the electrical-to-

optical converter [11], [12]. Also, in our previous work, we 

have proposed a new diversity combining technique based on 

Hammerstein filters to mitigate the fading effects in frequency 

selective fading channels [13].  

This paper is organized as follows. In the next section we 

present the system model. Section III introduces our nonlinear 

Hammerstein equalization technique. In section IV, we 

explain our motivation for using these filters in the proposed 

system. Simulation results and discussions are presented in 

section V, before concluding the paper in section VI.

II. SYSTEM MODEL 

In this section the equivalent low-pass discrete time model 

of the system is presented. In this work we employ BPSK 

modulation. The transmitted sequence ! " # $1,1 %&'nx  is 

drawn from an i.i.d. source with equi-probable symbols. We 

consider a frequency selective fading channel, modeled by a 

tapped delay line with L  taps, as: 

 

                                 ( )
Lhhh ...

21
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where ih  is the random gain of the ith tap. These components 

are assumed to be real-valued zero-mean gaussian random 

variables with variance 
2

ih+ . Furthermore, they are assumed 

uncorrelated and normalized to unity, i.e.: 
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The channel fading is assumed sufficiently slow, such that the 

tap gains do not vary during one data frame. We also assume 

that the frequency selective fading channel has a specific 

power delay profile (PDP), which is the profile of the mean 

square values of the tap gains. Example of these profiles used 

in our simulations is presented in section V. 

The received signal which is corrupted by ISI and noise is 

expressed as: 
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Fig. 1. Generalized Hammerstein Equalization Technique (GHE) 
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where )(nw  is a real-valued zero-mean white gaussian noise 

with variance 
2

w+ .  Eq. (3) can be expressed in matrix form: 

 

                             ! " ! " ! "nwnny &* XH ,  (4) 

 

where H  is the channel vector and ! "nX  is the received data 

vector, defined as: 

 

                 ! " ! " ! " ! "( )TX 11 &%%* Lnxnxnxn ! .  (5) 

 

In suboptimum receivers, the detected signal is obtained by 

passing ! "ny  through an equalizer and a hard detector, 

respectively.  

III. GENERALIZED HAMMERSTEIN EQUALIZATION TECHNIQUE 

A. Equalizer Model 

The structure of Generalized Hammerstein Equalization 

technique (GHE) is illustrated in Fig. 1. As shown in this 

figure, the received signal is passed through a delay line with 

eqL  taps. Then, the signal at each tap is applied to a 

Hammerstein filter of order D . The output polynomial of the 

ith filter is then: 
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where 
kig  is the kth coefficient of the output polynomial of 

the ith filter, and ! "nyi

~
 is defined as the signal at ith tap, i.e.: 
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Note that only the odd powers appear in the summation of Eq. 

(6). Similar to our previous work [13], it can be proved that 

the terms corresponding to the even powers are equal to zero. 

The filters outputs are summed to produce the equalizer 

output ! "nz : 
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Eq. (8) can be expressed in matrix form: 
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where 
H

G  is a ! " 121 3&DLeq
 vector that consists of 

coefficients kig , and ! "n
H

Y  is a ! " 121 3&DLeq  vector defined 

as: 
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where ! "npY
~

 is a 13eqL  vector defined by using Eq. (7): 

 

                  ! " ! " ! " ! "( ) T

pY nynynyn p

Leq

pp ~~~~

21
!* .  (11) 

 

! "nz  is an estimate of the transmitted symbol ! "nx . Our goal 

is to find the coefficients kig  such that the mean square error 

is minimized. ! "nz  is then passed through a hard detector for 

making the output decision ! "nx̂ . 
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B. Calculation of the Coefficients 

The coefficients of the Hammerstein filters are found from 

the training mode by using the MSE criterion. In this mode, 

the transmitter sends a training sequence that is assumed to be 

known to the receiver as the desired signal ! "nd . The error 

signal is defined as difference between the desired and 

estimated values: 

 

                      ! " ! " ! " ! " ! "nznxnzndne %*%* .  (12) 

 

The cost function is defined as below: 

 

                                 ! "# $neE 2*4 .  (13) 

 

The coefficients are computed such that to minimize 4 . 

Using Eqs. (9) and (12) in (13), we get: 
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If we define the ! " 121 3&DLeq
 crosscorrelation vector: 
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and the ! " ! " 2121 &3& DLDL eqeq
 autocorrelation matrix: 
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and note that ! " ! "# $ T

H

T

H
PY *nnxE , 

H

T

HH

T

H
GPPG * , and 

! "# $ 1
2 *nxE , we obtain: 
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This is a quadratic function of vector HG  with a single global 

minimum. To minimize 4 , we need to have: 

 

                                       0*5 4 ,  (18) 

 

where 5  is the gradient operator. From Eqs. (17) and (18) and 

using the gradient properties we can write: 
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Finally, the coefficients of Hammerstein filters are obtained 

by solving Eq. (19): 
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assuming that HR  is invertible.  

IV. THEORETICAL BASIS 

In this section we explain our motivation for using 

Hammerstein filters in the proposed system. For simplicity, 

we first consider a system with 2*L  and 3*eqL . In this case 

at time n, the observed signals at the receiver are: 
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Based on these observed data, we would like to estimate the 

transmitted symbol )(nx . Using the MSE criterion, the 

optimum bayesian estimator )(nz , is defined as [14]: 
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where the notation (.)p  represents the probability density 

function (PDF), and the time index is omitted for notation 

simplicity. The conditional PDF can be written as: 
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The noise components in Eq. (21) are uncorrelated zero mean 

gaussian random variables. Hence, for a particular channel 

occurrence, the joint conditional PDF of the observed data 

# $i6 , conditioned on the transmitted sequence becomes: 

 

          

! " ! "

! "
9
9
:

;

<
<
=

> %%
%*

*

,

?

*

*

3

1

2

2

32

3

1

321

2
exp

)2(

1

,,

i w

iii

w

i

i

x

xpxp

+
@A6

B+

6666

,  (24) 

 

where: 

 

   

! "
! "
! " ! "

,

0

and

21

1

1

3

12

21

213

22

11

C
D

C
E

F

*

*

*

C
C
D

CC
E

F

%&%*

%*

&*

@

@

@

A

A

A

h

h

nxhnxh

nxh

nxh

 (25) 

 

are known values. Also, based on our assumptions, we have: 
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Finally, by substituting Eqs. (23), (24), and (26) in Eq. (22), 

the optimum MSE estimator can be obtained as : 
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Now, we generalize this result for arbitrary values of L  and 

eqL . In this case using Eq. (7), the observed signals at time n, 

are:  

 

                     eqii Linyn ,...,2,1)(
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Also, the optimum estimator takes the following form: 
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where 
0

A  and iA  are defined as: 
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and the values of # $
iA  and # $

i@  can be found similar to Eq. 

(25). The Maclaurin expansion of Eq. (29) yields: 
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We can write this equation as ! "
21

SSnz &* , where using Eqs. 

(28) and (31) we have: 
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where the coefficients ikC  are known parameters. As can be 

seen, 
1

S  is similar to Eq. (8), which is the output of a GHE 

system. Furthermore, 
1

S  can in turn be written as 
21111

SSS &* , 

where: 
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We can also see that 
11

S  is similar to the output of a linear 

equalizer (LE) system. 

From the above discussion we conclude that 
11

S  is included 

in 
1

S  and also 
1

S  is a subset of the optimum estimator )(nz . 

This means that GHE system can be considered as a nonlinear 

generalization of LE system and therefore it is closer to the 

optimum estimator than LE. This conclusion will be verified 

by our simulation results in the next section. 

V. SIMULATION RESULTS 

In this section the average bit error rate (BER) and the 

average mean square error (MSE) are evaluated numerically 

for both GHE and LE techniques and the results are compared. 

The simulations are performed for a frequency selective 

fading channel with an exponentially decaying power delay 

profile shown in Fig. 2. This is an example of common 

profiles used in wireless communication channels [1]. We 

generate 10,000 random realizations of the channel and obtain 

the average BER and MSE results by Monte Carlo simulations. 

We also use a 100-bit sequence for training mode. 

In Figs. 3-a and 3-b, the average BER versus SNR are 

shown for GHE and LE techniques. In these simulations, 

which are performed for two different number of taps 

# $5,3'eqL , we choose the order of Hammerstein filter 5*D . 

From these figures it is observed that at moderate and higher 

SNRs, GHE has a considerable better performance than LE. 

 

For example, for 3*eqL , when the dBSNR 40* , the average 

BER of GHE is 30 times lower than LE, which is a valuable 

advantage of our proposed technique. However, at low SNRs 

the performances of GHE and LE systems are almost the same. 

In other word, the nonlinear terms in Eq. (33) are not effective 

at low SNRs. This is due to the inherent property of all 

nonlinear systems at low signal to noise ratios. Examples of 

these behaviors are observed in decision feedback equalizers 

and FM modulators, in which their superiority over linear 

techniques appears when the SNR is above a threshold level. 

Figs. 4-a and 4-b show the average MSE versus SNR for 

GHE and LE techniques when # $5,3'eqL  and 5*D . From 

these figures it is concluded that at moderate and higher SNRs, 

GHE is a better MSE estimator than LE. This confirms our 

theoretical discussion in section 4. 

To see the effect of polynomial order D  on the 

performance of GHE, we performed the simulations for 

different values of this parameter and observed that when 

5HD , the system performance did not change notably. Hence, 

in this work we choose 5*D . 
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Fig. 2. Example of an exponentially decaying power delay profile 
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Fig. 3. Average BER for GHE and LE systems with # $5,3'eqL and D=5 
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Fig. 4. Average MSE for GHE and LE systems with # $5,3'eqL and D=5 

VI. CONCLUSION 

In this paper we introduced a nonlinear structure for 

channel equalization based on Hammerstein type filters. This 

technique is a generalization of linear technique in which the 

higher orders of the signal at each tap is used for equalization. 

We employed BPSK modulation and assumed frequency 

selective fading channels with a specific power delay profile. 

Comparison of our simulation results with the results obtained 

from linear equalizer, shows that: 

I At moderate and higher SNRs, GHE is a better MSE 

estimator than LE. 

I At moderate and higher SNRs, the average BER 

performance of GHE is superior to LE. 

I Only the odd powers )5( JD  of the received signal are 

required for channel equalization. 
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