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Power coefficient 
       

3

2
p

FuC
V hDρ

=
 

(2) 

Reynolds number Re VD
ν

= (3) 

Where V is wind velocity, D is rotor diameter, h is rotor 
height, u is tip speed and ω  is rotor angular speed. 

 

NUMERICAL METHOD 
By simulating the wind flow through blades, torque and the 

effect of S/D, rotor overlap ratio, on the pressure exerted on the 
blades by wind are investigated. Hence, pressure distribution on 
blade surface is computed by solving the flow field, and torque 
is calculated by integrating pressure times the radial distance 
from the rotary axis. The principal equations in solving the flow 
field and computing pressure and velocity in different regions 
of rotor are continuity and momentum equations. Using a 
steady state, constant velocity coordinate system gives:  

( ) 0i
i

u
x

ρ∂
=

∂  
  (4) 

( ) ij
i j i i

i i j

pu u g F
x x x

τ
ρ ρ

∂∂ ∂
= − + + +

∂ ∂ ∂  
(5) 

2
3

ji l
ij ij

j i l

uu u
u u u

τ µ µ δ
⎡ ⎤⎛ ⎞∂∂ ∂

= ⎢ + ⎥ −⎜ ⎟⎜ ⎟∂ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦  
(6) 

Where iu  and iF  are wind velocity and body forces 
respectively. In the study of rotor with variable angular velocity 
in a transient flow, the acceleration of the fluid should be 
augmented by additional terms that appear in the momentum 
equation: 

( ) ( ) 2r r r rv v v v r r
t t

ρ ρ ρ∂ ∂Ω
+ ∇⋅ + Ω× + Ω×Ω× + ×

∂ ∂
(7) 

To simplify the above equation, in numerical simulation of 
Savonius rotors, rotor angular velocity is considered to be 
constant [10, 11]. The governing equations are solved using the 
FluentTM 6.0 software. 

 

GOVERNING EQUATIONS 
In this study, k ε− turbulence model has been employed to 

model Reynolds stress terms in momentum equations. 
The turbulence kinetic energy and its rate of dissipation are 

obtained from the following transport equations [11]:  

t
k b M

i k i

Dk k G G Y
Dt x x

µ
ρ µ ρε

σ
⎡ ⎤⎛ ⎞∂ ∂

= + + + − −⎢ ⎥⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦  
(8) 
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i i
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Dt x x k
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ε ε
ε

ε

µε ε ερ µ
σ

ερ
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= + + +⎢ ⎥⎜ ⎟
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−

(9) 

In these equations, kG  represents the generation of 
turbulence kinetic energy due to the mean velocity gradients 
and bG  is the generation of turbulence kinetic energy due to 
buoyancy, which is set equal to zero due to the absence of 
temperature gradients.  

j
k i j

i

u
G u v

x
ρ

∂
′ ′= −

∂
(10) 

MY , which represents the contribution of the fluctuating 
dilatation in compressible flows with high Mach numbers, is 
also set equal to zero. 

The governing equations in gaseous phase should be 
converted to algebraic equations to be solved numerically. To 
do so, in this paper, finite volume method has been used and the 
obtained equations were solved using simple algorithm [10]. 
Discretization of governing equations can be obtained by 
considering the unsteady conservation equation for transport of 
scalar quantity φ  , written in integral form [12]:  

V

v dA dA S dVφ φ φρφ ⋅ = Γ ∇ ⋅ +∫ ∫ ∫� �
 

(11) 

Where  V  is control volume, v  is velocity vector, and φΓ  
is diffusion coefficient for φ . This equation is applied to each 
control volume, or cell, in the computational domain. For a 
two-dimensional cell, the equation is written as follows:  

( )
faces facesN N

f f f n f
f f

A A S Vφ φ φν φ = Γ ∇ +∑ ∑
 

(12) 

Where fv  is mass flux through the face, fφ  is value of φ
convected through face f , fA  is area of face f , and V is cell 
volume. Diffusion and convection flux values must be 
computed at the cell center (to represent a cell-average value).  
Here, this is accomplished using power-law scheme, which is 
more accurate than other methods [10]. In this method, the face 
value of variable φ  is obtained using exact solution to the 
following one-dimensional convection-diffusion equation [12]:  

 

( )u
x x x

φρ φ∂ ∂ ∂
= Γ
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(13) 

 

0

0

exp( ) 1( )
exp( ) 1L

xPex L
Pe

φ φ
φ φ

−−
=

− −
(14) 

 
where Pe  is the Peclet number. Now, the required 

discretized equations can be determined using simple algorithm 
and be solved by linear method which applies Gauss-Seidel 
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numerical simulation.  It can be noticed that torque increases 
with increasing wind speed and its maximum values appear 
near the angle of 60o and its minimum values appear near the 
angle of 120o  for all test rotors. For rotor I, maximum values of 
torque occur at a wide range of angles, whereas the 
corresponding range is very small for other rotors.  

Figure 16 shows torque variations as a function of angular 
position at wind speed of 12 m/s. At angles of 0o  to 60o , rotor I 
has the highest values of torque, but its torque decreases 
drastically at angles larger than 60α = o  and this decrease 
continues up to 160α = o . It can be noted that rotor II has the 
largest output torque on a whole revolution of the rotor. Figure 
17 indicates that output torque is a function of square root of 
wind speed, and power coefficient is a function of wind speed 
with a power of 3, which conforms to the numerical simulation 
results. Since this correlation applies to all rotors, in here, the 
result is only presented for rotor I. 

Figure 14. TORQUE OF ROTOR I AS A FUNCTION OF ANGULAR 
POSITION 

 AT DIFFERENT REYNOLDS NUMBERS 
 

 

Figure 15. TORQUE OF ROTOR II AS A FUNCTION OF ANGULAR 
POSITION AT DIFFERENT REYNOLDS NUMBERS 

 

Figure 16. TORQUE OF ROTOR IV AS A FUNCTION OF ANGULAR 
POSITION AT DIFFERENT REYNOLDS NUMBERS 

 

Figure 17. TORQUE OF ROTOR V AS A FUNCTION OF ANGULAR 
POSITION AT DIFFERENT REYNOLDS NUMBERS 

 
 

Figure 18. OUTPUT TORQUE OF TEST ROTORS AS A FUNCTION OF 
ANGULAR POSITION AT A WIND SPEED OF 12M/S
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Figure 19. RATIO OF TORQUE TO ROTOR SPEED RATIO AS A 

FUNCTION OF WIND SPEED 
 
 

CONCLUSION 
In this study, wind tunnel tests were conducted on six rotors 

with different blade curves and the flow field around rotors was 
simulated numerically. Results, obtained by experimental and 
numerical analysis, can be summarized as follows: 

• Rotors II through V have higher power coefficients 
due to their overlaps. On the other hand, increasing the 
overlap to a great extent decreases power coefficient. 
In this study, the optimum value was obtained to be = 
0.2.  

• Increasing the overlap, S, from S=0 (rotor I) to S=3.2 
cm (rotor II) leads to a great increase in power 
coefficient and the forces resisting rotor motion 
decrease abruptly. On the other hand, increasing S 
from 3.2cm (rotor III) to 7.2cm (rotor V) reduces 
power coefficient. It can be concluded that the 
optimum range for S is from 0 to 3.2 cm. 

• Rotor II has the best blade curve.  
• By increasing wind speed, which corresponds to 

higher Reynolds number, power coefficient increases 
greatly. 

• The maximum value of power coefficient appears at 
the range of 0.8λ = to 1λ =  (tip peripheral speeds 
close to wind speed) 

• Average power coefficient increases with increasing 
Reynolds number, but its rate decreases due to 
turbulence around the blades. 

• Torque increases with increasing wind speed and its 

maximum values appear near the angle of  60o  and its 
minimum values appear near the angle of 120o  for all 
test rotors. 

• At angles of 0o  to 60o , rotor I has the highest values 
of torque, but its torque decreases drastically at angles 
larger than 60α = o  and this decrease continues up to

160α = o . 
• Rotor II has the highest output torque on a whole 

revolution of the rotor. 
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