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a b s t r a c t

Bilinear models can approximate a large class of nonlinear systems adequately and usually with

considerable parsimony in the number of coefficients required. This paper presents the application of

Particle Swarm Optimization (PSO) algorithm to solve both offline and online parameter estimation

problem for bilinear systems. First, an Adaptive Particle Swarm Optimization (APSO) is proposed to

increase the convergence speed and accuracy of the basic particle swarm optimization to save

tremendous computation time. An illustrative example for the modeling of bilinear systems is provided

to confirm the validity, as compared with the Genetic Algorithm (GA), Linearly Decreasing Inertia

Weight PSO (LDW-PSO), Nonlinear Inertia Weight PSO (NDW-PSO) and Dynamic Inertia Weight PSO

(DIW-PSO) in terms of parameter accuracy and convergence speed. Second, APSO is also improved to

detect and determine varying parameters. In this case, a sentry particle is introduced to detect any

changes in system parameters. Simulation results confirm that the proposed algorithm is a good

promising particle swarm optimization algorithm for online parameter estimation.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Bilinear model has been intensively studied in the literature
because many objects in engineering, economics, ecology and
biology etc. can be described by using a bilinear system (Lee et al.,
1997; Mohler, 1991; Hua, 1990). A bilinear system is the simplest
and most similar nonlinear system to a linear system in the form.
It has many advantages, such as its special variable structure
property which makes it advantageous on system modeling. The
research of parameter estimation of the bilinear system has been
carried out and received extensive attentions. Accurate knowl-
edge of these parameters is important to form the control laws.
Hence, it is of our interest to investigate an efficient model
parameter tracking approach to achieve precise modeling results
under different conditions without using complicated model
structures.

Nowadays, a wide range of analytical techniques such as
Recursive Least Square (RLS) (Godfrey and Jones, 1986), Recursive
method of Instrumental Variable (RIV), Correlative Function
method (COR), etc. exists for parameter estimation. RLS is usually
considered that it is simple to use and costs little computation but
it gives large estimation error when the system is influenced by
colorful noises. Although COR can acquire more accurate para-
meter estimation but the estimation error is still not satisfying.

Moreover, RIV can get accurate parameter but it costs large
amount of complex computation. Most of these techniques have
some fundamental problems including their dependence on
unrealistic assumptions such as unimodal performance land-
scapes and differentiability of the performance function, and
trapping in local minima (Ursem and Vadstrup, 2004). Also, if the
searching space is undifferentiable or parameter span is non-
linear, traditional recurrent methods cannot gain the global
optimization (Evsukoff et al., 2004; Montiel et al., 2004; Montiel
et al., 2003; Juang et al., 2003; Goldkberg, 1989).

Heuristic algorithms especially with stochastic search techni-
ques seem to be a more hopeful approach and provide a powerful
means to solve this problem. These algorithms seem to be a
promising alternative to traditional techniques, since they do not
rely on any assumptions such as differentiability or continuity. In
fact heuristic algorithms depend only on the objective function to
guide the search. Because of this, Genetic Algorithm (GA) was
used to estimate parameters for nonlinear systems (Kömürcü,
2008; Wang and Gu, 2007; Chang, 2007; Dai et al., 2002;
Beligiannis et al., 2005). Although the GA is efficient to find the
global minimum of the search space, it consumes too much search
time which is not proper for online identification. The Particle
Swarm Optimization (PSO) algorithm is an alternative. The main
advantages of PSO are the simple concept, easy implementation
and quick convergence. Due to this, recently PSO has attracted
much attention and wide applications in various fields (Chang and
Ko, 2009; Lin et al., 2008). The PSO algorithm is motivated by the
behavior of organisms, such as fish schooling and bird flocking.
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It is characterized as a simple concept, which is both easy to
implement and computationally efficient. Unlike other heuristic
techniques, PSO has a flexible and well-balanced mechanism to
enhance the global and local exploration abilities (Abido, 2002).
Based on this, this paper presents a novel PSO, namely Adaptive
Particle Swarm Optimization (APSO), by introducing an adaptive
inertia weight to rationally balance the global exploration and
local exploitation abilities for basic PSO. An illustrative example
for the modeling of bilinear systems is provided to confirm the
validity, as compared with the GA and Linearly Decreasing Inertia
Weight PSO (LDW-PSO), Nonlinear Inertia Weight PSO (NDW-
PSO) and Dynamic Inertia Weight PSO (DIW-PSO) in terms of
parameter accuracy and convergence speed. APSO is also
improved to detect and determine the variation of parameters.
In this case, a sentry particle is introduced to detect any changes
in system parameters. If any change in parameters occurs, the
sentry alerts the swarm to reset their best location memories and
then the algorithm runs further to find the new optimum values.
The performance of the proposed algorithm is demonstrated
through identifying the parameters of a time varying bilinear
system. Simulation results show that the proposed algorithm is a
good promising particle swarm optimization algorithm for online
parameter estimation.

The rest of paper is organized as follows: Next section
describes a general form of problem formulation. Section 3
introduces the proposed APSO. In Section 4, the implementation
of the proposed algorithm in online system parameter estimation
is introduced. Sections 5 and 6 contain simulation results and
conclusions, respectively.

2. Problem formulation

This paper considers the discrete bilinear system parameter
estimation. The relationship between the input sequence {u(n)}and
output sequence {y(n)}of such system is given by

yðnÞ ¼ aðnÞþ
Xp

i ¼ 1

aiðnÞyðn�iÞþ
Xp

i ¼ 1

biðnÞuðn�iÞ

þ
Xp

i ¼ 1

Xp

j ¼ 1

cijðnÞuðn�iÞyðn�jÞ ð1Þ

where p is the system order and
Pp

i ¼ 1

Pp
j ¼ 1

cijðnÞuðn�iÞyðn�jÞ is a

bilinear term. Parameters which are needed to be estimated are ai,
bi and cij.

The basic idea of parameter estimation is to compare the
system responses with the parameterized model based on a
performance function giving a measure of how well the model
response fits the system response. Fig. 1 shows that the excitation
input is given to both the real and the estimated systems. Then,
the outputs are given as inputs to the fitness evaluator, where
the fitness will be calculated. The sum of squared error for a

number of samples is considered as ’’fitness of estimated model’’
defined by

SSE¼
XN

k ¼ 1

e2 ¼
XN

k ¼ 1

ðyðkÞ�ŷðkÞÞ2 ð2Þ

where y(k) and ŷðkÞ are real and estimated values in each sample,
respectively and N is the number of given samples. The calculated
fitness is then input to the identifier algorithm to identify the best
parameters for estimated system in fitting procedure by
minimizing the sum of squared errors in response to excitation
input.

3. The proposed APSO

Unlike population based evolutionary algorithms, PSO is
motivated by the simulation of social behavior and each candidate
solution is associated with a velocity. The candidate solutions,
called ‘‘Particles’’ then ‘‘fly’’ through the search space.

In the beginning, a population with the size of particles is
created. Then, the velocity of every particle is constantly adjusted
according to corresponding particle’s experience and particle’s
companions’ experiences. It is expected that the particles will
move towards better solution areas. The fitness of every particle
can be evaluated according to the objective function of optimiza-
tion problem. At each iteration, the velocity of every particle will
be calculated as follows:

vtþ1
i ¼o vt

iþc1r1ðpbestt
i�xt

i Þ þc2r2ðgbestt�xt
i Þ ð3Þ

where xt
i is the position of the particle i in tth iteration, pbestt

i is
the best previous position of this particle (memorized by every
particle), gbestt is the best previous position among all the
particles in tth iteration (memorized in a common repository),
o is the inertia weight, c1 and c2 are acceleration coefficients and
are known as the cognitive and social parameters respectively.
Finally, r1 and r2 are two random numbers in the range [0, 1].
After calculating the velocity, the new position of every particle
can be worked out

xtþ1
i ¼ xt

iþvtþ1
i ð4Þ

The PSO algorithm performs repeated applications of the update
equations above until the pre-specified number of generations
G is reached.

Although PSO has shown some important advances by
providing high speed of convergence in specific problems, it does
exhibit some shortages. It found that PSO has a poor ability to
search at a fine grain because it lacks velocity control mechanism
(Angeline, 1998). Many approaches are attempted to improve the
performance of PSO by variable inertia weight. The inertia weight
is critical for the performance of PSO, which balances global
exploration and local exploitation abilities of the swarm. A big
inertia weight facilitates exploration, but it makes the particle
long time to converge. Conversely, a small inertia weight makes
the particle fast converge, but it sometimes leads to local optimal.
Hence the linearly and nonlinearly decreasing inertia weight are
proposed in the literature (Chang and Ko, 2009; Jiao et al., 2008;
Yang et al., 2007; Chatterjee et al., 2006; Kennedy et al., 2001;
Ratnaweera et al., 2004; Shi and Eberhart, 1998a,b). In the
following, the three well-known mechanisms from above men-
tioned PSO algorithms are described that are used for comparison
with the proposed PSO in the problem in hand. In the first one
namely LDW-PSO, the inertia weight is adapted linearly as follows
(Shi and Eberhart, 1998a,b):

ot ¼ominþ
itermax�t

itermax
:ðomax�ominÞ ð5Þ

+

( )y k
Bilinear System 

APSO

Estimated Model 
ˆ ( )y k

( )e k

( )u k

-

Fig. 1. The estimation process.
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where itermax is the maximal number of iterations, t is the current
number of iterations. So as iterations go, o decreases linearly
from omax to omin. In the second one namely NDW-PSO, the
inertia weight is adapted nonlinearly as follows (Chatterjee et al.,
2006):

ot ¼ominþð
itermax�iter

itermax
Þ
n:ðomax�ominÞ ð6Þ

where n is the nonlinear modulation index. In the last one namely
DIW-PSO, the inertia weight is adapted dynamically as follows
(Jiao et al.; 2008):

ot ¼oinit � u�t ð7Þ

where oinitA(0,1] is the initial inertia weight and
uA[1.0001,1.005].

Nevertheless these algorithms improve the performance of
PSO, they cannot truly reflect the actual search process without
any feedback taken from how far particle’s fitness are from the
estimated (or real) optimal value, when the real optimal value is
known in advance. Actually, for the particle which its fitness is far
away from the real optimal value, a big velocity is still needed to
globally search the solution space and thus its inertia weight must
set to larger values. Conversely, only a small movement is needed
and so inertia weight must set to a small value to facilitate finer
local explorations. Furthermore, introducing the same inertia
weight for all particles, by ignoring the differences among
particles performances simulated a roughly animal background,
not a more precise biological model. In fact, during the search
every particle dynamically changes its position, so every particle
locates in a complex environment and faces different situation.
Therefore, every particle may have different trade off between
global and local search abilities.

Motivated by the aforementioned, in this paper, the inertia
weight is dynamically adapted for every particle by considering a
measure called Adjacency Index (AI), which characterizes the
nearness of individual fitness to the real optimal solution. Based
on this index, every particle could decide how to adjust the values
of inertia weight. For this purpose, the velocity updating rules in
the proposed APSO is given by

vtþ1
i ¼ot

i v
t
iþct

1ir1ðpbestt
i�xt

i Þ þct
2r2ðgbestt�xt

i Þ ð8Þ

Compared with that in PSO, the velocity updating Eq. (3) has
two different characteristics:

(1) To incorporate the difference between particles into PSO, so
that it can simulate a more precise biological model, the
inertia weight is variable with the number of particles.

(2) To truly reflect the actual search process, the inertia weight is
set according to feedback taken from particles best memories.

Definition 1. The Adjacency Index (AI) for every particle in tth
iteration is defined as follows:

AIt
i ¼

Fðpbest1
i Þ�FKN

Fðpbestt
i Þ�FKN

�1 ð9Þ

where Fðpbestt
i Þ is the fitness of the best previous position of ith

particle and FKN is the known real optimal solution value.

In the first iteration, AIi is zero for ith particle and finally if
F(pbesti)¼FKN then AIi is infinite. A small AIi means that the fitness
of ith particle is far away from the real optimal value and it needs
a strong global exploration therefore, a large inertia weight. On
the other hand, a big AIi means that ith particle has a high
adjacency to the real optimum and so it needs a strong local
exploitation, therefore a small inertia weight. Hence, the value of

inertia weight for every particle in tth iteration is dynamically
calculated with the following transform function.

Remark 1. Note that in the most of engineering optimization
problem such as system identification considered in this paper,
the optimal value FKN is known in advance. However, if the
optimal value is unknown, the Eq. (9) can be modified as

AIt
i ¼

Fðpbest1
i Þ

Fðpbestt
i Þ
�1 ð10Þ

In this case, for each particle the Adjacency Index changes

according to the rate of its personal best fitness improvement.

Definition 2. The transfer function is

ot
i ¼

1

1þe�ða�AIt
i Þ
�1 ð11Þ

where a is a positive constant in the range (0,1]. Under the
assumption and definitions above, it can be concluded that
0.5roio1.

Fig. 2 shows the change of inertia weight o with respect to AI
with different values of a. The parameter a controls the
decreasing speed of inertia weight. In order to observe the
impact of a on the performance of APSO, parameter a is varied
from 0.1 to 1 with step size 0.1.

According to Eqs. (9) and (11), during the search, the particles
face different finesses; as a result they get different values of AI
and then inertia weight. While the fitness of a particle is far away
from the real global optimal, AI for this particle has a small value
(a low adjacency) and the value of inertia weight will be large
resulting strong global search abilities and locate the promising
search areas. Meanwhile, the fitness of a particle achieves near the
real global optimal, AI for this particle has a big value (a high
adjacency) and inertia weight will be set small, depending on the
nearness of its best fitness to the optimal value, to facilitate a finer
local explorations and so accelerate convergence.

4. Implementation of APSO

In this section, the procedure of APSO in online system
parameter identification is described. In this case, each particle
represents all parameters of estimated model. The proposed
algorithm sequentially gives a data set by sampling periodically.
While starting, in the first period, the best system parameter is
found by minimizing the SSE introduced in Eq. (2). In this case, the
simulation for next period does not begin until the fitness of
global best becomes lower than a predefined threshold. After that,
the estimated parameters will not be updated unless a change in
the system parameters is detected. In order to detect any change

Fig. 2. Inertia weight versus AI with different values of a.
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in system parameters, the global optimum in the later period is
noticed as a sentry particle. In the beginning of each of the next
periods, the sentry reevaluates its fitness and if the fitness
changes significantly or it becomes bigger than a predefined
threshold, the changes in parameters are confirmed. If no changes
are detected, the algorithm leaves this period without changing
the positions of particles. In contrast, when any change in
parameters occurs, the sentry alerts the swarm to reset their
best location memories and then the algorithm runs further to
find the new optimum values. For this purpose, the fitness of
global optimum particle and personal bests of all particles are
evaporated at the rate of a big evaporation constant. As a result,
other particles have a chance to find better solutions than those
stored on their pervious global and personal memories. Moreover,
the velocities of particles are increased to search in a bigger
solution space for new optimal solution.

Generally speaking, when a change in system parameters is
detected the following changes in algorithm are done and then
the proposed algorithm runs to identify the new optimal
parameters:

fitnessðpbestiÞ ¼ fitnessðpbestiÞ � T i¼ 1,:::,S ð12Þ

fitnessðgbestÞ ¼ fitnessðgbestÞ � T ð13Þ

V ¼ VþbVmax ð14Þ

where T is a big evaporation constant and b is a random variable
between 0 and 1. The procedure for this algorithm is summarized
as follows:

Step 1. Give a data set in the current period.
Step 2. If it is the first period, initialize positions and velocities

of a group of particles, then go to Step 4.
Step 3. Evaluate the fitness of the sentry particle. If any

change in system parameters is detected by the sentry particle,
reset the best location memories and velocities of particles using
Eqs. (11)–(14). Else go to Step 1.

Step 4. Evaluate fitness of each particle using Eq. (2).
Step 5. If the new position of ith particle is better than Pbesti,

set Pbesti as the new position of the ith particle. If the fitness of
best position of all new particles is better than fitness of gbest,
then gbestis updated and stored.

Step 6. Calculate the inertia weight using Eq. (11).
Step 7. Update the position and velocity of each particle

according to the Eqs. (4) and (8).
Step 8. If the global optimum fitness is lower than a redefined

threshold, output the global optimum and label it as the sentry
particle, then go to the step 1. Else go to Step 4.

5. Simulation results

This section demonstrates the feasibility of the APSO-based
parameter system identification. The results are compared to
those obtained by LDW-PSO, NDW-PSO, DIW-PSO and GA. In all
PSO algorithms, c1¼c2¼2 (Kennedy and Eberhart, 1995). In LDW-
PSO and NDW-PSO, o decreases from 0.9 to 0.4. Moreover, in
NDW-PSO n is set to 1.2 (Chatterjee et al., 2006). In DIW-PSO, u is
set to 1.0002 (Jiao et al., 2008). In APSO, the parameter o is
determined using Eq. (11). In addition, in GA, the crossover
probability Pc and the mutation probability Pm are set to
0.8 and 0.1, respectively. To perform fair comparison, the same
computational effort is used in GA, LDW-PSO, NDW-PSO,
DIW-PSO and APSO. That is, the maximum generation, population
size and searching range of the parameters in GA are the same as
those in LDW-PSO, NDW-PSO, DIW-PSO and APSO.

In order to observe the impact of a on the performance of
APSO, different values of a, 20 particles, 200 and 400 maximum
iterations for Examples 1 and 2, respectively, were conducted on
parameter estimation of the following examples. For each
experimental setting, 20 runs of the algorithm were performed.
Table 1 listed the mean best fitness values averaged over 20 runs.
It is clear that the values in range [0.2, 0.8] for a can all lead to
acceptable performance. In present paper, a is set to 0.5.

Simulation results have been carried out in two cases. In the
first case, the proposed algorithm has been compared with GA,
LDW-PSO, NDW-PSO and DIW-PSO in offline parameter identifi-
cation in terms of convergence speed and accuracy using two
examples described by (Wang and Gu, 2007). In the second case,
the proposed APSO is applied to online parameter identification of
Example 1 for its performance validation.

Example 1. A bilinear system is given as follows:

yðkþ1Þ ¼ ayðk�1ÞþbuðkÞ�cyðkÞuðkÞ ð15Þ

where a¼0.898, b¼0.28 and c¼�0.106.

Example 2. A MIMO bilinear system was given as follows:

x1ðkþ1Þ

x2ðkþ1Þ

" #
¼ A

x1ðkÞ

x2ðkÞ

" #
þB

x1ðkÞ

x2ðkÞ

" #
u1ðkÞþC

x1ðkÞ

x2ðkÞ

" #
u2ðkÞþD

u1ðkÞ

u2ðkÞ

" #

ð16Þ

where

A¼
�0:2 0:25

0:1 �0:18

� �
, B¼

0:61 0:1

0:31 0:35

� �
, C ¼

�0:31 0:0

0:5 0:0

� �
,

D¼
�0:02 0:5

0:53 �0:4

� �
:

5.1. Case 1: Offline

In these examples, for the APSO, the known optimal value FKN

is zero. In Example 1, the optimization process is repeated
20 times independently. The average and Standard deviation
(denoted by Std) of results using GA (Wang and Gu, 2007), LDW-
PSO, NDW-PSO, DIW-PSO and APSO are listed in Table 2. Figs. 3–5
depict the great success of optimization process by using APSO in
compared with DIW-PSO for the identified parameters a, b and c,
respectively. The aim is to avoid confusion between the results
of APSO and other algorithms, so only the result of DIW-PSO
which is the best result obtained among other algorithms in
terms of convergence speed are compared, excluding the rest.
Moreover, the convergence of the optimal SSE at each generation
is plotted for all algorithms in Fig. 6. Simulations results confirm
the superiority of APSO algorithm in terms of accuracy and
convergence speed without the premature convergence problem.

Table 1
The mean best fitness values with different values of a.

a SSE

Example 1 Example 2

0.1 2.53�10�17 4.22�10�16

0.2 3.98�10�21 7.26�10�17

0.3 4.12�10�21 3.19�10�18

0.4 3.07�10�21 2.89�10�19

0.5 8.02�10�22 2.12�10�20

0.6 7.12�10�22 5.52�10�18

0.7 1.22�10�19 1.21�10�15

0.8 4.41�10�21 5.02�10�17

0.9 5.79�10�18 7.87�10�15

1 8.85�10�18 7.02�10�14
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In Example 2, the average and Std of results using
GA (Wang and Gu, 2007), LDW-PSO, NDW-PSO, DIW-PSO and
APSO are listed in Tables 3 and 4. It is obvious that the results of
the proposed APSO are good promising as compared with other
algorithms. In addition, Figs. 7–10 illustrate three instance system
parameters including A(1,1), A(1,2), B(1,1) obtained by APSO

and DIW-PSO, respectively and the convergence trajectories
of the optimal SSE at each generation for all algorithms. It
again confirms the superiority of APSO algorithm in terms
of convergence speed without the premature convergence
problem.

5.2. Case 2: Online

In this case, the variation of system parameters is considered.
This study is necessary to justify tracking the changes of system
parameters using the proposed algorithm. If a change in the
model parameter is detected by sentry particle, the APSO
continues to run. In this moment, the simulation for next period
does not begin until the fitness of global best becomes lower than
a threshold of 10�5 in this period. After finding optimal
parameters in this period, there will be no APSO iteration unless
another change detects in system parameter. Based on this, a
sudden change is applied for the system parameters. Notice that
the slower parameters of time-varying change, the smaller choice
threshold is to have better result.

The separated parts (I), (II) and (III) in Figs. 11–13 illustrate how
the proposed algorithm tracks variation of system parameters in
Example 1. In part (I), the original parameters which are used in
offline section are given. In part (II), parameter a is changed from
0.898 to 1, while b and c are kept unchanged. Finally, in part (III),
parameter a is kept unchanged whereas parameters b and c are
simultaneously varied from �0.106 to �0.12 and from 0.284 to 0.3,
respectively. Considering Figs. 5–7, it is obvious that the proposed
algorithm can track any change in parameters. The dashed lines in
these figures signify the moment that the sentry particle has
detected some change in system parameters. Moreover, it can be
seen that unchanged parameters, b and c in part (II) and a in part (III)
reach on the previous values when simulation is terminated at the
end of each part. Table 5 illustrates the results obtained by APSO in
online identification. The results indicate that APSO successfully
identify parameters variations.

Table 2
Parameter estimation of Example 1 by using GA (Wang and Gu, 2007), LDW-PSO, NDW-PSO, DIW-PSO and APSO algorithms.

a b c SSE Std

Real Value 0.898 �0.106 0.284 – –

GA 0.897268 �0.107984 0.284729 5.2�10�3 0.08763

LDW-PSO 0.89800004 �0.10600028 0.28400002 8.7�10�11 9.1�10�9

NDW-PSO 0.89800003 �0.10600022 0.28399992 2.3�10�13 3.7�10�11

DIW-PSO 0.89800001 �0.10600009 0.28399995 1.1�10�14 7.7�10�13

APSO 0.89800000 �0.10600000 0.28399999 5.2�10�22 1.4�10�21

Fig. 3. Comparison of trajectories of parameter a.

Fig. 4. Comparison of trajectories of parameter b.

Fig. 5. Comparison of trajectories of parameter c.

Fig. 6. Comparison of convergence of objective function for Example 1.
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6. Conclusion

Online estimation of systems with unknown and varying
parameter is a challenging problem. The difficulties of online
implementation mainly come from the unavoidable computa-
tional time to find a solution. This paper presented a novel nature-
inspired optimization technique, namely APSO to solve this
problem. An adaptive inertia weight mechanism was proposed
in APSO to increase the convergence speed and accuracy of the

basic PSO to save tremendous computation time. APSO was also
improved to detect and determine varying parameters. Although
the feasibility of APSO was shown for both offline and online
identification of bilinear systems, it does not have any restriction
to other systems. The future work is to apply APSO for both
system identification and control in an adaptive manner.

Table 3
Parameter estimation of Example 2 by using GA (Wang and Gu, 2007), LDW-PSO, NDW-PSO, DIW-PSO and APSO.

Real value GA LDW-PSO NDW-PSO DIW-PSO APSO

A(1,1) �0.2 �0.2041 �0.199999978950624 �0.19999999822718 �0.200000003962381 �0.20000000000013
A(1,2) 0.25 0.2307 0.250000010999967 0.25000000089117 0.249999996860713 0.25000000000004
A(2,1) 0.1 0.0876 0.099999992025016 0.09999999911527 0.100000001450311 0.10000000000021
A(2,2) �0.18 �0.1650 �0.180000011561963 �0.18000000010448 �0.179999999177745 �0.18000000000023
B(1,1) 0.61 0.5925 0.610000036318299 0.61000000300658 0.610000000085002 0.61000000000054
B(1,2) 0.1 0.0832 0.099999991935472 0.10000000026139 0.099999998392734 0.10000000000009
B(2,1) 0.31 0.3263 0.309999982789969 0.30999999801552 0.310000001289933 0.31000000000002
B(2,2) 0.35 0.3584 0.349999977491103 0.34999999784326 0.349999999352850 0.35000000000046
C(1,1) �0.31 �0.3075 �0.309999976984384 �0.30999999555033 �0.309999998427939 �0.31000000000081
C(1,2) 0.0 �0.0096 �0.000000038392281 0.00000000306839 �0.000000002956280 �0.00000000000075
C(2,1) 0.5 0.4887 0.499999981178399 0.49999999599767 0.499999999648942 0.50000000000000
C(2,2) 0.0 0.0104 0.000000021451939 0.00000000505569 0.000000000152011 0.00000000000090
D(1,1) 0.02 0.0469 0.020000022378077 0.02000000131165 0.020000001340292 0.02000000000024
D(1,2) 0.5 0.5155 0.499999979634539 0.50000000028094 0.499999998357644 0.50000000000012
D(2,1) 0.53 0.5202 0.529999998257093 0.53000000026492 0.530000001308541 0.53000000000000
D(2,2) �0.4 �0.3978 �0.400000013756547 �0.40000000101925 �0.399999999755147 �0.40000000000001

Table 4
SSE and Std obtained by using GA (Wang and Gu, 2007), LDW-PSO, NDW-PSO, DIW-PSO and APSO algorithms for Example 2.

GA LDW-PSO NDW-PSO DIW-PSO APSO

SSE 3.1�10�3 1.8�10�9 1.3�10�12 4.1�10�14 9.7�10�19

Std 0.0623 4.4�10�6 4.9�10�9 2.8�10�12 7.4�10�18

Fig. 7. Comparison of trajectories of parameter A(1,1).

Fig. 8. Comparison of trajectories of parameter A(1,2).

Fig. 9. Comparison of trajectories of parameter B(1,1).

Fig. 10. Comparison of convergence of objective function for Example 2.
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Fig. 11. APSO process for tracking variable parameter a.

Fig. 12. APSO process for tracking variable parameter b.

Fig. 13. APSO process for tracking variable parameter c.

Table 5
Online estimation results of Example 1 by APSO.

Part (I) Part (II) Part(III)

Actual Predicted Actual Predicted Actual Predicted

a 0.89800 0.89800 1.00000 1.00003 1.00000 1.00003
b �0.10600 �0.10607 �0.10600 �0.10601 �0.12000 �0.12001
c 0.28400 0.28401 0.28400 0.28399 0.30000 0.30003
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