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Abstract 
This article presents the analysis of functionally graded hollow circular cylinders 
with finite length under axisymmetric dynamic loads. It is assumed that the 
functionally graded cylinder is comprised of metal-phase and ceramic-phase 
whereas material properties are graded in the thickness direction of the cylinder 
according to power law distribution. Two-dimensional finite element method in 
conjunction with the Newmark method is used to solve the system of 
time-dependent coupled equations that govern the dynamic responses. By 
introducing especial elements, it is possible to distribute the material properties 
through the thickness of cylinder exactly according to the power law distribution. 
Dynamic loads applied on the cylinder are axisymmetric in the hoop direction and 
can vary in the radial and axial directions. As examples, the transient responses of 
functionally graded cylinders which are excited in radial direction by increasingly 
and suddenly internal pressure and line load are calculated, and the characteristics 
of waves are discussed. The results in the present study are obtained for thick 
cylinder and cylindrical shell and compared with the results for isotropic cylinders. 

Key words: Functionally Graded Cylinder, Dynamic Loading, Finite Element 
Method, Newmark Method, Dynamic Load Factor 

 

1. Introduction 

A functionally graded material (FGM) is usually a combination of two material phases 
that has a gradual transition from one material at one surface to another material at the 
opposite surface. This transition allows the creation of multiple properties (or functions) 
without any mechanically weak junction or interface. Furthermore, the gradual change of 
properties can be tailored to different applications and service environments. It is possible 
with these materials to obtain a combination of properties that cannot be achieved in 
conventional monolithic materials. For example, thermal protection plate structures made of 
a two-phase ceramic/metal functionally graded composite provide heat and corrosion 
resistance on the ceramic-rich surface while maintaining the structural strength and stiffness 
by the metal-rich surface. Moreover, FGMs allow for especial optimization by grading the 
volume fractions of two or more constituents to improve the response of structures. If 
properly designed, FGMs can offer various advantages such as reduction of thermal 
stresses, minimization of stress concentration or intensity factors and attenuation of stress 
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waves. Hence, FGMs have gained potential applications in a wide variety of engineering 
components or systems which include the rocking motor casing, armor plating, heat-engine 
components, packaging encapsulates, thermoelectric generators and human implants, just to 
name a few. 

Some research has been done related to response of functionally graded cylinders under 
dynamic mechanical loads. By using Reddy’s third-order shear deformation theory (without 
incorporating transverse normal deformation), an analytical solution was presented to 
predict the transient response of simply supported FGM cylindrical shells subjected to 
low-velocity impact by a solid striker (1). Han et al. (2) presented a numerical method for 
analyzing transient waves in FGM cylinders. In their method, the FGM shell was divided 
into layer elements with three nodal lines along the wall thickness. The material properties 
within each element were assumed to vary linearly in the thickness direction. After that a 
solution for guided waves in graded cylinders making use of Nelson’s numerical–analytical 
method(3) was introduced by Han et al. (4). Also, Fourier transformation and modal analysis 
were employed to propose a numerical method for analyzing transient waves in FGM 
cylindrical shells excited by impact point loads (5). In addition, Elmaimouni (6), using the 
Legendre polynomials and harmonic functions, developed a numerical method for 
calculating guided wave propagation in a FGM infinite cylinder. Next, vibration and radial 
wave propagation in FGM thick hollow cylinders were studied with assumption that the 
FGM cylinder was made from many isotropic subcylinders (7). Material properties in each 
layer were constant and functionally graded properties were resulted by suitable 
arrangement of layers in the multilayer cylinder. Afterward, a thick hollow cylinder with 
finite length made of two-dimensional functionally graded material (2D-FGM) subjected to 
impact internal pressure was considered and investigated the time histories of 
displacements, stresses and two-dimensional wave propagation (8). 

A number of works has been made related to free vibrations of functionally graded 
cylinders. The vibration behavior of functionally graded cylindrical shells were investigated 
based on Love’s theory and the Rayleigh–Ritz method by Loy et al. (9) and Pradhan et al. (10). 
The studies revealed that the frequency characteristics of functionally graded cylindrical 
shells are similar to those of isotropic shells. Yang and Shen (11) used Reddy’s higher-order 
shear deformation shell theory to investigate free vibration and dynamic instability of 
functionally graded cylindrical panels subjected to thermo-mechanical loads consisting of a 
steady temperature change as well as static and periodically pulsating forces in axial 
direction. Next, the vibration of thin cylindrical shells with ring supports made of a 
functionally gradient material composed of stainless steel and nickel was performed by 
Najafizadeh and Isvandzibaei (12). After that, a general analytical approach was presented to 
investigate vibrational behavior of functionally graded shells by Ansari and Darvizeh (13). 

Some investigations have been done related to stabilities and buckling of functionally 
graded cylinders. Stability of functionally graded cylindrical and conical shells under 
non-periodic impulsive loading were investigated by Sofiyev (14)(15). Moreover, He (16) 
studied the stability of cylindrical shells composed of FGM subjected to axial compressive 
load. Next, Kadoli and Ganesen (17) presented linear thermal buckling and free vibration 
analyses of functionally graded cylindrical shells with clamped–clamped boundary 
conditions based on temperature-dependent material properties.  

In the aforementioned works, multi-layered method has been used widely, in which a 
FGM cylinder is divided into several layers and each layer is divided into a number of 
2-node elements along the radial direction (e.g., N elements and N + 1 nodes). Also, the 
mechanical properties have been considered to be constant inside each of elements. In the 
present study, by introducing especial elements in which mechanical properties can be 
considered variable, it is possible to distribute the material properties through the thickness 
of cylinder exactly according to a power law distribution. Functionally graded hollow 
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cylinders with finite length under axisymmetric dynamic loads are considered. The dynamic 
loads applied on the cylinder are axisymmetric in the hoop direction and can vary in the 
radial and axial directions. The governing equations of motion are solved by the 
two-dimensional finite element and Newmark methods. 

Nomenclature 

a : width of element 
b : length of element 
E : Young’s modulus 
h : thickness of cylinder 
L : length of cylinder 
l : normal vector 

[C] : stiffness matrix 
{F} : elements force matrix 
[K] : elements stiffness matrix 
[M] : elements mass matrix 

n : power law exponent 
P : generic material property 

P0 : value of the final load 
T: time duration of sine function 
t : time 
u : displacement component 
V : volume fraction 
w : weight function 
r : coordinate in thickness direction 
z : coordinate in axial direction 
θ : coordinate in circumferential direction 
γ : angular strain 
ε : normal strain 
ν : Poisson’s ratio 
ρ : Density 
σ : Stress 
τ : force traction 
ψ : interpolation function 

Subscripts 

e: local parameter 
in: inner surface 

out: outer surface 
m : middle radius 

r: radial direction 
z: axial direction 
θ: circumferential direction 
c: ceramic 

wa: incident wavelet 
 

2. Theoretical Formulation 

2.1 Material Properties of Functionally Graded Cylinders 
Consider a FGM circular hollow cylinder, which is made of a mixture of ceramic and 



 
 

 

Journal of  Solid Mechanics 
and Materials Engineering  

Vol. 4, No. 8, 2010 

1226 1226 

metal with an inner radius rin and an outer radius rout , as shown in Fig. 1. The outer surface 
of the cylinder is metal-rich whereas the inner surface is ceramic-rich and material 
properties are graded in the thickness direction of the cylinder according to the subsequent 
relation: 

(1)inout out inP P PV V= +  

where P denotes a generic material property like modulus and Pin and Pout denote the 
material properties of the inner and outer surfaces of the cylinder, respectively. Also Vin and 
Vout indicate the volume fractions of the inner and outer surfaces material, respectively. The 
volume fractions are consistent with the following power law distributions: 

(2)

n

in

out in

out
r r

V
r r
−

=
−

⎛ ⎞
⎜ ⎟
⎝ ⎠  

1in outV V= −

where power law exponent n represents the material variation profile through the cylinder 
thickness, which is always greater than or equal to zero, and may be varied to obtain the 
optimum distribution of the constituent materials. The value of n being equal to zero 
represents a cylinder fully made of outer surface material and infinity represents a cylinder 
fully made of inner surface material. Fig. 2 shows the variation of volume fraction of outer 
surface material in the thickness direction of the FGM cylinder. 

 
Figure 1. Schematic sketch of the cylinder and the location of coordinate system. 

 
Figure 2. Variation of volume fraction of outer surface material in the thickness direction of 

the FGM cylinder. 

2.2 Equations of Motion  
As it is pointed out, it is intended here to analyze a functionally graded cylinder with 

finite length and subjected to axisymmetric loads. The geometry of the cylinder is shown in 
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Fig. 1. A cylindrical coordinate system is introduced with the origin located at the center of 
one end of the cylinder and coordinates r, θ and z are in the thickness, circumferential and 
axial directions, respectively (see Fig. 1). Since the geometry of the cylinder and the loads 
are assumed to be independent of the circumferential direction, the problem is 
axisymmetric. The governing equations of motion for this case are (18): 

2

2
( )1 r rz rr

r r z
u

r t
θσσ σ

ρ
∂ ∂

− + =
∂ ∂

∂
∂  

2

2
( )1 rz z zr u

r r z t
ρ

σ σ∂ ∂ ∂
+ =

∂ ∂ ∂

(3)

where uz and ur denote the displacement components in the axial and radial directions, 
respectively. Also, the strain-displacement relations are (18): 

, , ,    r r z r z
r z rz

u u u u u
r r z z rθε ε ε γ

∂ ∂ ∂ ∂
= = = =

∂ ∂ ∂ ∂
+  (4)

The constitutive relations for FGMs are similar to the relations of isotropic materials 
except that the stiffnesses are functions of radial coordinate because material properties E 
and v distributed according to the power law distribution. The constitutive relations are 
stated as: 

(5)
11 12 12

12 11 12 66

12 12 11

,    
z z

rz rz

r r

C C C
C C C C
C C C

θ θ

σ ε
σ ε σ γ
σ ε

⎧ ⎫ ⎡ ⎤ ⎧ ⎫
⎪ ⎪ ⎪ ⎪⎢ ⎥= =⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥⎩ ⎭ ⎣ ⎦ ⎩ ⎭

 

where 

(6)
( )

( )( ) ( ) ( )
11 12

11 12 66

1
, ,

1 1 2 1 1 2 2
E C CEC C C

ν ν
ν ν ν ν

− −
= = =
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Upon substitution of Eqs. (4) into Eqs. (5), the constitutive relations can be rewritten as 
follows: 

11 12
z r r

z
u u u

C C
z r r

σ
∂ ∂⎛ ⎞= + +⎜ ⎟∂ ∂⎝ ⎠

 

(7)
11 12

r z ru u u
C C

r z rθσ
∂ ∂⎛ ⎞= + +⎜ ⎟∂ ∂⎝ ⎠

11 12
r r z

r
u u u

C C
r r z

σ
∂ ∂⎛ ⎞= + +⎜ ⎟∂ ∂⎝ ⎠

 

66
r z

rz
u u

C
z r

σ
∂ ∂⎛ ⎞= +⎜ ⎟∂ ∂⎝ ⎠

 

Lastly, substituting Eqs. (7) into Eqs. (3) yields the governing (i.e., displacement) 
equations of motion: 

11 12 66

2
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11 2 2
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u u u u
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11 12 66 2
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(8)

where Eqs. (8) are known as the Navier equations of motion. 

 
3. Finite Element Formulation 

For functionally graded materials, the material properties are complex function of 
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position r, and the Navier equations in (8) are not amenable to analytical solutions. Here, a 
two-dimensional finite element method is used to solve Eqs. (8). To this end, an especial 
element is developed to consider exactly the material distribution through the thickness of 
the FGM cylinder. 

By applying the Rayleigh-Ritz technique to the system of Navier equations in (8), weak 
formulations are obtained as: 

1 1
11 12 66

1 11 12 1 1 0

r z z r
r

r z r
r r

w u u w u uC r C u r C r
r r z z r z

u u uw C C rw u drdz w ds
r z r

ρ τ

⎡ ⎤ ⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂⎧ ⎛ ⎞ ⎛ ⎞+ + + +⎨ ⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎩ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
⎫⎡ ⎤∂ ∂⎛ ⎞ ⎪+ + + + − =⎬⎢ ⎥⎜ ⎟∂ ∂⎝ ⎠ ⎪⎣ ⎦ ⎭

∫

∫
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w u uC r C u r
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w u u
C r rw u drdz w ds

r r z
ρ τ

⎧ ⎡ ⎤∂ ∂ ∂⎛ ⎞⎪ + +⎨ ⎢ ⎥⎜ ⎟∂ ∂ ∂⎝ ⎠⎪ ⎣ ⎦⎩
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∫

∫
 

where w1 and w2 are weight functions and rτ  and zτ  are the force tractions on the 

boundary of the cylinder, which are defined as: 

r r r rz zl lτ σ σ= +  
(10)

z z z rz rl lτ σ σ= +  

In Eqs. (9) the dot represents the derivative with respect to time. Next, let a section of 
the cylinder be divided into a finite number of elements interconnected only at nodal points. 
The rectangular elements have two degrees of freedom in each node and they are placed in 
the radial and longitudinal directions of the cylinder as shown in Fig. 3. Also, the linear 
interpolation functions are selected as: 

1 2 3 41 1 , 1 , 1 ,r z r z z r z r
a b a b b a b a

ψ ψ ψ ψ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − − = − = − =⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (11)

 
Figure 3. Arrangement of elements in the cylinder cross-section. 

Displacements are approximated with summation of interpolation functions as: 
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1 1

,
c cn n

r j j z j j
j j

u u u vψ ψ
= =

= =∑ ∑  (12)

Next, the weight functions are replaced by the interpolation functions to obtain the 
following weak forms: 

11 12 12 12 66

11          66 12

j j j ji i i i
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Eqs. (13) can be written in matrix form as:  

[ ]
[ ]

{ }
{ }

{ }
{ }

{ }
{ }

111 11 12

22 21 22 2

0

0

FM K Ku u

v vM K K F
=

⎡ ⎤ ⎧ ⎫⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎧ ⎫ ⎧ ⎫⎣ ⎦ ⎪ ⎪ ⎣ ⎦ ⎣ ⎦ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥+⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎩ ⎭⎩ ⎭⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎩ ⎭⎣ ⎦
  (14)

or 

{ } { } { }e e e e eM U K U F⎡ ⎤ ⎡ ⎤+ =⎣ ⎦ ⎣ ⎦  (15)

where U denotes the displacement components and index e expresses parameters over each 
element. The components of mass, stiffness and force matrices of especial FGM element are 
defined as: 

11 22
ij ij i jM M rdrdzρψ ψ= = ∫  

(16)
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66 11

j ji i
ijK C r C r drdz

r r z z
ψ ψψ ψ∂ ∂ ⎫∂ ∂⎧= +⎨ ⎬∂ ∂ ∂ ∂⎩ ⎭

∫
 

1
i i rF t dsψ= ∫  

2
i i zF t dsψ= ∫  

The matrices [ ]eK  and [ ]eM  are calculated for each individual element and then 
through an assemblage process the global assembled matrixes [ ]K  and [ ]M  for the 
whole FGM cylinder are calculated. The global form of Eq. (15) can be writhen as: 

[ ]{ } [ ]{ } { }M U K U F+ =  (17)

In this study, all of the integrations in Eqs. (16) are calculated analytically over each 
element domain to avoid any numerical errors.  

Once the finite element equations of motion are established, different numerical 
methods can be employed to solve them in space and time domains. In the case of transient 
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response, Eq. (17) must be integrated with respect to time t to determine the nodal values as 
functions of time. The Newmark direct integration method with suitable time step that is 
used widely in structural dynamics is employed and the equations of motion are solved (see, 
for example, Ref. (18) about the details on method). 

 

4. Results and Discussion 

In this study, a finite element code is developed in the programming environment of 
MATLAB®. To demonstrate the validity and applicability of the numerical procedure, some 
simple examples will be discussed. 

Primarily, by increasing the number of elements in the radial and axial directions, 
convergence of the results is studied. Here a FGM cylinder subjected to a constant internal 
pressure is used for convergence study to find the number of elements required for analyses. 
The cylinder is assumed to have the ratios of the inner and outer radiuses to thickness of 

/ 1inr h =  and / 2outr h =  and the length of 1 m. In this case, the present results are 
obtained with various number of elements in the radial and axial directions. It is observed 
that with five elements in the radial direction and twenty elements in the axial direction, the 
results converge with a very good degree of accuracy. To this end, the cylinders are divided 
into, unless otherwise mentioned, five and twenty elements in the radial and axial 
directions, respectively, in the subsequent calculations. It is once again mentioned here that, 
in this study, there are no domain approximation and numerical errors because the domain is 
rectangular and all of the elements are rectangular as well and also all of the integrations in 
Eqs. (16) are calculated analytically.  

The accuracy and effectiveness of the present method are demonstrated by comparing 
the results of the present method with the results of hybrid numerical method (HNM) 
presented by Ref. (2), which had combined the finite element method with the Fourier 
transformation method. In the HNM, the FGM cylinder is divided into N cylindrical 
elements with three-nodal line in the wall thickness and the element material properties are 
assumed to vary linearly in the thickness direction for enhanced modeling of the spatial 
variation of material properties in FGM. The thick FGM cylinder (rin=h) with Silicon 
nitride on its inner surface and Stainless steel on its outer surface with the power law 
exponent n=4 is considered. The material properties of Silicon nitride and Stainless steel are 
shown in Table 1. The cylinder is subjected to radial line load which uniformly distributed 
along the circumferential direction. In the calculations, the following dimensionless 
parameters are used (see Ref. (2)): 

66 66,     ,     s r
s r

c out

C tc C uc t u
h rρ

= = =
 

(18)

where C66 and cρ  stand for reference material constant and mass density. Here, they are 

equal to the material constant C66 and mass density on the inner surface of the cylinder 
under consideration. 

The radial incident wavelet is assumed to be a radial line load acting on the outer 
surface of the cylinder. The loading function is defined as: 

sin(2 / ) 0
( )

0 0  and  
wa wa

wa

t T t T
f t

t t T
π < <⎧

= ⎨ ≤ ≥⎩
 (19)

where Twa is the time duration of radial incident wavelet and we set 2waT = . It means that 
the wavelet is one cycle of the sine function. 

Time history of the radial displacement at 10z h= on the outer surface of the cylinder 
excited at z = 0, is shown in Fig. 4. It is seen that there is a good agreement between the 
present solution and that of Ref. (2). Specifically, the maximum radial deflections obtained 
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by the two methods are approximately identical and, therefore, the present method can be 
used to obtain dynamic load factor. Also, the averages of time periods are derivable from 
Fig. 4. It is found that the normalized time period of the result of Ref. (2) is about 1.5 but 
the normalized time period of the present result is about 2.3 which is closer to the time 
duration of radial incident wavelet 2waT = . It is inferred that the reason of this difference 
is through the distinction in method of solutions. Ref. (2) used Fourier transformations to 
obtain the transient response but we used the Newmark direct integration method for 
solving the equations of motion. 

 
Figure 4. Time history of the radial displacement at z=10h on the outer surface 

of the thick cylinder. 

To illustrate dynamic response of the functionally graded cylinders, loads are applied to 
the cylinder in radial directions which distributed as internal pressure or concentrated as 
radial line load. Also, load exerted to the cylinder from zero to final value in two different 
manners. First, load increases as a sine function. Next, load is applied suddenly. These loads 
are uniformly distributed along circumferential direction. In all of the loadings, time history 
diagrams are presented and from which dynamic load factors are calculated and tabulated 
for pure and functionally graded cylinders. 

The functionally graded cylinder is assumed to be made of a combination of metal 
(Ti–6Al–4V) and ceramic (ZrO2) with the material properties shown in Table 1. The effects 
of FGM configuration are studied by considering the responses of two FGM cylinders:   
Type 1 and Type 2. The former has metal on its outer surface and ceramic on its inner 
surface, while the latter is reverse. For both types of cylinders, power law exponent n=1 is 
considered. 

Table 1. Material properties of metals and ceramics (see Refs. (2) and (19)). 
Stainless steel Silicon nitride Ti–6Al–4V ZrO2 

207.8 GPaE = 322.4 GPaE =  66.2 GPaE =  117.0 GPaE =  
0.317ν =  0.24ν = 0.321ν =  0.333ν =

3 38.17 10 kg/mρ = ×  3 32.37 10 kg/mρ = ×  3 34.41 10 kg/mρ = ×  3 35.6 10 kg/mρ = ×

 
Next, two ratios of the inner radius to thickness, are employed in calculations; the 

cylinder with / 1inr h =  is viewed as a thick cylinder, and with / 20inr h =  is viewed as a 
cylindrical shell. Also, it is assumed that the cylinders have clamped boundary conditions at 
the ends and the ratios of the length to inner radius are considered as / 20inL r = . In all of 
the following computations these assumptions and parameters are used. 

4.1 Increasingly Loading 
Suppose that the load increases from zero to its final value by the following sine 
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function equation:
 

 

0

0

sin(2 / ) 0 / 4
( )

/ 4
P t T t T

f t
P t T
π < <⎧

= ⎨ ≥⎩
 (20)

where P0 indicates the numerical value of the final load. For the case of internal pressure 
loading, it is assumed that P0=100 kPa and for the case of radial line loading, it is assumed 
that P0=-104 N/m. Also, T denotes the time duration of sine function. Therefore, loads are 
increasing to final value in quarter time duration T. In order to study the response of the 
cylinders to abrupt dynamic loadings, it is essential to select a proper value for time 
duration T. Here, separate values are selected for cylindrical shell and thick cylinder. The 
reason of the difference between these values is that the natural frequencies of the thick 
cylinder are greater than those of the cylindrical shell. Fig. 5 shows the variation of internal 
pressure with respect to time. 

 
Figure 5. Variation of internal pressure in increasingly loading condition for 54 10 sT −= × . 

Here, it is assuming that 44 10 sT −= ×  for the cylindrical shell and 54 10 sT −= ×  for 
the thick cylinder. The time histories of the radial displacement at the middle length on the 
outer surface of the cylinders are shown in Fig. 6 for internal pressure loading and in Fig. 7 
for radial line loading. It is noted that, in the case of radial line loading, since the applied 
load is compressive, the radial displacements are negative in the figures. It is seen that the 
time history response of the radial displacement of FGM cylinders is between the response 
of metal and ceramic cylinders. Dynamic load factor is calculated by dividing the maximum 
value of the radial displacement in dynamic loading condition to the maximum value of the 
radial displacement in static loading condition (20). Therefore, from results of dynamic 
loading and by calculating the radial displacement of cylinders under static loading, 
dynamic load factors are calculated for three values of T and displayed in Table 2. These 
values reveal that dynamic load factor for metal cylinder is greater than that of ceramic 
cylinder as expected. It is also seen that the values of dynamic load factor for FGM cylinder 
are between the values of metal and ceramic cylinders. 
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(a) (b) 

Figure 6. Time history of the radial displacement in the (a) thick cylinder and (b) cylindrical 
shell subjected to increasingly internal pressure loading. 

(a) (b) 

Figure 7. Time history of the radial displacement in the (a) thick cylinder and (b) cylindrical 
shell subjected to increasingly radial line loading. 

Table 2. Values of dynamic load factor in the case of increasing loading. 
Loading Cylinder Thick cylinder Cylindrical shell 

  T×105 T×104 
  2 3 4 2 3 4 

Internal 
pressure 
loading 

Metal 1.6803 1.4857 1.2934 1.8699 1.7425 1.5882
Ceramic 1.6124 1.3788 1.1667 1.8276 1.6587 1.4790
FGM (type 1) 1.6410 1.4056 1.1972 1.8443 1.6932 1.5238
FGM (type 2) 1.6517 1.4426 1.2398 1.8458 1.6943 1.5268

  

Radial 
line 
loading 

Metal 1.4180 1.3025 1.1823 1.6146 1.5320 1.4273
Ceramic 1.3756 1.2374 1.0928 1.5885 1.4783 1.3451
FGM (type 1) 1.3789 1.2443 1.1113 1.6006 1.5007 1.3780

FGM (type 2) 1.4073 1.2809 1.1484 1.6014 1.5025 1.3808

4.2 Suddenly Loading 
Consider load P0 with the numerical values of the previous examples is applied 

suddenly (i.e., step excitation) to the cylinders for both cases of the internal pressure and 
radial line loading.  

The time histories of the radial displacement at the middle length on the outer surface 
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of the cylinders are shown in Fig. 8 for internal pressure loading and in Fig. 9 for radial line 
loading. Also, the dynamic load factors for this loading case are displayed in Table 3. It is 
seen that dynamic load factors for suddenly internal pressure loading are greater than those 
of the previous loading and they are approximately equal to 2 as predicted in the literature. 
It is also revealed that even in suddenly loading, dynamic behavior of FGM cylinders is 
similar to the behavior of pure cylinders. 

(a) (b) 

Figure 8. Time history of the radial displacement in the (a) thick cylinder and (b) cylindrical 
shell subjected to suddenly internal pressure loading. 

(a) (b) 

Figure 9. Time history of the radial displacement in the (a) thick cylinder and (b) cylindrical 
shell subjected to suddenly radial line loading. 

Table 3. Values of dynamic load factor in the case of suddenly loading. 
Loading Cylinder Thick cylinder Cylindrical shell 
Internal pressure loading Metal 1.9145 1.9865 
 Ceramic 1.8640 1.9837 
 FGM (type 1) 1.8835 1.9833 
 FGM (type 2) 1.9037 1.9839 
Radial line loading Metal 1.4776 1.6787 
 Ceramic 1.5159 1.6758 
 FGM (type 1) 1.5064 1.6777 
 FGM (type 2) 1.5157 1.6765 

4.5 Effects of Power Law Exponent n 
Here, the effects of variation of power low exponent n on dynamic load factor are 
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investigated. To this purpose, type 1 of FGM cylinders with various power law exponent n 
are subjected to suddenly internal pressure as previous sections. Time histories of the radial 
displacement at the middle length on the outer surface of the cylinders are displayed in Fig. 
10. It is seen that with increasing the power law exponent n maximum deflection is 
decreased, as expected, because the portion of ceramic in cylinders is increased. Also, for 
these loading cases, dynamic load factors for wide range of the power law exponent n are 
calculated and plotted in semi logarithmic diagrams which illustrated in Fig. 11. It is 
observed that with increasing the power law exponent n dynamic load factor is 
approximately decreased. 

(a) (b) 

Figure 10. Time history of the radial displacement in the (a) thick cylinder and (b) 
cylindrical shell subjected to suddenly internal pressure loading. 

 
Figure 11. Variation of dynamic load factor for wide range of the power law exponent n in 

the FGM cylinders subjected to suddenly internal pressure loading. 

 

5. Conclusions 

Analysis of functionally graded hollow cylinders with finite length under axisymmetric 
dynamic loads is presented. Two-dimensional finite element and the Newmark methods are 
used for solving governing equations of motion. For increasing accuracy of the solution, an 
especial element is introduced in which material properties can be considered variable 
inside the element exactly according to the distribution of material properties in FGM 
cylinders. Two types of dynamic loads are applied and the results are compared. Numerical 
results reveal that dynamic responses of FGM cylinders are between the responses of metal 
and ceramic cylinders. It is also found that the dynamic load factors of FGM cylinders are 
close to those of pure cylinders. 
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